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Abstract. We prove that any locally compact, non-compact, second countable group
acts minimally on any metrizable connected manifold modelled on the separable
Hilbert space.

0. Introduction
The purpose of this article is to prove the following theorem.

THEOREM. If M is a connected separable Hilbert manifold and G is a locally compact,
non compac, second countable topological group, we can find a continuous and
minimal action of G on M.

This theorem is a generalization of the one we obtained in [5]. Let us point out
that, as in [5], we do not construct smooth actions in the case where G is a Lie
group. To our knowledge, it is still not known that there exists a minimal diffeomorph-
ism of I2.

The main ingredients for this paper are our previous work [5] and the paper of
Glasner and Weiss [6] about existence of minimal skew product extension. In fact,
it is quite natural, once one knows the existence of a minimal action on Hilbert
space, to try to apply the ideas of Glasner and Weiss and to lift this action on I2

to a minimal skew product extension on / 2 xM which is homeomorphic to M.
Unfortunately, this is impossible due to the non-compactness of M. However it is
easy to construct skew product extensions which have dense orbits, and as we
showed in [5] it is pretty natural in the context of infinite dimensional topology to
try to construct extensions such that the subset of points of l2xM with a dense
orbit is homeomorphic to I2 x M.

It is not necessary to be familiar with [5] or [6] to read this paper. In fact we
obtain, as a by product, a generalization of the theorem of Glasner and Weiss to a
general group and a general base space (see theorem 4.3).

1. Topology on the space of skew products
We consider a topological space X endowed with a continuous action a of a locally
compact group G. Since this action is fixed in the sequel we will denote the effect
of ge G on xe X by gx instead of a(g, x). We suppose that Y is a metric space,
whose metric is denoted by d. Without loss of generality, we can assume that the
metric d is bounded by 1 (replace d(x, y) by min [1, d(x, y)]).
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We will consider actions A of G on X x Y which are skew products over a. Such
an action A: GxX xY^XxY can be written as A(g, x, y) = (gx, agx(y)). We will
call agx the cocycle associated to A. It verifies the cocycle equations:

ag;gx ° ag,x = ag%x, Vx e X, Vg e G, Vg' e G,

a£X = Idy, VxeX,

(e is the neutral element in G).
We denote by Sf(a) the set of skew products on X x Y over a. For each compact

subset C of G, we define a semi-metric D c on if (a) by:
DC(A, A') = sup {d(ag,x(y), a'g,x(y))\g eC,xeX,yeY},

where (agx) and (ag,x) are the cocycles associated with A and A'.
The set of semi-metrics {DC\C a compact subset of G} defines a uniform structure

on y(a) which is easily seen to be Hausdorff. Moreover if G is a- compact, it is
easy to define a metric on Sf(a) which gives the same uniform structure.

LEMMA 1.1. If Y is complete for d, then Sf(a) is complete. In particular if G is
a-compact, if (a) is metric complete.

Proof. Suppose (A')ie / is a Cauchy net in Sf(a) with associated cocycles (ag)X). It
is easy to show that there exists a continuous map G x X x Y-> V, (g, x, y) •-> agx(y),
such that if we put A(g, x, y) = (gx, agx(y)), we have, for each compact subset C
of G, DC{A\ A) -» 0 as i goes to infinity in /. We still must check that A is an action
of G on X x Y. This means that we have to prove that agx verifies the cocycle
conditions.

Suppose g, g'eG, xeX and y e Y; we have for each ie I:

d[ag;gx(agjy)), ag.g>x(y)]< d[ag.jgx(ag,x(>>)), ag',gx(ag,x(y))]

+ d[ag,gx(ag>x(>')))ag,gx(ag,x(j))]

+ d[ag,gx(ag>x(>0)) a--g,x(»] + d[a g . g , x ( j ) ,« , . ,» ] .

Now, as / goes to infinity, it is clear that the second and fourth terms go to zero
because they are bounded respectively by D{gi(A, A') and D{gg}(A, A'). The first
term goes to zero as i goes to infinity because a'gx(y)^> agx(y) and ag>gx is a
continuous map. The third term is zero because of the cocycle conditions on (agx).
Of course we have aex = Idy, for all x e X, because this is true for each a\x. •

LEMMA 1.2. The topology defined on&'(a) is finer than the compact open topology.

