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Abstract
Invention arises from novel combinations of prior technologies. However, prior studies
of creativity have suggested that overly novel combinations may be harmful to invention.
Apart from the factors of expertise, market, etc., there may be such a thing as ‘too much’
or ‘too little’ novelty that will determine an invention’s future value, but little empirical
evidence exists in the literature. Using technical patents as the proxy of inventions, our
analysis of 3.9 million patents identifies a clear ‘sweet spot’ in which the mix of novel
combinations of prior technologies favors an invention’s eventual success. Specifically,
we found that the invention categories with the highest mean values and hit rates have
moderate novelty in the center of their combination space and high novelty in the
extreme of their combination space. Too much or too little central novelty suppresses the
positive contribution of extreme novelty in the invention. Furthermore, the combination of
scientific and broader knowledge beyond patentable technologies creates additional value
for invention and enlarges the advantage of the novelty sweet spot. These findings may
further enable data-driven methods both for assessing invention novelty and for profiling
inventors, and may inspire a new strand of data-driven design research and practice.
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1. Introduction
Novelty is an essential element of invention (Lubart 1994; Sternberg & Lubart
1996; Luo 2015). High novelty implies an increase in the variability which
can result in both breakthrough and failure (Fleming 2001). Empirical studies
on the impact of novel versus conventional design stimuli on creative output
have reported mixed results (Chan & Schunn 2015a). Despite its clear value to
invention, excessive novelty may also harm invention by introducing challenges
to its embodiment, product development, manufacture, and user adoption (Luo
2015). In the pursuit of invention, inventors are faced with a ‘novelty dilemma’.
Prior engineering design research has speculated that a novelty ‘sweet spot’ may
exist which delivers the best invention outcome (Fu et al. 2013); there may be such
a thing as ‘too much’ or ‘too little’ novelty that will determine an invention’s future
value.

If the novelty sweet spot does exist, the next question is where it is – how
much novelty is needed for inventions in the sweet spot? In this research, we
aim to answer this question empirically by drawing on the combination theory of
invention to analyze novelty. Prior studies of creativity considered an invention
as the recombination of prior technologies or knowledge, and suggested that
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uncommon combinations give rise to novelty (Simonton 1999; Fleming 2001;
Ward 2001; Arthur 2007; Basnet & Magee 2016). Thus, an invention’s novelty can
be measured as the frequency with which the prior technologies the invention
recombines had previously been combined (Uzzi et al. 2013; Chan & Schunn
2015a). Several recent studies have utilized themassive data of patents as the proxy
of inventions to analyze technology combinations (Youn et al. 2015; Kim et al.
2016). We follow these prior works to analyze 3.9 million technical patents from
the United States Patent and Trademark Office (USPTO) to explore the novelty
sweet spot in the combination space of invention.

Our empirical results show a clear novelty ‘sweet spot’ at which the suitable
level of novelty of prior technology combinations favors an invention’s eventual
success. We also found that combination of scientific and broader knowledge
beyond patentable technologies creates additional value for the patented invention
and increases the advantage of the novelty sweet spot. The identification and
nuanced understanding of the novelty sweet spot contributes to the design
creativity literature and can guide inventors to pursuemore valuable inventions in
practice. Our methodology may also contribute to the growing literature on the
data-driven evaluation of design creativity. Below, we will first review the related
literature and introduce our methodology and then report our empirical findings.

2. Literature review
To explore the novelty sweet spot for invention, this research primarily draws on
the literature of combination theory and novelty measurement.

2.1. Design combination, novelty and outcome
The prior literature has suggested that novelty arises from uncommon
combinations. Simonton (1999) argued that an invention is the recombination
of existing technologies and that the novelty of the invention is the result of
unconventional combinations of prior technologies. Arthur (2007) proposed
that invention results from recursive problem solving by combining existing
technologies. Youn et al. (2015) used patent classification codes as a proxy of
technologies to analyze the multi-classification of US patents and found that
the major driver of modern invention has indeed been the combination of
existing technologies rather than the introduction of new technologies. Luo &
Wood (2017) found a trend that patented inventions have been combining the
knowledge of broader domains over the past three decades. Synthesizing the
anecdotal accounts of creative writing and laboratory investigations, Ward (2001)
noted that new properties can arise out of conceptual combination. Basnet &
Magee (2016) focused on the combination of analogical transfers in the cognitive
process and argued that new inventive ideas are created by using the combinatorial
analogical transfer of existing ideas. Nickerson (2015) stressed that creative work
can be performed by thousands of people through collective design, i.e., designers
modify and combine each other’s work in a process called remixing.

