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BOUNDARY VALUE PROBLEMS FOR
SYSTEMS OF DIFFERENTIAL EQUATIONS

H.B. THOMPSON

We give sufficient conditions for systems of the form y' = f(x,y), x in [0,1] and
y" = f(x,y,y'), x in [0,1] to have solutions y with (x,y) in n C [0,1] X Rn. We
use degree theory and allow the shape of fi to depend on x.

1. INTRODUCTION

We prove there are solutions, nonnegative in some cases, for various two point
boundary value problems for systems of differential equations. There is an extensive
literature on these problems as can be seen from the cited papers and their references.

In Section 2 we consider the problem

(11) y' = f(x,y), *e[0,i]

(1-2)

where / : [0,1] x Rn —> Rn is continuous and /(0,-) = / ( I , - ) . A solution y is a
continuously differentiable Rn-valued function which satisfies (1.1) everywhere in [0,1]
and the boundary conditions (1.2). We use shooting arguments combined with Brouwer
degree theory (see [1] and [10]) in contrast to the coincidence degree used in [11] and
the Schauder degree used in [2]. We improve on some results of Bebernes [2] and of
Gufstafson and Schmitt [5]. In Corollary 2.8 we apply our results to show that the
condition f(x,y) ^ —ay for some a > 0 and all y ^ 0 in Santanilla [11, Theorem 3.2]
can be relaxed (see [11] for further discussion and references).

In Section 3 we consider

(1-3) y" = f(*,y,y') * e [ o , i ]
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398 H.B. Thompson [2]

with the periodic, Picard and Neumann boundary conditions

(1-4) 2/(0) =

(1.5) 2/(0) =A, y(l) = B, and

(1.6) y'(0)=A, y'(l) = B,

respectively. A solution y is a twice continuously differentiate, Rn-valued function
satisfying (1.3) everywhere and the appropriate boundary conditions. Knobloch [7]
was the first to consider problem (1.3) and (1.4) in the present context. Our results
use Schauder degree theory and extend those of Bebernes and Schmitt [1], Habets and
Schmitt [4], Gaines and Mawhin [3], Knobloch [7], Knobloch and Schmitt [8] and Lan

[9]-
The following notation will be useful.

For a bounded open subset T of [0,1] x Rn , let dT denote the boundary of T,
let T denote its closure and for x G [0,1] let T(x) denote its z-cross section and
dT(x) denote the boundary of T(x). Thus T(x) = {y G R n : {x,y) £ T}. By the
boundary of T we mean the curved boundary so that we exclude the sets {0} x T(0)
and {1} x T(l). As usual R + = {x 6 R: x ^ 0}, / is the identity map on R",
y = (if1,- • • ,yn) G Rn, y > 0 means y1 > 0 for all 1 ^ i ^ n while y ^ 0 means
yl ^ 0 for all 1 ̂  i ^ n, and BT — {y 6 Rn: \y\ < r}. Also when A and B are subsets
of R n we denote by Cm(A, B) the functions from A to B with continuous TO—th order
partial derivatives endowed with the usual maximum norm. If A is a bounded open
subset of R n , p E R", / G C(A;Rn) and p $ f(dA) we denote the Brouwer degree
of / on A at p by d(f,A,p).

We shall always use ft to denote a bounded open subset of [0,1] x R n . If 0 G fl(x)

for all x G [0,1], then we define L: [0,1] x Rn -> R by

f i, foi(x,y) en
(1.7) L(x,y) = I

\ inf{Jfc > 0 : (x,y/k) G fi}, otherwise.

Thus L ^ 1 and (x,y/L(x,y)) belongs to the boundary of ft for all (x,y) not in ft.
When y is a function of x uniquely determined from the context we shall abbreviate
L(x,y(x)) to L(x).

2. T H E FIRST ORDER PROBLEM

When considering problem (1.1) and (1.2) we assume that n(0) = O ( l ) .

DEFINITION 2 .1 : We shall call ft a star bounding set for (1.1) if it satisfies the
following conditions. The cross-sections fl(x) are star shaped with respect to the origin

https://doi.org/10.1017/S000497270002181X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270002181X


[3] Boundary value problems 399

for all x in [0,1]. The mapping L defined by (1.7) is uniformly Lipschitz continuous
on [0,1] x R n . For each (t,u) in the boundary of fi there exists V(x,y;t,u) = V(x,y)
with the following properties:

(1) V is continuously differentiable;
(2) there is a neighbourhood N of (t,u) in [0,1] x R n such that fi l~l N C

{(x,y)eN:V(x,y)<0};
(3) V(t,u) = 0;
(4) Vx(t,u) + Vy(t,u)f(t,u)>0.