Proof. Let px and p2 be the canonical projections of X x Y on the two factors. The
topology on Sf(a) is the topology of uniform convergence of the maps p2° A:
GxX x Y-> Fon each set of the form CxXxY, where C is an arbitrary compact
subset of G. Certainly this topology is finer than the compact open topology on the maps
from G x X x Y to Y.

This proves the lemma since px ° A is independent of Ae 5^(a). •

We now introduce a subset ^( Id x ) of 5^(Idx) the set of skew products on X x Y
over the identity of X. The set ^ ( Id x ) is defined as the set of homeomorphisms H
of X x Y of the form H(x, y) = (x, hx{y)) such that the two sets (hx)xeX, (/ix')X£x
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of self maps of Y are uniformly equicontinuous (with respect to d). It is easy to
verify that ^( Id x ) is a group (no topology involved here).

Given A in if(a) and H in #(Idx) , we can define HAH1 by

HAH\g, x, y) = H(A(g, H~\x, y))).

It is clear that HAH~X is in 5^(a).

LEMMA 1.3. Jf/f e^ ( Id x ) , the mapy(a)^> 9*(a), A^> HAH~X is a homeomorphism.

Proof. We have only to check that it is continuous. Since H is in ̂ ( Id x ) , the function
0:R+-»R+ defined by

6(8) = sup {d(hx(y),hx(y'))\xeX,y,y's Y, d(y,y')<8}

satisfies lims_o #(£) = 0- The lemma follows then from the easily verified inequality:

DC{HAH-\HA'H-X)<O{DC{A,A')). •

2. Construction of some real valued functions
Let G be a locally compact group, C a compact subset of G and n a positive
integer. We define a function <pn>c: G-»[0,1] by:

<Pn,c(Cm+1 - Cm) = max ((n - m)/n, 0), Vro eN*;

<pn>c = 0 outside (J Cm.
melM*

We state some properties of (pnC in the following lemma.

L E M M A 2 . 1 . ^ C I S (Borel) measurable; <pn,c{C) = 1, <pnyC(G)<= [0,1]; ^>nC =0 outside
U"=i C. Moreover if C is symmetric (i.e. C = C~' ={g~1|ge C}), we have for each
geC and g'eG;

N - and \<p(gg')-<p(g')\^-.
n n

Proof. The first four properties are trivial. The last one follows from the fact that if
C is symmetric, we have: geC, g'e Cm+l\Cm implies gg' and g'g belong to

C m + 2 \C m ~ ' <= cm+2\Cm+1 u Cm+1\Cm u C m \ C m ~ ' . •

We will need the following well-known technical lemma. We will provide the proof,
since it is very short.

LEMMA 2.2. Suppose a:GxX-* X is a continuous action of the group G on X. If
K c G is compact and A<=- X is closed, then the set a(KxA) is closed in X.

Proof. Since a can be written as the composition of the homeomorphism GxX->
G x X, (g, x) >-» (g, a (g, x)) followed by the projection G x X -* X, it suffices to prove
that if K is a compact space, the projection p: K xX ->X is closed. Let B be a
closed subset of K xX, we have:

X\p(B) = {xeX\K x{x}<= K xX\B}.

Using the compactness of K, it is very easy to show that this last set is open
i n X •
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We can now state and prove the main lemma of this work.

LEMMA 2.3. For each compact subset C of G and each e > 0, we can find a compact
subset C" of G which satisfies the following property:

Given a continuous action a of G on a normal space X, a closed subset F ofX, with
gFnF = 0 for all geG, g ̂  e, and a neighbourhood V of C'F = {gx\g eC',xe F},
there exists a continuous map &:X->[0, 1] such that:

(0 0(F)=1;
(ii) 0 = 0 outside V;

(Hi) Vg 6 C, Vx e X, | d(gx) - 6{x)\ < e.

Proof. We can suppose that C is a symmetric neighbourhood of e in G. Let p, be
a right invariant Haar measure on G. Choose Co a compact symmetric neighbourhood
of e such that Co<= C, the interior of C. We have p.(Co)>0. Fix n such that
2p,(C)/np,(C0) < B. Put C" = C"+I. Suppose now a, X, F and V are given as stated
above. Using the inclusion C2, c C and the fact that gFr\F = 0, for all g # e, we have

[ (C 2 " -C)C o F]nC o F = 0 .