Combinations can involve different sources and lead to different outcomes.
With empirical studies and a psychoanalytic interpretation of poem-creation
activities, Rothenberg (1980) proposed two combinatory thinking processes that
foster creativity, i.e., Janusian thinking which conceives two or more opposite or
antithetical entities simultaneously and homospatial thinking which conceives
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two or more discrete entities occupying the same space. Analyzing scientific
publications, Uzzi et al. (2013) found that the scientific papers that have the
greatest impact (with an outstanding number of future citations) are grounded
in a mass of exceptionally conventional combinations of prior work and a minor
insertion of highly novel combinations. Kim et al. (2016) found that patents that
add novel combinations of their co-classifications to conventional combinations
are most likely to become ‘hits’. Based on US patent citation data, Fleming (2001,
2007) found that although novel combinations based on rareness in historical
occurrences lead to less useful inventions on average, they also give rise to the
variability that can result in both breakthrough and failure.

Despite a robust link between distant combinations and the increased novelty
of concepts, prior laboratory experiments or empirical studies have reported
mixed results on the impact of distant combinations on design outcome (Chan
& Schunn 2015a). It is naturally difficult for scientists and inventors to retrieve,
absorb, and integrate technologies across unfamiliar domains. For instance, Chan
& Schunn (2015a) found that the direct effects of far combinations have a
mean zero effect on creative concept generation, and iterations are important for
converting distant combinations into creative concepts. Kaufman & Baer (2004)
found that creativity is more domain-specific than general, and it is naturally
difficult for people to effectively combine technologies across distant domains.
Forbus et al. (1995) found that during knowledge retrieval, superficial reminding
is much more frequent than structural reminding, which makes it difficult to
achieve design novelty from a distant enough combination. Based on an analysis
of 2.8 million inventors’ 3.9 million patents, Alstott et al. (2017a) found that
inventors are far more likely to obtain new patents in new domains that are more
related to their previous patents than in more distant domains.

Similarly, studies of design-by-analogy have suggested that novelty may arise
when design is conceived by analogy across distant domains (Gick & Holyoak
1980; Gentner & Markman 1997; Ward 2001; Chan et al. 2011), but Gick &
Holyoak (1980) found that human subjects often fail to notice the relevance of an
analogy because of the cognitive distance between the potential solution and the
target problem.Chan&Schunn (2015b) conducted an in vivo study and found that
distant analogies donot lead directly to creative concepts via large leaps but instead
increase the concept generation rate. Chan, Dow and Schunn (2015) found that
conceptually closer rather than more distant stimuli appear to be more beneficial
to design because of their easier perception and more obvious connection to the
design problem. Fu et al. (2013) found that if stimuli are too distant from the
design problem, they can become harmful to the design process and outcome.
Accordingly, they argued that there might be such a thing as too ‘near’ and too
‘far’ in design analogies and that the stimuli from the ‘middle ground’ may be
desirable for developing creative solutions.