REMARK 2.2. If fi is a star bounding set for (1.1), then for all t,0 G [0,1] and u G
9fi(i), 0u G fi(i) and thus Vy(t,u)u ^ 0. Moreover, since L is uniformly Lipschitz
continuous, Vy(t,u)u > 0.

We call unit vector n(x,y) = (ni(x,y),n.2(x,y)) 6 R x Rn an outer normal to ft
if (x,y) £ dft, and

fi C {{t,u) £ [0,1] X Rn: n(x,yY(t-x,u-y) < 0}.

REMARK 2.3. If fi is a convex subset of [0,1] xR" with a uniformly Lipschitz boundary
and to each (x,y) of the boundary there is an outer normal n(x,y) such that

then n is a star bounding set for (1.1). To see this, for (t,u) £ dfi set N = [0,1] x Rn

and set V(x, y; t,u) = n(t,u)(t — x,u — y). Since the boundary is uniformly Lipschitz,
L is uniformly Lipschitz continuous. The boundary of Q will be uniformly Lipschitz
continuous if, for example, fi contains [0,1] x 0 and is the restriction to [0,1] X R" of
an open convex subset of [a, b] x Rn for some a < 0 < 1 < b.

In view of Remark 2.3, the following theorem is a generalisation of [3, Corollary
V.31].

THEOREM 2 . 4 . Let f: [0,1] x Rn -> Rn be continuous and let Q be a star
bounding set for (1.1). Then there is a solution y of (1.1) and (1.2) with (x,y) G fi,
for all x £ [0,1].

After the proof of Theorem 2.4 we indicate how the star shaped condition is a
special case of a more general geometric condition.

If we weaken the geometric condition but strengthen the smoothness of the set fi,
and add a Brouwer degree condition related to the right hand side / of (1.1) and shape
of the domain, we obtain binding sets. In Theorem 2.10 we prove an existence result
for solutions of problem (1.1) and (1.2) via a slightly different technique.

DEFINITION 2.5: We call fi a binding set for (1.1) if it satisfies the strict egress
condition: for each {x,y) G dfl, f{x,y) ^ 0 and there exist e, rj(x,y) > 0 such that
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(x + 6,y + 8v) £ ft for all -77 < 8 < 0 and (a + 8,y + 6v) $ ft for all 0 < 8 < 77,
whenever a; + 8 £ [0,1] and 1; £ R " satisfies | v - / ( x , i / ) | < e\f(x,y)\. We call
n a binding set for (1.1) and (1.2) if it is a binding set for (1.1) and there exists
K: [0, l ] x R n - > R71 satisfying

(1) K is continuous,
(2) K is differentiable with respect to a; uniformly in u, at x — 0,
(3) K(x, •): 0(0) -> n(x), and
(4) K{0,u)=u = K(l,u) for all u £ O(0).

REMARK 2.6. It is easy to see that O is a binding set for (1.1) if for each (t,u) £ dft
there exists V(x,y;t,u) = V(x,y) with the following properties:

(1) V is continuously differentiable;
(2) there is a neighbourhood N of (t,u) in [0,1] x Rn such that dflnN =

{(x,y)GN:V(x,y) = 0};

(3) ft C {(x, y) £ [0,1] x R»: F(x,») < 0};
(4) Vx(t,u) + Vy(t,u)f(t,u)>0.

If, in addition, fi(0) C ft(x) for all x, then ft is a binding set for (1.1) and (1.2) with
K(x,u) = u for all u in R n .

For the rest of this section g will denote a bounded, Lipschitz continuous function
defined on [0,1] X R n , and y(t,u) will denote the solution at x = t of the initial value
problem

(2.1) y' =g(x,y), for all x £ [0,1]

(2.2) y(0) - u.

Thus y and y' are defined and Lipschitz continuous on [0,1] x R".

PROOF (THEOREM 2.4): Let ft be a star bounding set for (1.1). We assume first
that / is continuously differentiable and that h(t,u; f) = Vx(t,u) + Vy(t,u)f(t,u) > 0,
for all (t,u) £ dft, where V is given in Definition 2.1. Let L be defined by (1.7) and
g: [0,1] x R " - . R " be defined by

g{x,y) = L(x,y)f(x,y/L(x,y)), for all (x,y) £ [0,1] x Rn.