Since our space X is normal, we can separate the two closed (see lemma 2.2) sets
(C2n — C)C0F and C0F by two open sets W and W. Using the compactness of
(C2n - C) and C" we can find an open neighbourhood U of C0F such that U <=• W,
(C 2 " -C) l / c : W, C" l /c V(recallthat Vis a neighbourhood of C+IF= C'F). So
up to this point we have found a neighbourhood U of the closed set Co F such that:

[(C2n-C)U]nU = 0 and C"(/cK

We now choose a continuous map p: X -»[0, 1] such that p(C0F) = 1, p = 0 outside
U. We consider the map cpnC defined above and we define df.X-^10,oo[ by:

<?.(*)= f <pn,cWp(kx)dfi(k)= I <pn<c(k)p(kx) dn(k).
JG JC"

The last equality follows from the fact (lemma 2.1) that <pnC is 0 outside U"=i C =
C" , (eeC! ) .

Using the Lebesgue dominated convergence theorem, it is easy to show that dx

is continuous. We remark also that 0i(x)#O implies that there exists keC such
that kxeU, in particular 6, is zero outside C t / c y. Moreover if xeX, k and
k'eG are such that <pn c(fc)p(fcx) and <pnC(k')p(k'x) are non-zero, we have k, k' e C",
fcx, fc'x e t/. In particular, we obtain JWc'"1 e C2" and kk'~\k'x) e U, hence kk1'1 e C
by the choice of U. Thus we have shown that for each xeX, there exists k'eG
such that the function fci-»<pnC(fc)p(fcx) is zero outside Ck'. The same property is
also true for any function of the form fc>-» <pn c(kh~l)p{kx) since it is a right translated
function obtained from k*-+(pnC(k)p[k(hx)\ Let us now remark that:

el(hx)=\ <pn,c(k)p(khx)d,M(k)=\ <pnX{kh-x)p{kx) dfi(k),
Ja Jo

by right invariance of p.. Now using lemma 2.1, what has just been said above and
the right invariance of p., we obtain that if he C and xeX:
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Skew products 217

Since p(C0F) = l and (pn,c(C) = l, we have S1(x)s^.(C0) for each xeF. If we
define 6X by (l//i(Co))0i, it satisfies properties (ii) and (iii), but it takes values >l
and it is only >1 on F. It is easy to rectify this by composing 0, with the retraction
r: [0, oo[-» [0, 1], r(x) = inf (x, 1). Property (iii) is true for 6 = r0, because we have

\r(t)-r(t')\<\t-t'\, Vu'e[0,oo[. •

Remarks. (1) The function 0 in lemma 2.3 is, in the case where G = Z, very similar
to functions constructed in [7, proof of theorem 3] and [8, top of p. 482].

(2) In fact, we need lemma 2.3 in the case where F is compact. Of course, in this
context, lemma 2.2 is obvious.

3. Construction of some skew products
We consider a continuous action a of the locally compact group G on the normal
(Hausdorff) space X. We suppose also that our metric space Y satisfies the following
condition:

(W) The metric space Y is locally compact, and the group of homeomorphisms
with compact support, which are isotopic to the identity through an isotopy with
compact support, acts minimally on Y.
Another formulation of (3€) is the following:

(W) The metric space Y is locally compact, and for every non-void open set
U c Y and any compact set K c Y, there exists a finite number of isotopies (&,_,),e[0>1],
i = l , . . . ,fi , with compact support, such that fcl0 = Idy, i = \,...,n, and K<=

Recall that '(£,),e[(M] is an isotopy with compact support on Y' means that the
self-map of Yx[0, 1], (y, t)<-^(k,(y), t) is a homeomorphism with compact support.
This implies that the set of maps (k,),elon and (fcr')«£[o,r] are uniformly equicon-
tinuous with respect to any metric on Y compatible with its topology.

We remark that the condition (%€) is satisfied if Y is locally compact and given
any two points y, y'e Y, there exists an isotopy with compact support (fc,)(e[0,i] such
that kl(y) = y'. This last condition is satisfied in the case where Y is a connected
finite dimensional manifold without boundary. It is also satisfied if Y is a connected
Hilbert cube manifold (see [3] for the properties of Hilbert cube manifolds).

The condition ($f) is also satisfied if Y is a compact space on which a path
connected topological group acts minimally.

We now use the results of § 2 to obtain the following approximation lemma.

