A CHARACTERIZATION OF A CLASS OF BARRELLED SEQUENCE SPACES

by J. SWETITS

(Received 19 May, 1976)

1. Introduction. In a recent paper [4] Bennett and Kalton characterized dense, barrelled subspaces of an arbitrary FK space, E. In this note, it is shown that if E is assumed to be an AK space, then the characterization assumes a simpler and more explicit form.

2. Definition and preliminaries. ω denotes the vector space of sequences of complex numbers. A subspace E of ω is a K space if it is endowed with a locally convex topology τ such that the linear functionals $x \mapsto x_j$ ($j = 0, 1, 2, \ldots$) are continuous. In addition, if τ is complete and metrizable, then (E, τ) is an FK space.

If $x = \{x_k\}$, let $P_n x = \{x_0, x_1, \ldots, x_n, 0, \ldots\}$. If a K space (E, τ) has the property that $P_n x \to x$ in τ for each $x \in E$, then (E, τ) is called an AK space.

If E is an FK–AK space then the dual of E may be identified with

$$E^\beta = \left\{ y \in \omega : \sum_{j=0}^{\infty} x_j y_j \text{ converges } \forall x \in E \right\}.$$}

If F is a subspace of E^β containing the space ϕ of sequences with only finitely many non-zero terms then E, F form a separated pair under the bilinear form

$$\langle x, y \rangle = \sum_{j=0}^{\infty} x_j y_j.$$

$\sigma(E, F), \tau(E, F)$ and $\beta(E, F)$ denote the weak, Mackey and strong topologies, respectively, on E by F (see, e.g., [7]).

If $A = (a_{nk})$ is an infinite matrix of complex numbers, the sequence $Ax = \{(Ax)_n\}$ is defined by

$$(Ax)_n = \sum_{k=0}^{\infty} a_{nk} x_k \quad (n = 0, 1, 2, \ldots).$$

$E_A = \{x : Ax \in E\}$, where E is a given sequence space. A' denotes the transpose of A.

The following theorem is established in [8].

Theorem 2.1. Let E and F be sequence spaces, each containing ϕ, such that $(E^\beta, \sigma(E^\beta, E))$ and $(F, \sigma(F, F^\beta))$ are sequentially complete. If $A = (a_{nk})$ is an infinite

matrix, then the following are equivalent:

(i) \(F_A \) contains \(E \);

(ii) \(E_A^B \) contains \(F^B \);

(iii) \(F_A^B \) contains \((E^B)^B \).

Proof. (i) \(\Rightarrow \) (ii). Let \(\{t_k\} \in F^B \) and \(\{x_k\} \in E \). Define the matrix \(B = (b_{nk}) \) by

\[
b_{nk} = \begin{cases} t_k & (0 \leq k \leq n), \\ 0 & (k > n). \end{cases}
\]

Then

\[
\sum_{n=0}^{\infty} t_n \sum_{k=0}^{\infty} a_{nk} x_k = \lim_{j \to \infty} \sum_{n=0}^{j} t_n \sum_{k=0}^{\infty} a_{nk} x_k = \lim_{j \to \infty} \sum_{k=0}^{\infty} x_k \sum_{n=0}^{j} t_n a_{nk} = \lim_{j \to \infty} [(BA)x]_j.
\]

The hypotheses on \(E \) insure that

\[
\lim_{j \to \infty} [(BA)x]_j = \sum_{k=0}^{\infty} x_k \lim_{j \to \infty} [(BA)e^k]_j = \sum_{k=0}^{\infty} x_k \sum_{n=0}^{\infty} t_n a_{nk},
\]

where \(e^k \) denotes the sequence with a one in the \(k \)th coordinate and zeros elsewhere.

Since \(\{t_k\} \in F^B \), \(\{x_k\} \in E \) are arbitrary, it follows that \(A' \) maps \(F^B \) to \(E^B \).

(ii) \(\Rightarrow \) (iii) follows from (i) \(\Rightarrow \) (ii) and the fact that \(F = (F^B)^B \) if \((F, \sigma(F, F^B)) \) is sequentially complete [10, p. 974].

(iii) \(\Rightarrow \) (i) is trivial.

3. A class of barrelled spaces.

Theorem 3.1. Let \(E \) be an FK–AK space and \(E_0 \) a subspace of \(E \) containing \(\phi \). \(E_0 \) is barrelled in \(E \) if and only if

(i) \(E_0^B = E^B \), and

(ii) \((E^B, \sigma(E^B, E_0)) \) is sequentially complete.

Proof. (Necessity) Let \(\{t_k\} \in E_0^B \), and define \(A = (a_{nk}) \) by

\[
a_{nk} = \begin{cases} t_k & (0 \leq k \leq n), \\ 0 & (k > n). \end{cases}
\]
If \(c \) denotes the space of convergent sequences, then \(c_A \) includes \(E_0 \). Since \(c_A \) is an FK space \([9, \text{ch. 12}]\), it follows from \([4, \text{Theorem 1}]\) that \(c_A \) includes \(E \). Thus, for any \(x \in E \), \(\sum_{k=0}^{\infty} t_k x_k \) converges. Consequently \(E^\beta \) includes \(E_0^\beta \). Since the reverse inclusion is satisfied, we have \(E_0^\beta = E^\beta \).

Let \(\{a^{(n)}\} \) be a sequence in \(E^\beta \) that is \(\sigma(E^\beta, E_0) \) Cauchy. If \(A = (a_{nk}) \) is defined by \(a_{nk} = a_k^{(n)} \), then \(c_A \) includes \(E_0 \). Consequently, \(c_A \) includes \(E \), \([4, \text{Theorem 1}]\). Condition (ii) now follows from the fact that \(E^\beta \) is \(\sigma(E^\beta, E) \) sequentially complete.