As g(x,y) = f(x,y) for all (x,y) £ ft it suffices to show problem (2.1) and (2.2) has
a solution y with (x,y(x)) £ ft for all x £ [0,1]. As L > 1 is uniformly Lipschitz
continuous, g, restricted to ft, is uniformly Lipschitz continuous. As (x,y/L(x,y)) £
dft for all (x,y) ^ ft and ft is compact it follows that g is uniformly Lipschitz
continuous and |5(x,y)| ^ c(|y| + 1) on [0,1] x Rn for some constant c > 0. Thus
the solution y{t,u) of (2.1) and (2.2) exists and is unique and, moreover, y'(t,u) is
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uniformly Lipschitz continuous on compact subsets of [0,1] x R n . We define K on
[0,1] x 9O(0) with K(t,): 9O(0) -> O(i) as foUows. For (t,u) 6 [0,1] x dfl(O) let
m — s(t,u) be the unique solution of mu G dft(t). As L is Lipschitz continuous
\s(t,u) — s(x,u)\ ^ c\t — x\, for some constant c independent of u. Since [0,1] x
{0} € O and O is open there is t > 0 such that 5 > e. Moreover since 9O(0) =
9 O ( l ) , s(0,u) = 1 = 5(1, u) for all u G 9O(0) . Thus there exists k G C2([0,1]; [0,1])
such that fc(0) = 1 = fc(l), and 0 ^ k(t) ^ s{t,u) for all (t,u) G [0,1] x 9O(0) . We
set A"(*,u) = k(t)u for all (*,u) G [0,1] x 9 0 ( 0 ) . Define H: [-1,1] x R " - . R " by

/ o ^ TTU ^ / » ( * . « ) # ( . ) . foraU(<,u)£(0,l]x9n(0)
(2.4) Hit,11) = <

\ ( l+ tK^OJ-JT. fO. t i JJ - t t i , foraU(i,B)€[-l,0]xfln(0).

We show that our problem has a solution if H(l,u) — 0 for some u 6 fl(0). We show
H(t,u) + 0 for aU (t,u) G [-1,1] x 90(0) and d{H(t,),Sl(0),0) = d(I,Sl(O),O), for
all t G [-1,1]- Then <f(J,n(0),0) = 1 as 0 G ft(0) and, by Brouwer degree theory,
H(l,u) = 0 has a solution. Suppose that H(t,u) = 0 for some (t,u) £ (0,1] x dft(O).
Then there is (t,u) G (0,1] x 9fi(0) and a solution y(x,u) of (2.1) and (2.2) with
y{t,u) = K(t,u). Set v(x) = V(x,y(x,u);0,u). Then u(0) = 0 and

(2.5) v'{0) = h{0,u;g) = Vx{0,u) + Vy{0,u)g(0,u)>0, for all uE 50(0)

since j/(0,u) = u G 9S7(0) and /(0,u) = fl(0,u). There is 6 > 0 such that
(x,y(x,u)) £ O for 0 < x < 6 since Q C\ N C. {(x,y) G iV: V(a;,y;0,tt) < 0},
for some neighbourhood N of (0,u). As (<,iif(t,u)) S H, by continuity there ex-
ists t0 > 0 such that (<0,2/(*0JM)) € #O and (x,y(x,u)) £ ft for 0 < x < t0.
Since y is continuous and i(x,y) is Lipschitz, L(x,y(x,u)) is a continuous func-
tion of x on [O,to], and hence attains its maximum value / at ti G (O,<o), say. Set
z(x,u) = y(x,u)/l. Thus for all 0 < x < 10, (z,z(a:,u)) G O and (^.^(ti.u)) G 9O,
2;(ti,u) = g(ti,y(ti,u))/l = f(ti,z(ti,u)) and n(^i,z(ti,u)) is an outer normal to fi
at (ti,z(*i,«)). Set w(as) = V(x,z(x,«);/i,«). Then v(0) = 0 and

t>'(*i) = h{tuu;f) = Vx{tuz{tuu)) + V^iLzJt!,«))/(*!,z^.u)) > 0.

Again it follows that (x,z(x,ti)) ^ fi for <i < a; < 7/ for some 77 > <i, a contradiction.
Thus 5(t,u) ^ 0 for all (f,u) G (0,1] x 9fi(0). If H(l,u) = 0 for some u G 0(0),
we see from this argument that (x,y(x,u)) G O for all x G [0,1], and hence y is the
required solution. Set w(x) = V(x,K(x,u);0,u). Since to(0) = 0, (x,K(x,u)) G
n for all x G [0,1] and ft C\ N C {(x,y) G JV: ^(zjyjO,^) < 0}, for some neighbour-
hood N of (0,u),

(2.6) w'(0) = Vx{0,u) + Vy{0,u)Kx(0,u)^0, for all u G 9O(0).
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402 H.B. Thompson [6]

By (2.5) and (2.6)

Vy(0,u){g(0,u) - Kx(0,u)) > 0, for all u E dn(0).