LEMMA 3.1. Let S > 0, C a compact subset of G, K and V respectively a compact and
an open non-void subset of Y, U an open non-void subset ofX, be given. We suppose
that F c X is a closed subset satisfying gFnF = 0, for all geG, g^e, and
{ge G|gFc: U} is not relatively compact in G (in particular it is non-void). Then we
can find H e SP(ldx) such that:

(i) Dc(aXldY,H(aXldY)H-l)<8;
(ii) the set Fx.K is contained in the orbit of U XV under H(a x ldY)H~l.

Proof. Without loss of generality, we can assume that C is a symmetric set containing
ee G. We can find a finite number of isotopies of Y, (/Cj>t),e[0,i], i = 1 , . . . , n, with
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compact supports such that ki0 — ldY and K <= U/=" (^,1)~'(V). Using the fact that
the isotopies have compact support, we can find an e > 0 such that for all t, t' e [0,1],
\t-t'\<e, and for all ie{1,..., n}, and all yeY, d(kit(y), kiX(y))<S.

Given this e and the compact subset C of G, we can obtain, using lemma 2.3, a
compact subset C of G which will allow us to apply lemma 2.3.

Since {ge G|gF<= [/} is not relatively compact, we can construct by induction
g i , . . . , gn e G (n is the same as the number of isotopies) such that

CC'ginCC'gj = 0, \rsi<jsn.

Applying lemma 2.3, we can find continuous functions <pu ..., <pn: X ->[0,1] such
that:

(a) (pi(giF) = 1;
(b) VgeC,VxeX,Vie{ l , . . . , n} , |,p1.(gx)-<pj(x)|<e;
(c) supp <ph the (closed) support of «p,, is so close to C'gtF that (pt\F = 0,

i = 1,...,«, and C supp <pt n C supp <p, = 0 , l s i ' < ; '<n .
We now define H: X x Y-> X x Y, (x, y)~(x , hx{y)) by:

,(x)O0, ifxesupp<p,, i = ! , . . . , «

^ ( : V ) ' ifxf^U^iSuppi

The condition (c) above shows that H is a well defined homeomorphism. Moreover,
this same condition (c) shows that for any x e X we can find i e { 1 , . . . , « } such that
for any geC (in particular g = e) and any y e V,

hgx(y) = JWtfoOO-
It follows then from condition (b) and the definition of e that for all x € X, g e C,
and ye Y, d{hgxhz\y),y)<8. Since

H(a x Idy) t f - ' (g , x, y) = (gx, hgxK\y)),

we obtain condition (i) of the lemma. The fact that H is in ^ ( I d x ) follows easily
from the compactness of the supports of the isotopies (ki,,)re[o,i]-

Let us verify condition (ii). Given yeK, we can find i e { l , . . . , n } such that
ko(y) eV. If x e F, we have

HAH-\gi, x, y) = (g.x, hgiXK\y)).

By construction of g,, g,xe [/. Since x e F, properties (a) and (c) on the (<Pj)j=i,...,n
show that hgjX = fc,u and fex = Idy , in particular

hgjXhx
l(y) = kii(y)eV. •

4. Topologically transitive and minimal skew products.
In this section, we will suppose that G is a locally compact a-- compact topological
group acting continuously on the normal space X. We will suppose that X is second
countable (i.e. there exists a countable basis of open sets), and that Y satisfies the
condition (#f) of § 3. Note that since Y is locally compact and metric, we can
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suppose that the metric d we have on Y is complete. Since G is a- compact 5^(a)
is metrizable and complete, in particular each closed subspace of Sf{a) is a Baire
space. Since Y satisfies condition (3€) of §3, it is easy to check that the path
components of Y are dense, in particular Y is connected. It follows easily from [2,
theorem 5, p. 109], that a metric locally compact connected space is o--compact,
and hence also second countable. We conclude from this that X x Y is second
countable.

Following [6], we introduce #(«)<= y(a), the orbit of a x ld y under the action
of the group ^( Id x ) :

•d(a) = {H(aXldY)H-[\He<?(ldx)}.

By what we have seen #(a), the closure of #(a) in 5^(a), is a Baire space.
Let K be compact subset of X, such that gK nK = 0, for all g e G, g ̂  e, and

for each non-void open subset U of X, the set {g\gK <= £/} is not relatively compact
in G.