Taken together, the literature has suggested that novel combinations are
fundamental for invention and particularly crucial for breakthroughs, but
excessively novel combinations may be ineffective and lead to poor results.
Meanwhile, conventional combinations, compared with novel ones, are relatively
easy and effective. The most desirable design outcome may arise in the middle
ground, suggesting a hypothesis that there is a novelty ‘sweet spot’ of prior
technology combinations. Our research aims to empirically test this hypothesis
and to identify the novelty sweet spot. To do so, the evaluation of novelty is
required.
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2.2. Evaluation of design novelty
To evaluate novelty, design researchers have proposed various definitions,metrics,
and methods. In general, novelty indicates that an invention is new, original,
unexpected, and surprising (e.g., Sternberg & Lubart 1999; Simonton 2000;
Kaufman & Baer 2004). Weisberg (2006) suggested that novelty is subjective to
the experience of the evaluator. Therefore, novelty can be defined with reference
to the previous ideas of the individuals concerned or relative to the entirety of
human history (Boden 1996). For instance, Oman et al. (2013) measured the
‘novelty’ of a new concept as its uniqueness across all functional dimensions
relative to a group of comparable ideas. Simonton (1999) associated the novelty
of the invention with the commonality of its combinations of prior technologies.
Some researchers have suggested that novelty can be measured by comparing the
observed situation with the random one. For example, Uzzi et al. (2013) proposed
calculation of the novelty of a combination of scientific fields by comparing
the observed frequency of the combination with the random frequency of the
combination in the randomized samples. Kim et al. (2016) calculated a relative
likelihood that each pair of classification codes is put together at random and a
deviation from the empirical observation to assess a patent’s overall novelty.

Traditionally, invention evaluation has been carried out using an expert group
approach and based on experts’ subjective opinions, intuitions, or experiences
(Amabile 1996). Various procedures and techniques have been proposed to
facilitate expert groups and analyze their opinions. Sarkar & Chakrabarti (2007)
introduced the function–behavior–structure (FBS) model and the SAPPhIRE
model using product characteristics to measure product novelty. Brown (2015)
presented a simple framework for computational design creativity evaluation,
which contains agent judging, the set of aspects, knowledge about the designer,
etc. Grace et al. (2015) developed a typology of expectations that, when violated,
produce surprise and contribute to creativity.

Evaluation relying on expert opinions is naturally subjective and limited in
terms of the data sample size. As a result, it is difficult either to apply rigorous
mathematics for evaluation or to test theoretical hypotheses with statistical
significance. Meanwhile, there is an increasing call for a computational and
data-driven evaluation of design novelty (Brown 2015; He & Luo 2017). Recent
studies have developedmethods to analyze patent documents to evaluate patented
inventions. Patent documents contain rich details, and there are also millions
of patents in the public patent databases, which enable a more rigorous and
systematical data-driven evaluation of the novelty of patented inventions. For
instance, Fleming (2001) analyzed how frequently the co-classes of a patent were
assigned to other patents in the history to indicate the novelty of this patent from
a recombination perspective. He & Luo (2017) analyzed how frequently a pair of
patent classes had appeared together in the references of previous patents to assess
its conventionality or novelty.

In this paper, we introduce a data-driven method to measure the novelty
of patented inventions, using the extensive data existing in the USPTO patent
database, and we then test the hypothesis on the existence of the novelty sweet
spot of invention.
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3. Data and method
3.1. Data
In this study, we used patents as the proxy of inventions, with awareness of
patents’ limitations (e.g., not all inventions are patented). Our analysis involved
approximately 3.9 million utility patents granted from 1976 to 2016 contained
in the USPTO (United States Patent and Trademark Office) patent database1,
including the 601,715 patents that were granted in the 1990s with five or more
references to prior patents, along with the patents that they cite (i.e., backward
references) and the patents that cite them (i.e., forward citations). Our focus on
patents in the 1990s ensures that their backward references and forward citations
are sufficiently covered, because most citations fall within a time lag of 10 years
(Trajtenberg 1990; Hall, Jaffe & Trajtenberg 2001). The data on patent documents
that we used in our analysis are the patent classifications and references (Figure 1).
Each patent is assigned to one or more patent classes by the USPTO examiners,
indicating which types of technology it embodies. In this study, we used IPC4
(four-digit International Patent Classification) marking 631 patent classes as the
proxy of technology fields, as commonly carried out in the innovation literature
(Breschi, Lissoni &Malerba 2003; Boschma, Heimeriks & Balland 2014; Kay et al.
2014; Rigby 2015; Alstott et al. 2017b; Yan & Luo 2017).