From this and Remark 2.2, H(t,u) ^ 0, for all (t,u) 6 [-1,0] x dft(0). Since H is
continuous on [—1,1] X H except possibly from the right at t = 0, it suffices to connect
the degrees of H(0, •) and H(t,-), t € (0,1]. If yi(x,u) is a component of y(x,u) then
y'i^XjV.) is Lipschitz continuous, so

yi(x,u) = yi(0,u) + zy;(0,u) + xe(x,u),

where |e(s;,u)| < k \x\ for some constant k independent of u £ fi(0). Thus
\H(t,u)/t - H{Q,u)\ = \e(t,u)\ <kt for aU t € (0,1]. Thus if t> 0 is small enough,

If h(t,u;f) = 0 for some (t,u) 6 dil or / is not continuously differentiable, for
m > 0, by Remark 2.2 there is a constant 6 6 (0,1/m) such that h(x,y; f + y/m) >
26 > 0 for all (x,y) G Oft. By approximating / on ft to within 8 by a smooth
function fs, and replacing / by fm{x,y) = fs(x,y) +y/m in the above argument, we
obtain a sequence of solutions ym of

satisfying (1.2). A subsequence of these solutions converges to the required solution. U

REMARK 2.7: On examining the proof, we see that the star shaped condition is
used to scale the domain, to define K and compute degree. Thus this condition can
be replaced by the following. As before let fi be a bounded open subset of [0,1] x R"
with uniformly Lipschitz continuous boundary and let [0,1] x {0} C il. Assume there
is a map * e C^^R4- x [0,1] x Rn;Rn) such that

(1) V(0,x,y) = 0, f o r a l l ^ . ^ e n ,

(2) *(l,x,y) = y, for all (x,y) € f i ,
(3) ¥(7,z,n(z)) CC *(m,x,n(z)), for all 0 ^ z ^ 1 and 0 ^ I < m,
(4) U *(n,z,n(z))-R",

(5) $(/, x, •): J7(z) —> Rn is a diffeomorphism, and
(6) f ,(0,0, y) = y for all y € d fi(0).

Define A: 6 C2([0,l]; [0,1]) such that fc(0) = I = Jb(l), and K(x,u) = V(k{x),x,u) £
U(x) for all x E [0,1] where u 6 dfi(0). For y <£ Ti(x), x £ [0,1] set L(x,y) =
sup{l:y t V(l,x,n(x))} and g(x,y) = *x(L(x,y),x,z) + Vy(L(x,y),x,z)f{x,z),
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and set L(x,y) = 1 and g(x,y) = f(x,y) for (x,y) £ fi where z G dft(x) is de-
fined by \P(Z(z,2/),a:,2) = y. From the assumptions L, *&x and \PS are uniformly
Lipschitz continuous and satisfy \^x(L(x,y),x,z)\, \9y(L(x,y),x,z)\ ^ c(l + |t/|), for
some constant c, all (x,z) G ft and all (x,y) £ [0,1] x Rn. The proof of Theorem
2.4 can be suitably modified to these hypotheses. In particular, we replace tu in (2.4)
by t\Pj(l,O,ti), and y/m in the definition of fm by ^i(l,x,y)/m. Also we note that
Vy(x,u)^i(l,x,u) > 0 for all u £ dfl(x), and *j(0,0,u) ^ 0 for all u G 90(0), by
(3) and (5) of the definition of $ . In place of z(x,u) = y(x,u)/l we let z(x, u) be
the solution of V(l,x,z(x,u)) = y{x,u). Moreover d(¥j(l,0,-),n(0),0) = 1, using (6),
since H(t,u) = \P/(t,0,u) is a homotopy. The star shaped region corresponds to the
special case ty(l,x,y) = ly.

As an application of Theorem 2.4 we have Corollary 2.8, the generalisation of
Santanilla [11, Theorem 3.2] mentioned in the Introduction.

COROLLARY 2 . 8 . If there exists R > 0 such that for ail y ^ 0, ytf(x,y) >
0 when \y\ = R and fi(x,y) ^ 0 when j/i = 0 then problem (1.1) and (1.2) has a
nonnegative solution.

PROOF: Let ft = [0,1] x (BR n {y E Rn: y > 0}). By translating the origin, we
may assume that 0 G Q(x) for all x 6 [0,1]. By Theorem 2.4 there is a solution y of
(1) and (2) with (x, y) G n for all x £ [0,1]. By translating back to the original origin,
we see that y is the required solution. D

REMARK 2.9. As E.N. Dancer (private communication) observed, the additional condi-
tion f(x,y) ^ — ay required in Santanilla is automatically satisfied if / is continuously
differentiable. Thus the assumption can be removed for continuous / simply by approx-
imating by continuously differentiable / and using compactness to select a subsequence
which converges to a solution.

We now state and prove our existence result using binding functions.