LEMMA 4.1. Under the above hypothesis, there exists a dense Gs subset ^ of the Baire
space &(a) such that for each A in <& and each open non-void subset WofX x Y, the
orbit of W under A contains the set K xY.

Proof. Since •d(a) is a Baire space, Y is cr-compact, and X xY second countable,
it suffices to prove that for each open non-void subset W of X xY, and each compact
subset K of Y the set

= \Ae~dia) KxKc \J A(g)W\
I ge<3 Jge<3

is open and dense in #(a). We have used A(g) W to denote the image of W under
the homeomorphism (x, y)>-*A(g, x, y). The fact that 6(K, W) is open, is an immedi-
ate consequence of lemma 1.2. The fact that a x Idy e 6{K, W) results from lemma
3.1. By the definition of &(a), all we have to show is that H(a xldY)H~l is in
6(K, W) for each H in ^( Id x ) . Now we have by lemma 1.3:

x ld y e H"V(X, W)H.
But

4 : U HAH'\W)
geG

<X)c U A(g)(H-l(W))Y
X

Since H is a skew product over the identity of X, we can find a compact subset K
of Y such that H~l(KxK)c KxK. In particular we obtain:

" / / - ' ( W ) ) c H~*6{K, W)H.

>}

Since a x\dY e 6(K, W) holds for any compact set K in Y, and any non-void open
set W in X x Y, we obtain:

This completes the proof of the lemma. •
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We now easily obtain from this lemma two theorems.

THEOREM 4.2. Suppose Y satisfies {%!), and that the continuous action a of the
a-compact locally compact group G on the second countable normal space X is such
that there exists a point xoeX with Gx0 dense in X, gx0 ̂  xo,far all geG, g^ e, and
for every compact subset C of G the set Cx0 has no interior in X. Then there exists a
skew-product extension A of a to X xY which is topologically transitive. In fact, A
can be chosen such that every point of the form (x0, y) e X x Y has a dense orbit under
the action of A.

Proof. Since Gx0 is dense and for each compact subset C of G, the set Cx0 has no
interior in X, it is easy to show that {ge G\gxoe U} is not relatively compact in G
for each non-void open subset of X. We can now apply lemma 4.1 to find Aeif(a)
such that {x0}xY<=UgeOA(g)W for each non-void open set W of XxY. In
particular if y& Y, there exists geG such that (xo,y)eA(g)W, which implies
A(g-l)(x0,y)eW. •

THEOREM 4.3. Suppose there exists a minimal action of a path-connected group on the
compact metric space Y. Suppose that the locally compact a-compact group G acts
continuously and minimally on the second countable normal space X, in such a way
that there exists xoeX, on which the action of G is free, and Cx0 has no interior in X
for each compact subset C of G. Then there exists a skew product extension of G to
XxY which is minimal.

Proof. By theorem 4.2 (or lemma 4.1), we can find a skew product extension A of
a, such that for every non-void open set W of X x Y, we have {x0} x Y with
{x0} x y c l J g e G A(g) W. Since Y is compact and Ugsc^Ctf) W open, it is easy to
find an open neighbourhood U of x0 in X such that U x Y^{JgeOA(g)W. The
invariance of Ugeo A(g) W under G implies that

u
where the last equality follows from the minimality of the action of G on X. •

Remarks. (1) In fact in theorems 4.2 and 4.3 (and also in lemma 4.1 if K ̂  0 ) , the
group G has to be second countable (hence metric). This follows from the fact that
G is cr- compact, and the fact that each compact subset C of G is second countable
because it is homeomorphic to Cx0 which is contained in the second countable
space X.

(2) In the case X compact metric and G = Z, theorem 4.3 is in [6]. In the case X
compact, Y a compact connected topological group and G = Z or R, theorem 4.3 is
in [4] and [7].

(3) Theorem 4.2 is well known in the cases G = Z or R.
(4) J. C. Yoccoz has shown me that theorem 4.3 is false if we do not assume that

the metric space Y is compact. In fact, if we look at the action a of T1 on the first
factor of T1 xR, there is no minimal homeomorphism in #(«)•

(5) The fact that we must know that Cx0 has empty interior in X, for each compact
set in G, is necessary for theorems 4.2 and 4.3. For example if this hypothesis is not
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verified in the context of a minimal action of G on X, it is easy to show that the
dynamical system a is homeomorphic to the one given by left translation on G.
However this dynamical system has no minimal extension to G x Y (as soon as Y
has more than one point!), because in a skew product on GxX the orbits are in
fact graphs of (continuous) maps G-* Y.