3.2. Method
Figure 2 depicts the structure of our overall research method to statistically
compute the novelty profile and the value of a patented invention to identify the
novelty sweet spot. The details of each step of the method are described in the
following subsections.

3.2.1. Novelty of technology combination
A pair of patent classes assigned to a patent’s references approximates
a recombination of existing technology fields in an invention. With this
information, one can calculate the frequency at which a combination of
technology fields has occurred in historical inventions’ references to indicate
the combination’s novelty. Figure 3 illustrates the procedure to extract all pairs
of patent classes assigned to a patent’s references. The first step is to identify the
referenced patents of a focal patent (column I). The second step is to identify the
classes of these referenced patents (column II). On this basis, the list of all class
pairs in the patent’s references is extracted (column III). For example, class A that
is assigned to patent 1 (one of the patent references of the focal patent) forms a
class pair with class B that is also assigned to patent 1, with class A that is assigned
to patent 2, and with classes B, C, and D that are assigned to patent 3, and so on.

Following the frequency-based approach to evaluate novelty (Uzzi et al. 2013),
we first computed the frequency of a pair of patent classes co-occurring in the
references of individual patents in history. Because it is difficult to perceive how
large or small a frequency value is, benchmarking is needed. We normalized
the empirically observed frequency value by comparing it with the same metric
for the comparable randomized citation networks to indicate the novelty of the
combination. Such a normalized value relative to comparable random situations

1 The dataset was downloaded from PatentsView, available at http://www.patentsview.org/.
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Figure 1. Example of a patent document (US Patent 5410453).

is called the ‘z-score’ in the network science literature, indicating the extent to
which the empirical observation deviates from expectations in comparable but
randomized settings. The formula for the z-score is

zi j =
x − µ
σ

, (1)

where zi j is the relative co-occurrence frequency of the pair of classes i and j ,
x is the empirically observed co-occurrence frequency of classes i and j , µ is
the average expected co-occurrence frequency of classes i and j in comparable
randomized citation networks, and σ is its standard deviation. The average
expected value and the standard deviation were calculated based on an ensemble

6/22

https://doi.org/10.1017/dsj.2017.23 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2017.23


Figure 2. Flow diagram of the research method.

of 10 randomized reference lists of the same patents in the randomized citation
networks.

Figure 4 illustrates an example of how the empirical citation network was
randomized. In the citation network, the nodes are patents and the links are
backward references, i.e., an arrow goes from a citing patent to a cited patent.
Specifically, we randomly selected a pair of citing-to-cited links with the same
citing and cited years (i.e., the years in which the citing and cited patents were
granted) and swapped the cited patents. For example, in Figure 4, link a and link
b can be switched by swapping the cited patents, but link a and link c cannot
be switched. As a result, the random swapping procedure preserved all of the
numbers of forward and backward citations of each patent and the year lags of the
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Figure 3. Illustrative procedure of extracting the class pairs in the reference list of a
patent.

Figure 4. How the empirical citation network was randomized by swapping the cited
patents of randomly selected citing-to-cited linkswith the same citing and cited years.

citations, which makes the randomized networks comparable with the empirical
network.

We calculated the z-score of any pair of the 631 IPC4 classes that were assigned
to the patents appearing as references of all US patents granted from 1990 to 1999.
A lower z-score, indicating less frequent historical occurrences, suggests higher
novelty. Thereafter, we used the additive inverse of the z-score to measure the
novelty of the combination represented by the patent class pair. For example, if
the z-score of a class pair is−100, its novelty score is 100. If the z-score of another
class pair is 5, its novelty score is−5. The first pair has a higher novelty score than
the latter pair.