(Sufficiency). Let \(\{a^{(n)}\} \) be a sequence in \(E^\beta \) that is \(\sigma(E^\beta, E_0) \) bounded. Let \(m \) denote the space of bounded sequences, and define \(A = (a_{nk}) \) by \(a_{nk} = a_k^{(n)} \). Then \(m_A \) includes \(E_0 \). Conditions (i) and (ii) and Theorem 2.1 imply that \(m_A \) includes \(E \) since \((m, \sigma(m, \ell)) \) is sequentially complete (\(\ell = \) space of absolutely convergent series). Thus, \(\sigma(E^\beta, E_0) \) and \(\sigma(E^\beta, E) \) define the same bounded sequences and, hence, the same bounded sets. Thus, the topology \(\beta(E_0, E^\beta) \) is the restriction of \(\beta(E, E^\beta) = \tau(E, E^\beta) = FK \) topology of \(E \) to \(E_0 \). It follows that \(E_0 \) is barrelled in \(E \).

Remarks. If \(E_0 \) is monotone (i.e., the coordinatewise product \(xy \in E_0 \) if \(x \in E_0 \) and \(y \) is a sequence of zeros and ones) then condition (ii) of Theorem 3.1 can be omitted \([3, \text{p. 55}]\).

Let \(\{r_n\} \) denote a non-decreasing unbounded sequence of positive integers with \(r_0 = 1 \) and \(r_n = o(n) \). For each \(x \in \omega \) and each \(n = 0, 1, 2, \ldots \), let \(c_n(x) \) denote the number of non-zero elements in \(\{x_0, x_1, \ldots, x_n\} \). If \(E \) is a sequence space, a scarce copy of \(E \) is the linear span of

\[
\{x \in E : c_n(x) \leq r_n, n = 0, 1, 2, \ldots\}.
\]

As corollaries to Theorem 3.1, we obtain Theorems 7, 8 and 10 of \([2]\). In each case the spaces are monotone and the verification of condition (i) of Theorem 3.1 is straightforward.

\(\omega \) has the topology of coordinatewise convergence, and, for \(p > 0 \), \(\ell^p = \left\{ \begin{array}{l} x : \sum_{j=0}^{\infty} |x_j|^p < \infty \end{array} \right\} \).

Corollary 3.2. Every scarce copy of \(\omega \) is barrelled.

Corollary 3.3. Every scarce copy of \(\bigcap_{p>0} \ell^p \) is barrelled as a subspace of \(\ell \).

Corollary 3.4. Let \(E \) be a monotone FK–AK space. The union of all the scarce copies of \(E \) is a barrelled subspace of \(E \).

It is noted that Corollary 3.4 strengthens Theorem 10 of \([2]\), which is stated for solid spaces.

Another consequence of Theorem 3.1 is the following result.
COROLLARY 3.5. Let E be an FK–AK space and E_0 a subspace of E containing ϕ. The following are equivalent:

(i) E_0 is barrelled;

(ii) If G is a separable FK space containing E_0, then G contains E.

Proof. (i) \Rightarrow (ii). This is a consequence of [4, Theorem 1]. (ii) \Rightarrow (i). Let $\{t_k\} \in E_0^\beta$, and define $A = (a_{nk})$ by

$$a_{nk} = \begin{cases} t_k & (0 \leq k \leq n), \\ 0 & (k > n). \end{cases}$$

Then c_A includes E_0. Since c_A is a separable FK space [1, p. 199], c_A includes E. Thus, $\{t_k\} \in E_0^\beta$, and condition (i) of Theorem 3.1 is satisfied.

Let $\{a^{(n)}\}$ be a sequence in E_0^β that is $\sigma(E_0^\beta, E_0)$ Cauchy. If $A = (a_{nk})$ is the matrix defined by $a_{nk} = a^{(k)}_{nk}$, then c_A includes E_0. It follows that c_A includes E. Since E_0^β is $\sigma(E_0^\beta, E)$ sequentially complete, condition (ii) of Theorem 3.1 is satisfied. Thus, E_0 is barrelled.

REMARK. For FK–AK spaces, (ii) \Rightarrow (i) of Corollary 3.5 improves (ii) \Rightarrow (i) of [4, Theorem 1].

In Theorem 3.1, if it is not assumed that E is an AK space, then (i) and (ii) are not sufficient to insure that E_0 is barrelled in E.

Let E be ac_0, the space of sequences that are almost convergent to 0, (see [6]). For $x \in ac_0$, let

$$\|x\| = \sup_n |x_n|.$$

Let $E_0 = bs + c_0$, where

$$c_0 = \left\{ x \in \omega : \lim_{n \to \infty} x_n = 0 \right\},$$

$$bs = \left\{ x \in \omega : \sup_n \left| \sum_{j=0}^{n} x_j \right| < \infty \right\}.$$

Then $E_0^\beta = E^\beta = \ell$, and E_0 is dense in E [5, p. 29]. Furthermore, ℓ is $\sigma(\ell, E_0)$ sequentially complete. However, E_0 is a normed FK space when topologized by

$$\|x\| = \inf \left\{ \sup_n |y_n| + \sup_n \left| \sum_{j=0}^{n} z_j \right| : x = y + z, y \in c_0, z \in bs \right\}.$$

It follows from [4, Theorem 1] that E_0 is not barrelled in E.

REFERENCES