5. Existence of minimal actions on Hilbert manifolds
The purpose of this section is to establish the following theorem.

THEOREM 5.1. Any locally compact, non-compact, second countable topological group
acts continuously and minimally on any connected, second countable, infinite
dimensional Hilbert manifold.

Fix a topological group G which is locally compact, non-compact and second
countable, hence metrizable. We will let M denote a second countable, infinite
dimensional Hilbert manifold. We will have to use some results from the theory of
infinite dimensional manifolds, most of them can be found either in [1] or in [3].
The first result we will use is the fact that we can find a (connected) Hilbert cube
manifold Y such that M is homeomorphic to I2 x Y, where I2 is the separable infinite
dimensional Hilbert space. Then we will try to obtain the minimal action as a skew
product of a minimal action on I2. Of course by remark 4 at the end of § 4 our
methods do not allow us to prove that. What we will prove is that we can find a
skew product on I2 x Y whose set of points with a dense orbit is homeomorphic to
I2 x Y. To prove the existence of such a homeomorphism we will need the notion
of Z-set, which we recall now.

Definition. (See [1, p. 151]). A closed subset F of a Hilbert manifold M is called a
Z-subset (or Z-set) if the set of continuous maps C°(Q, M\F) is dense in C°{Q, M)
for the uniform topology. We have used Q to denote the product [0, 1]N (i.e. the
Hilbert cube).

We have the following theorem ([1, corollary 7.3, p. 316]):

THEOREM 5.2. If a set A, in the Hilbert manifold M, is a countable union of {closed)
Z-sets, then M\A is homeomorphic to M.

After these preliminaries of infinite dimensional topology, we now exhibit an action
of G on I2 with some good properties (see [5]).

We consider the space C°(G) of real valued continuous functions on G, endowed
with the topology of uniform convergence on compact subsets of G. Since G is
locally compact and second countable, the space C°(G) is in fact a separable Frechet
space. The group G acts continuously on C°(G) by (gf)(x)=f(g~lx) where / 6
C°(G), ge G, xe G. It is easy to see that G acts effectively on C°(G); this means
given any geG, g#e , there exists feC°(G) such that g / V / By considering
functions with compact support, and the fact that G is non-compact, it is easy to
show that this action has the properties (P) stated below.
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Definition. A continuous action of G on a topological vector space E, (g, x) -* gx,
satisfies properties (P) if:

(i) for each geG the map x->gx is a (continuous) linear map;
(ii) the vector subspace {xe£|limgH>oogx = 0} is dense in E.

Properties (P) are important because of the following facts.

LEMMA 5.3. If an action of G on E has properties (P), then the action of G on £N

also has properties (P).

The proof of lemma 5.3 is easy.

LEMMA 5.4. If an action of G on E has properties (P), and if E is locally convex, then
for any compact space K the induced action of G on C°(K, E) {endowed with the
uniform or compact open topology) has properties (P).

Proof. Given a convex neighbourhood V of 0 in E and f:K-*E, it is easy to
construct a cover (t/j)I=, . „ of K such that if we choose k,, e £/,, i = 1 , . . . , n, then
for all ke Ut, /(fc)-/(fc,)e V. Let (<p,)i==1 .„ be a partition of unity on K with
supp <Pi <= U. Using the fact that V is convex, we obtain:

/ (* ) -£ <p,(k)f(k,)eV, VfceK
1 = 1

We can, by the density of {x e Ellim^^ gx = 0}, choose x , , . . . , xn in this set such
that f(k,) - Xj e V, i = 1 , . . . , n. Again convexity of V shows that

In particular the function denned by

is V + V close to / Moreover l im^^ gf = 0, since / ' takes values in a finite
dimensional vector subspace of {xllinig^o gx = 0} and the action of G
is linear. •

LEMMA 5.5 (Rolewicz [9]). If the action of G on E has properties (P), then it is
topologically transitive.

Proof. Let U and V be open non-void subsets of E; we have to show that gU n V
is non-void for some g in G. By properties (P), we can find a e U and b e V such that

lim ga = lim gb = 0.