3.2.2. Novelty profile of a patented invention
It should be noted that each invention is often composed ofmultiple combinations
of technology fields (i.e., each patent has a set of pairs of classes in the list of its
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(a) (b)

Figure 5. The technology combination space of US patent 5473937 entitled ‘Temperature sensing apparatus’.
(a) Network of classes assigned to the references of the patent, connected according to the z-scores (red link,
minimum z-score; blue link, median z-score). (b) Cumulative distribution of the class pairs by their z-scores.

references) and each of the combinations has a different degree of novelty (i.e.,
each of the class pairs has a z-score). Thus, the combination space of a patented
invention can be viewed as a network of patent classes whose pairings are denoted
as weighted links according to the z-scores of the pairs (see Figure 5(a) for an
example). In other words, each invention can be characterized by a spectrum of
novelty values given by its combinations, i.e., each patent can be profiled by a
spectrumof z-scores given by the patent class pairs in its references. This spectrum
of novelty values can be summarized in a cumulative distribution of the z-scores
(see Figure 5(b) for an example).

To investigate the spectrum of novelty values, we first considered the median
value of the above distribution, which is located at the center of the distribution,
thus indicating the novelty in the central area of an invention’s combinations.
In the world of invention, the extreme or outlier is as meaningful as the
average (Fleming 2007; Girotra, Terwiesch & Ulrich 2010). Therefore, we are
also concerned with the novelty of the most novel combination in the extreme
of the spectrum. In brief, to profile the novelty of an invention, we analyzed
both the novelty of the center and the novelty of the extreme in the space of
its combinations. Specifically, we defined and quantified the central novelty of a
patented invention as the additive inverse of themedian z-score in the distribution
and its extreme novelty as the additive inverse of the minimum z-score in the
distribution.

It should be noted that the z-scores in the distribution for a patent were
calculated based on the historical data on the co-occurrence of patent class pairs
until the granting year of the focal patent, because extreme novelty and central
novelty are relative to the past and present artifacts and should change temporarily
as newer technologies are developed over time (Weisberg 2006). As a robustness
check (see the Supplementary Appendix available at https://doi.org/10.1017/dsj.2
017.23), we also generated the analysis results with the z-scores calculated based
on the co-occurrences of patent class pairs in the granting year of the focal patent.
The qualitative patterns in the main text hold.

Figure 6 shows the distributions of all patents in the 1990s according to their
median z-scores andminimum z-scores. Themedian z-score distribution patterns
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(a) (b)

Figure 6. Patent distribution according to z-scores. (a) Cumulative distribution according to median z-scores
(i.e., additive inverse of central novelty). (b) Cumulative distribution according to minimum z-scores (i.e.,
additive inverse of extreme novelty).

Figure 7. The central–extreme novelty space and the locations of the three patents in
Table 1.

changed little over the two five-year periods in the 1990s. From 1990 to 1994,
6.18% of the patents had a median z-score below 0, whereas 6.36% of the patents
had a negative median z-score from 1995 to 1999.Moreover, there was no obvious
change in theminimum z-score distribution over time. From1990 to 1994, 55.58%
of the patents had aminimum z-score below 0, whereas from1995 to 1999, 59.01%
of the patents did so.

With the definition of and the method to compute both the central novelty
and the extreme novelty of an invention, we can now assess and position an
invention in a two-dimensional space defined by central novelty and extreme

10/22

https://doi.org/10.1017/dsj.2017.23 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2017.23


Table 1. Example patents of different central novelty, extreme novelty, and invention value

Example #1 #2 #3
Patent ID 5385635 5390262 5391970

Title Process for fabricating
silicon channel structures
with variable
cross-sectional areas

Method for splitting and
configuring a
multi-channel image
processing system

Motion controller with
remote linking and time
disturbance correction

Invention
Value

2.0219 (top 12%) 0.6223 (top 49%) 1.0266 (top 31%)

Referred
Patent Classes

B41J Mechanical
Typography
B44C Ornamental Work
C03C Composition of Glass
C23F Desurfacing
G01D Metering by Other
Means
H01L Semiconductor
Devices

G06F Digital Data
Processing
G06K Data Recording
G08C Measured Value
Transmission
H04H Broadcast
Communication
H04M Telephonic
Communication
H04N Visual
Communication

B23F Cutting Gears
B32B Layered Products
D01G Fiber Treatment
D01HWinding Fibers
G01D Metering by Other
Means
G02B Optical Systems
G03B Photography
G05B Regulation Systems
G06F Digital Data
Processing
H01P Waveguides
H02P Electric Motor
Control