THEOREM 2 . 1 0 . Let f: [0,1] x Rn -» R" be continuous and let ft be a binding
set for (1.1) and (1.2). If

(2.7)

where J(y) = f(0,y) — Kx(0,y), for all y in R " , then there is a solution y of (1.1)

and (1.2) with (x,y) in ft for all x in [0,1].

PROOF: Assume first that / is continuously differentiable and ft C [0,1] x BR for

some R. Define g: [0,1] x R n -> R n as follows:

for all y G BR

otherwise.
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Define H: [0,1] x Rn -> Rn by H(i,u) = y{t,u) - #(i,ii) where y is the solution of
(2.1) and (2.2). We show that problem (1.1) and (1.2) has a solution if H(l,u) = 0 for
some u G O(0). To show that H(l,u) = 0 has a solution it suffices to show that

(2.9) d(H(t, ),n(o),o) = <*(j,n(o),o) ± o

for all t 6 (0,1]. To connect the degrees of H(t,) and J let y*(z,u) denote a compo-
nent of the solution y, and Kl and Hl the corresponding components of K and H,
respectively. Thus

(2.10) # '(*,«) = * ( / ( 0 , u ) - iT'(0,x0) + e(x,u)x

where |e(x,ii)| converges to 0 uniformly in u £ 9O(0) as x converges to 0+. Thus
\H(t,u)/t - J{u)\ < |e(x,w)| for t E (0,1] and u £ 9O(0). Thus if t > 0 is small
enough, then (2.9) follows. Thus it suffices to show that H(t,u) ^ 0 for all t E (0,1]
and u E 9O(0). Suppose that this is not the case. Then there are u 6 9O(0) and
t € (0,1] such that y(t,u) = K(t,u) G Q(t). By the definition of binding sets, solutions
y{t,u) £ dft(t) satisfy that (t,y(t,u)) strictly egresses from ft. As u E dft(O) it
follows from (2.2) and continuity, that there is to > 0 such that (x,y{x,u)) (fc Q for
0 < x < t0 and (to,y(fo,w)) E dfl. But (to,y(to,u)) is a strict egress point for (2.1)
and 9 f ) , a contradiction. The result follows.

If / is not smooth then | / | attains a positive minimum / on dtt. Approximate /
uniformly on BR by a sequence of smooth functions, solve the approximating problems,
and obtain the desired solution as the limit of a convergent subsequence of the solutions
of the approximating problems. D

REMARK 2.11. In view of the proofs of Theorem 2.10 and Theorem 2.1 of [1] we have
the following result.

Assume that there exists K satisfying (1) to (4) of Definition 2.5. Let / : [0,1] x
Rn —» Rn be continuous and assume that all solutions of (1.1) and (2.2) exist on [0,1].
Let (2.7) hold and assume that y(t,u)-K(t,u) ^ 0 for all (t,u) E (0,1] x 90(0), where
y(t,u) is a solution at x = t of (1.1) and (2.2). Then there is a solution y of (1.1) and
(1.2) with (x,y) in SI for all x in [0,1]. This is very close to Theorem 2.1 of Bebernes
and Schmitt [1]. They require K(t, •) to be one to one on O(0), but do not require
the uniformity in (2) of Definition 2.5. Apart from these differences we see that the
difference between Theorem 2.1 of [1] and Theorem 2.10 is that the egress conditions of
Definition 2.5 are used in Theorem 2.10 to guarantee that y(t, u) - K(t, u) ^ 0, whereas
it is assumed in Theorem 2.1 of [l].

The difference between Theorems 2.4 and 2.10 is that because of the geometry of
bounding sets a natural homotopy exists guaranteeing d(H(l, •), O(0), 0) ^ 0, whereas
this follows from assumption (2.7) in Theorem 2.10.
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The following example illustrates the use of Theorem 2.10. As fi contains a hole,
ft is not a star bounding set and Theorem 2.4 does not apply. Moreover, to find a
binding set for (1.1) and (1.2) we allow fi to depend on x.

EXAMPLE 2.12. Consider

(2.11) y' = A(x)y + (yiB(x)y)y + (yiC(x)y)2ytD(x) x 6 [0,1]

where A,B,C and D are a non-singular n x n matrices which are smooth and of
period one in x. Assume moreover that B is negative definite, C and D are positive
definite, n is odd, and the fundamental matrix Z(x) for

y' = A(x)y

is also of period one. Then there is a nontrivial periodic solution of (2.11) of period one.
To see this let A = {{x,y): x 6 [0,1], y = Z(x)u, u € Bc} and U = [0,1] x BR\~K.
Thus dVl = Tj UT2 where Fi = {(x,y): x £ [0,1], y = Z(x)u, \u\ = e} = dA and
T2 = {{x,y): x e [0,1], |y| = R} = [0, 1] x dBR. We choose e > 0 sufficiently small
that