In particular, if g is big enough, a +g~lb 6 U and ga+beV. But, by the linearity
of the action of g, we have g(a + g~lb) = ga + b. •

Let us go back now to our action of G on C°(G). We will in fact consider the
action of G on the separable Frechet space X = C°(G)N. We have:

LEMMA 5.6 (West [10] or [1, p. 168]). The set of continuous maps F:Q-*X such that
for allgeG,g* e^gf(Q) n / « ? ) = 0 is a dense Gs in C°(Q, X).
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Proof. Since G is second countable and locally compact we can write G\{e} =
UneN Cn a countable union of compact subsets of G. Each of the sets

tn = {fzC\Q,X)\VgeCn, gf(Q)nf(Q) = 0}

is easily seen to be open. This implies that the set defined in the lemma, which is
OHEN 6n, is a Gs subset of C°(Q, X). We have still to show the density of this set.
Let us use (at)ieN to denote a dense countable subset of the separable space C°(G).
If / : Q-*X = C°(G)N is a continuous map, we can define for each meM a
continuous map fm: Q->C°(G)N, by

Pjm=pj if n<m,

pjm = an-m if n > m,

where pn is the nth projection of C°(G)N on C°(G). It is easy to verify that
limm_co/m = / Moreover, since (an)neN is dense in C°(G) and the action of G is
effective, given any geG, g # e, there exists an with gan ^ an, it follows easily by
looking at the (m +«)th component of fm that

gfm(Q)nfm(Q) = 0. D

We can now state the properties we need for the action of G on X.

LEMMA 5.7. There exists a continuous action a of G on a separable Frechet space X,
for which there exists a countable dense subset (fi)ieN ofC°(Q, X) such that:

(a) VieN,VgeG, g* e=>gfi(Q)nf(Q) = 0;
(b) VieN, Vt/open non-void subset ofX, theset{ge G|g/X<?)c U} is not relatively

compact in G.

Proof. We take the action of G on X = C°(G)N given above, we know that (lemma
5.3) it has properties (P). By lemma 5.6, the set ^ of functions f.Q^X such that
for all g # e , gf(Q)n/(Q) = 0 is a dense Gs. Using lemma 5.4 and lemma 5.5, we
obtain that if U is an open non-void subset of U, the open subset of C°(Q, X)

<1U(U) = {feC0(Q,X)\3geG, gf(Q)c U} is dense.

Since C°(Q, X) is a complete metrizable space, the set ^nlJgeN ^(Uj) is a dense
Gs subset of C°(Q, X), where (Uj)JeN denotes a basis of open non-void subsets of
X. It is easy to check, using the fact that a compact subset of the infinite dimensional
vector space has empty interior, that for every fe(~]ieN °U{lJt) and every non-void
open subset U of X, the set {g G G\gf{Q) <= [/} is not relatively compact in G. Since
C°(Q, X) is separable, we can obtain the set (f)i£N by selecting a countable dense
subset of » n f l j £ N 'U(Uj). •

Proof of theorem 5.1. We will find a skew product action A of G on X x V where
the action a of G on X is given by lemma 5.7. The fact that X is only a separable
Frechet space and not I2 is not a restriction, since all separable infinite dimensional
Frechet spaces are homeomorphic (see [1, theorem 5.2, p. 189]). Remark that, since
Y is a connected Q- manifold, it satisfies hypothesis (5if) via the fact, already
mentioned, that isotopies with compact support operate transitively on Y. Moreover,
if f is one of the maps Q^X given by lemma 5.7, we can apply lemma 4.1 with
f(Q) as a compact subset of X. Using the fact that #(a) is a Baire space, we can
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in fact find a Gs dense subset M of #(<*), such that, for each AeJt, each open
non-void subset U of X x Y and each ieN, we have:

f,(Q)xYc: (J A(g)C/.

It follows easily from the fact that the C/i),-6N are dense in C°(Q, X), that for each
A in M and each open non-void subset U of X x Y, the complement in X x Y of
UgeG^Ug)^ is a Z-set in X x Y. In particular if / 4 e ^ , and (t/;),eN is a basis of
open non-void subsets of X x Y, we obtain by theorem 5.2 that P U N (Ugec A(g) Ut)
is homeomorphic to X x y. The action A restricts to a minimal action on
OieN (UgeGA(g)Ui), since this set is precisely the set of points in X x Y whose
orbit under A is dense in X x Y. •
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