Patent Class
Pair of
Central
Novelty

C23F Desurfacing
H01L Semiconductor
Devices

H04H Broadcast
Communication
H04N Visual
Communication

D01G Fiber Treatment
G01D Metering by Other
Means

Patent Class
Pair of
Extreme
Novelty

B41J Mechanical
Typography
H01L Semiconductor
Devices

G08C Measured Value
Transmission
H04H Broadcast
Communication

B32B Layered Products
G06F Digital Data
Processing

novelty (Figure 7). Because the values of central novelty and extreme novelty
are highly dispersed, we divided them into 10 (equally sized) categories. A few
example patents (Table 1) are located in the respective categories in the 10-by-10
matrix according to their central and extreme novelty values. These patents were
all granted in 1995 but differ in their central novelty, extreme novelty, and realized
invention values (to be defined below).

3.2.3. Value of a patented invention
The value of an invention is realized when it is endowed with utility and
economic and social significance. Prior empirical studies have shown strong
evidence that the number of a patent’s forward citations (i.e., the citations it
receives after being granted) is highly correlated with the value it has achieved,
as indicated by expert opinions, awards, and market value (Harhoff et al.
1999; Hall, Jaffe & Trajtenberg 2000). For example, the patent for crystalline
silicoaluminophosphates held by Union Carbide Corporation (patent #4310440)
describes an important compound. With its widespread uses as a catalyst in other
inventions, the patent created great economic value for its holder and received
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Table 2. Descriptive statistics of the key variables

Variable Mean S.D. Min Max

Invention Value 1 1.396 0 58.284
Hit Invention 0.050 0.218 0 1
Central Novelty −972.713 1217.711 −19299.11 261.100
Extreme Novelty −299.085 848.858 −19299.11 424.734
Reference Count 11.109 11.023 5 678
Inventor Count 2.223 1.580 1 34

229 citations through 1995 as the most cited patent since 1976 granted by USPTO
(Hall, Jaffe & Trajtenberg 2000). Thus, we followed the literature to approximate
the value of a patented invention by the count of its forward citations, normalized
by the average forward citation count of all of the patents granted in the same
patent class and the same year. The normalization allows a comparative analysis
across fields and years. The formula for the value (vi ) of a patented invention i is

vi =
ai

ā
, (2)

where ai denotes the total count of forward citations received by patent i and
ā denotes the average count of forward citations received by all of the patents
granted in the same year and in the same IPC4 class as patent i .

We were also interested in the subset of inventions that achieved outstanding
value and are considered to be breakthrough inventions. In this paper, we defined
the top 5% of patents in terms of the normalized forward citation count (i.e., the
invention value) as ‘hit inventions’. In our analysis, the variable ‘‘hit invention’ of a
patent is 1 if the patent is of a top 5% normalized forward citation and 0 otherwise.
We also ran robustness tests using top 1%, 3%, and 10% as alternatives to define a
hit invention (see the Supplementary Appendix).

3.2.4. Descriptive statistics
Table 2 reports the descriptive statistics for the variables based on our data set
of 601,715 utility patents in the USPTO patent database that were granted in the
1990s and have five or more references to prior patents.

4. Results and discussion
We primarily analyzed the patents in our total data set to associate central and
extreme novelty with invention value.

4.1. Novelty sweet spot
The association between central novelty and mean invention value follows a
parabola or inverted-U curve (Figure 8a). Invention value increases initially until
the 60th percentile of central novelty and declines from the 60th percentile
onward. The highest mean invention value appears at a ‘sweet spot’ of the
40th–60th percentiles of central novelty, i.e., a medium level of novelty in the
center of their combinations. The association between extreme novelty and
mean invention values follows a cubic curve moving upward (Figure 8b). The
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(a) (b)

(c) (d)

Figure 8. Mean invention values and hit invention rates of patents of different central and extreme novelty
percentiles. (a) Mean invention values with confidence intervals (±1.96 standard errors of the mean) of
patents equally distributed over 10 central novelty levels. (b) Mean invention values with confidence intervals
(±1.96 standard errors of the mean) of patents equally distributed over 10 extreme novelty levels. (c) Hit
invention rates of patents equally distributed over 10 central novelty levels. (d) Hit invention rates of patents
equally distributed over 10 extreme novelty levels.

highest mean invention value appears at the highest level of extreme novelty. The
associations between central or extreme novelty and hit invention rates (Figures 8c
and d) follow the same patterns. These patterns are further confirmed by
multivariable regression analyses (see Table S1 in the Supplementary Appendix).