(2.12) (ytB{x)y)ytm{x,y) > (ytC(x)y)2ytD(x)m(x,y)

on Fj where m(x,y) is the interior unit normal to A(x) = {y: y = Z(x)u, u £ Be}.
We choose R sufficiently large that

(2.13) (ytB(x)y)yty < (ytC(x)y)2ytD(x)y

on r 2 and R > sup{|j/| : y G Ti}. Clearly m(x,y) A(x)y = 0, so the strict egress
condition is satisfied on F i , by (2.12), and on F 2 , by (2.13). Thus fi is a binding set
for (1.1) and (1.2). On Fi(0), /(0,y)m(0,y) > 0 so f(O,y) is homotopic to m(0,y)
on A(0). As A(0) is convex and 0 is an interior point, m(0,y) is homotopic to — I
on A(0). As n is odd, d(f(0,), A(0),0) = - 1 . By (2.13), / ( 0 , ) is homotopic to I
on BR. By the excision property of degree, d(f(O, -),fi(0),0) = 2. By Theorem 2.10,
problem (1.1) and (1.2) has a nontrivial solution.

If we set n = 3 and A12 = n, A21 = —TT, A3 3 = cos7rz, Ai j = 0 otherwise, it is
difficult to find a domain n whose shape is independent of x and boundary consists
entirely of 1 nonrecurrent points - in the terminology of Lloyd [10]. In particular, it is
not clear how to apply Lloyd [10, Theorem 9.22].
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3. T H E SECOND ORDER PROBLEM

We consider problem (1.3) together with one of the boundary conditions (1.4) to

(1.6).

DEFINITION 3.1: We call ft an admissible bounding set for problems (1.3) with
boundary conditions (1.4), (1.5) or (1.6) if it is a bounded open subset of [0,1] X Rn

with the following properties:

(1) [ 0 , l ] x{0}c f i ;
(2) fl(x) is star shaped with respect to the origin, for all x £ [0,1];
(3) the mapping L(x,y) defined by (1.7) is Lipschitz continuous on [0,l]xRn;
(4) for each (t,u) 6 9O with t G (0,1) there is a neighbourhood N and a

twice continuously differentiable function r: N —» R such that

(a) ftnNC {(x,y)e N:r(x,y) < 0},

(b) r(t,u) = 0, and

(c) for p G Rn such that r'(t,u,p) = rx(t,u) + r*(t,u)p = 0,

r",(i,u,p) =rxx(t,u) + 2rly(t,u)p + ptryy(t,u)p + r£(i,«)/(*,ti.p) > 0;

(5) there is a constant S > 0 and a continuous vector field n: [0,1] x Rn —» Rn

such that

n(*,u)Vj,(t,u) ^ \ry(t,u)\ S > 0 and n^ufy > \y\ 8 > 0

for all (t,u) Edfl with t £ (0,1), respectively [0,1].

REMARK 3.2. It is easy to see that (5) of Definition 3.1 is satisfied if dfl is smooth
and L is uniformly Lipschitz continuous. In place of (1) of Definition 3.1 we can allow

{(*,#*)) :* 6 [0,1]} C i l

for some <fr G C2[0,1], with the appropriate changes in the other assumptions. In view
of Remark 2.7, the star shaped condition can be generalised. One of the features of our
work is that we do not require the usual assumption that ryy is positive semi-definite.
A second feature is the simpler modification of / we use in the proofs as compared, for
example, with Lan [9].

DEFINITION 3.3: We call / admissible for (1.3) if it satisfies

(1) / £ C ( | 0 , l ] x R " x R " ; R " ) ,
(2) | / | < <f>(\p\), where /°° s/<f>(a) ds = co and

(3) | / | ̂  2C7ft/1/ + |p| ) + K, where C,K are non-negative constants.
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Let G: [0,1] x [0,1] -> R be the Green's function for (1.3) together with the
homogeneous boundary conditions A = 0 = B in (1.5). Thus

G(x,t) - I ' ^

Let w(x, A,B) = 4(1 - x) + Bx.

THEOREM 3 . 4 . Let f be admissible and let ft be an admissible bounding set

for problem (1.3) and (1.4). Let f and ft satisfy:

(1) f(o,y,y') = f(hy,y') for all (y,y') e Rn x R",
(2) n(o) = n(i);

(3) eacA point (t, u) £ d ft with t £ {0,1} has a neighbourhood N and a con-
tinuously differentiate function r: N —> R such that ft D N C {(x,y) £
N: r(x,y) < 0}, r(t,u) = 0 and r'(0,u,p) ^ r ' ( l ,u ,p ) for all (0,u) £
dft(0) and p £ R n .

Then problem (1.3) and (1.4) has a solution y with (x, y) £ ft, for all x £ [0,1].