Figure 9(a) shows the distribution of patents in cells of a 10-by-10 matrix
by their central and extreme novelty. More patents lie along the diagonal of the
central–extreme novelty matrix, implying that, to some extent, the central novelty
and extreme novelty of patents are correlated. In the central–extreme novelty
matrix, patents are concentrated in the regions in which the central novelty and
extreme novelty are simultaneously low or high, i.e., the bottom left and upper
right corners. The matrix further enables a two-dimensional comparison of the
realized invention values of patents in different regions of the central–extreme
novelty space.

Figure 9(b) reports the average invention value of each category of patents in
the central–extremenoveltymatrix. For interest in themost significant inventions,
we also report the probability of achieving the top 5% invention value for patents
in each category of the central–extreme novelty matrix (Figure 9c). Figures 9(b)
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(a) (b) (c)

Figure 9. Central–extreme novelty matrix. Each cell represents a category of patents according to their
percentiles of central and extreme novelty. Gray indicates a lack of data. (a) Patent distribution across the
space. The number in the dashed box is the sweet spot’s share of total patents. (b) Mean invention value, i.e.,
average normalized forward citation. (c) Hit invention rate, i.e., probability of top 5% invention value.

and (c) both exhibit a similar sweet spot, i.e., the regions ofmedium central novelty
(the 30th–60th percentiles) and high extreme novelty (the 90th–100th percentiles)
in the central–extremenovelty space, where the highestmean invention values and
hit invention rates are located. Notably, the value sweet spot in Figures 9(b) and (c)
is away from the popular spots in Figure 9(a) that have the highest concentrations
of inventions. Only 2.17% of the patents are located in the sweet spot, despite its
high mean value and high rates of hit inventions.

The realization of a high-value invention requires sufficiently but not
excessively novel or conventional combinations in the center. Therefore, in the
interest of maximizing invention value, there is such a thing as ‘too novel’ or ‘too
conventional’, but only for the combination center of an invention. Meanwhile,
a higher extreme novelty monotonically increases the value of an invention
regardless of its central novelty. However, for patents withmedium central novelty,
an increase in extreme novelty increases the invention value more significantly
than an increase at the low or high central novelty levels.

4.2. Novelty sweet spot with/without non-patent references
Many patents also cite non-patent references (NPRs) such as scientific papers,
technical reports, and books, which may imply a broader scope of the combined
knowledge embodied in the inventions. Prior study has shown that patents citing
NPRs present a higher average value measured by forward citation counts than
those citing only patents, particularly when the patented invention combines
technologies from a wider scope of fields (Fleming & Sorenson 2004). Our results
(Figure 10) show that patents withNPRs present generally higher invention values
than patents without NPRs in every cell of the central–extreme novelty space.
More specifically, the value added by NPRs, indicated by the gap between the
two surfaces in each panel of Figure 10, is maximized in the sweet spot of the
central–extreme novelty matrix, i.e., medium central novelty and high extreme
novelty. In brief, the combination of scientific and broader knowledge beyond
patentable technologiesmay createmore valuable inventions and enlarge the value
advantage of the novelty sweet spot.
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(a) (b)

Figure 10. Novelty sweet spot with/without non-patent references (e.g., scientific papers, technical reports,
books, etc.) by central and extreme novelty percentiles. Each cell in the base matrix represents a category
of patents. (a) Mean invention value, i.e., average normalized forward citation. (b) Hit invention rate, i.e.,
probability of top 5% invention value.