PROOF: We assume first that r"f > 0 when r = 0 — r'. We use Schauder
degree theory and need the following family of functions to construct a homotopy.
Choose R > 0 and e £ (0,1) such that B2c C n(x) C BR for all x £ [0,1]. Let
fteC(RB;[0,l]) satisfy

if |y| > 2e,

(3.1) fx(x,y,p) = \f(x,y,p) + (l-\)h(y)\f\n(x,y)/6 and

(3.2) 9x(x,y,p) = L(x,y)fx(x,y/L(x,y),p/L(x,y))

where L is given in (1.7). Thus g\ is continuous, f\ = g\ in J7 x R n and it suffices
to find a solution y of (3.2) and (1.4) with A = 1 and (x,y) £ fi. Let A = {y £

C^IO.lJjR"): |y| < R and |y'| < M}, where M is chosen below. Let S = A x fi(0).
For y £ CHfO.lJiR"), we set T(gx(y))(x) - - /„' G(x,t)g>(t,y(t),y'(t))dt. If (y,A) £
S is a solution of

(3.3.) (y(x) - T(5l(2/)) - w(x,A,A),y'(0) - »'(l)) = 0,

we show that (s,i/) £ Q • Thus, by the definition of T and g\, problem (1.3) and (1.4)
has a solution y with (x,y) £ fi if and only if (y,A) is a solution of (3.3) in S . We
choose M as follows. By continuity, L ̂  I on [0,1] x 5 ^ , for some 2 ^ 1. Set
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Thus \gx\ ^ c4>{\P\) and \gx\ < 2(C + c/e)(y</ + |p|2) + Kl2, for aU (x,y) £ Q. By

Hartman [6, Lemma 5.2, p.429] there is M such that solutions y of

y" = g\(x,y,y')

with (z,y) € n satisfy |y'| < M. To show that (3.3) has a solution we use Schauder
degree theory. Define Hi: [0,1] x S -> ^([0,1]; Rn) x R" for i = 1,2,3, by

H^X, (y, A))(x) = (y(x) - T{gi(y))(X) - w(x, A, A), A(y'(0) - y'(l)) + (1 - X)A),

H2(X, (y, A))(x) = (y(x) - T(gx(y))(x) - w(x, A, A), A) and

H3(X, (y, A))(x) = (y(x) - X(T(go(y))(x) - w(x, A, A)), A).

We show that either there is a solution to our problem or the above functions H; define
homotopies. Suppose -Hi(A, (y, A)) = 0 has a solution (y, A) € d'S. By the choice
of M, \y'\ < M. Suppose y £ 9A. By the choice of R there is t £ (0,1) such
that \y(t)\ = R and L(t) > 1. As Z(0) = 1 = £(1) and L is continuous, there is
to £ (0,1) such that L has a maximum IQ ^ I say, at to. Let z(x) = y(x)/lo. Thus
(x,z) £ H for all a; £ [0,1] and (*o,2/(*o)) £ S n - T h u s K^o,*) = 0, r'{to,z,z') = 0
and T-"/(<O,2,-Z') > 0, a contradiction, and y ^ dA. Moreover, by this argument
(x,y) £ fT for all x £ [0,1]. Suppose A £ d O(0). If A = 1, then (y,^.) is a solution
to our problem, as required. If 0 ^ A < 1, then 0 ^ r'(l,y,y') ^ f'(Q,y,y') ^ 0
so ry(0,A)X(y'(0) - y'(l)) + (1 - A)>1 = (1 - X)ry(0,A)A > 0, a contradiction. Thus
#i(A,(2/ ,A))^0 for any (3/ ,A)£9S.

Suppose H2{X,(y, A)) = 0 has a solution (y,A) £ c?S. Suppose y £ 9A. Since
\y'\ < M, \y(t)\ — R for some t £ (0,1). As above L has a maximum !0 > 1 at
to £ (0,1), and by setting z(x) = y(x)/lo we again get a contradiction, r(to,z) =
0, r'{to,z,z') = 0 and r"gx(t0,z, z') > 0, since ry(0,z) (n(to, z)h{z) \f(to,z, z')\ /6
—f(to,z,z')) > 0, by condition (5) of the definition of admissibility of fi. Now
0 £ O(0) so A ^ 0 on dfi(0). Thus £T2 / 0 on 9 S . Suppose H3(X,(y,A)) = 0
has a solution (y, A) £ dJj. By the above arguments it suffices to show that there is
no t £ (0,1) such that |y(/)| = R. If such a t exists then A > 0, y(t)ty'(f) = 0 and
y'(tf + y"(<)*y(<) ^ A | / | n(t,y)*y(i) > 0. This is a contradiction, so fT3 / 0 on 5 S .
By the homotopy invariance of Schauder degree

d(Hi(X, •), S, 0) = constant

for all A £ [0,1] and i = 1,2,3. In particular,
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Thus there is a solution in S of J?i(l,(j/, A)) = 0, and by the above arguments y is
the required solution of (1.3) and (1.4). If r"f ^ 0 when r = 0 = r', consider the
sequence of problems where / is replaced by / + y/n • By the above argument there
exists a sequence of solutions yn of these which will have a subsequence, convergent to
the required solution. D

REMARK 3.5. Condition (2) of Theorem 3.4 is condition (e) of the definition of V of
Bebernes [4, p.124]. An admissible bounding set ft satisfies (2) of Theorem 3.4 only if
ry(0,u) = ry(l,u) and rx(0,u) ^ rx(l,u). If ft(0) has a unique tangent plane at each
of its boundary points then the condition ry(0,u) = ry(l,u) follows automatically, by
suitably scaling r. Let n = 1 and suppose there exist lower and upper solutions a
and /?, respectively, satisfying a(0) = a( l ) , (3(0) = /?(1) and a(x) < f3(x) for all x in
[0,1]. If we set ft = {(x,y): a(x) < y < /3(x), x £ [0,1]} then this condition becomes
a'(0) ^ <*'(1) a n ( l P'{0) ̂  P'0-)- I* is n ° t difficult to construct an example to show
that some additional assumptions of this kind are necessary to guarantee existence.

THEOREM 3 . 6 . Let f be admissible and ft an admissible bounding set for prob-
lem (1.3) and (1.5). HAG fi(0) and B € 12(1), tAen problem (1.3) and (1.5) has a
solution y with {x,y) £ ft.

The proof uses the extension ideas introduced in Theorem 3.4 together with the
usual ideas. Schauder degree theory is used in the function space A and the proof is
simpler than that of Theorem 3.4. The proof is omitted.

Our extension argument is simpler than that of Lan [9] even in the case that fi(z)
is convex and allows us to relax the usual positive definite restriction required on ryy

(see, for example, [3]) required for the homotopy argument.

REMARK 3.7. This result extends some results of Gaines and Mawhin [3] and Lan [9].

THEOREM 3 . 8 . Let f be admissible and ft an admissible bounding set for

problem (1.3) and (1-6). Assume that each point (t,u) € dft with t 6 {0,1} has

a neighbourhood N and a continuousiy differentiabie function r: N —+ R such that

ftHN C{{x,y) eN:r{x,y) <0}, r(t,u) = 0,

(3.4) r'(0,u,A)^0 for all (0,u) £ d ft(O) and

(3.5) r'(0,u,B)4 0 lor all (0,u) e dfl(l).

Then problem (1.3) and (1.6) has a solution y with (x,y) £ ft.

PROOF: Again by approximating we may assume that r"f > 0 when r = 0 = r'
and use Schauder degree theory. Let g\, T and A be as in the proof of Theorem 3.4.
Let S = A x fi(0) x n ( l ) . Essentially we 'shoot' with the boundary values C and D
of solutions y of (1.3). In particular we show that if (y,C,D) £ E is a solution of

(3.6) (y(x) - T(9l(y))(x) - w(x,C,D),y'(0) - A,y'(l) -B)=0,
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then (x,y) 6 ft and thus y{x) is a solution of problem (1.3) and (1.6). We choose
I, M and c as before. To show that (3.6) has the required solution we use Schauder
degree theory. Define H{: [0,1] x £ -> C^flO,!]; R") x R 2 n , for i = 1,2,3 by

= (y- T(9l(y)) - w(;C,D),X(y'(0) - A) - (1 - X)C ,

(3.7) A(y'(l)-1?) + (1-A)2?),

(3.8) H2(X,(y,C,D)) = (y-T(gx(y))-w(;C,D),-C,D) and

(3.9) H3(X, (y, C,D)) = {y- XT(go(y)) - «,(.,C,D), -C,D).

We show that either there is a solution of our problem or the above functions Hi

define homotopies. Suppose Hi(y,C,D) = 0 for some (y,C,D) £ d'S. As in the

proof of Theorem 3.4, (x,y) £ ft for all x € [0,1]. If A = 1, then y is a solution to

our problem, as required, so A € [0,1). Suppose C £ d $7(0). Now y(0) = C, y'(0) =

A + (1-X)C/X while r '(0,C,A + ( l -A)C/A)>0,by(3.4)s incer j , (0 ,C)C>0. Thus

(x,y) £ J7 for some a; > 0, a contradiction. The assumption D £ dil(l) leads to a

similar contradiction using (3.5).

The rest of the proof follows that of Theorem 3.4. D
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