The foregoing findings hold true when the data sample includes the patents
with no fewer than 20, 30, and 50 reference IPC4 pairs (Figures S2–S5 in
the Supplementary Appendix), when z-scores are calculated using the data
of co-occurrences of class pairs only in the granting year of the focal patent
(Figures S6–S9 in the Supplementary Appendix) rather than the historical data
until the granting year, when extreme novelty is alternatively defined as the
z-score of the 3rd, 5th, 8th, or 10th percentile of the z-score distribution of a
patent (Figures S2–S4 in the Supplementary Appendix), and when we change the
definition of a hit invention to one that is among the top 10%, 3%, and 1% in
terms of normalized forward citation counts (Figure S5 in the Supplementary
Appendix). The detailed robustness tests are reported in the Supplementary
Appendix.

In brief, we have identified a clear ‘sweet spot’ of invention in the
central–extreme novelty space, with a statistical analysis of approximately 600,000
patents in the USPTO database. This finding supports the prior conjecture from
engineering design research (Fu et al. 2013). Knowledge of the specified sweet
spot may further enable data-driven methods for assessing novelty and profiling
inventors. Itmay also provide some guidance for engineering designers to enhance
the value of their potential inventions. Below, we discuss several applications to
make sense of this new understanding.

4.3. Potential applications
First, the central–extreme novelty matrix can be used as a data-driven tool to
computationally assess the novelty of a new invention. For instance, one can
assess the central novelty and extreme novelty of a new invention and locate it
in the core–peripheral novelty matrix. Figure 7 has presented a few examples of
individual patents positioned in thematrix. For a patented invention, the desirable
situation is to lie in the sweet spot. In particular, such data-driven assessment of
the novelty of a new patent applicationmay aid in the patent validity examination.

Furthermore, the central–extreme novelty matrix can also be used to profile
individual inventors, companies, states, and countries by visualizing the novelty
structures of their invention portfolios. The desirable portfolio would have most
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(c) (d)

Figure 11. Patent distributions of the USA and China by central and extreme novelty
percentiles. Each cell represents a category of patents. Gray indicates a lack of data.
(a) Patent distribution of the USA from 1996 to 2005 and (b) from 2006 to 2015;
(c) patent distribution of China from 1996 to 2005 and (d) from 2006 to 2015. The
numbers in the dashed boxes are the shares of the patents in the sweet spot, i.e.,
the region with the 30th–60th percentiles of central novelty and the 90th–100th
percentiles of extreme novelty.

patents concentrated in the sweet spot of the central–extreme novelty space;
in reality, this concentration is gradual. For instance, Figure 11 presents an
example that visualizes the patent portfolios of two countries, the USA and China,
within the central–extreme novelty space, revealing their differences. To ensure
consistency for comparison, only USPTO patents from the USA and China are
analyzed here.

The USPTO patents of the USA are concentrated around both the high (i.e.,
upper right) and the low (i.e., bottom left) novelty corners of the matrix and are
distributed over the sweet spot. Despite an increase in total patents, this patent
distribution profile has changed little over the past two decades (Figures 11a
and b), and the percentage of patents within the sweet spot has increased from
2.93% to 3.37%. In contrast, the USPTO patents of China were concentrated at
the low novelty corner at first but have exhibited a shift toward the upper right

16/22

https://doi.org/10.1017/dsj.2017.23 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2017.23


(a) (b)

(c) (d)

Figure 12. Patent distributions of different technology domains by central and
extreme novelty percentiles. Each cell represents a category of patents. Gray indicates
a lack of data. (a) Distribution of nanotechnology patents from 1996 to 2005 and
(b) from 2006 to 2015; (c) distribution of hybrid electric vehicle patents from 1996
to 2005 and (d) from 2006 to 2015. The patents for the corresponding domains are
extracted from the special patent categories ‘903 – Hybrid Electric Vehicles’ and ‘977
– Nanotechnology’ created by the USPTO, among nine art-collection classes whose
three-digit IDs start with the number 9. The numbers in the dashed boxes are the
shares of the patents in the sweet spot, i.e., the region with the 30th–60th percentiles
of central novelty and the 90th–100th percentiles of extreme novelty.

corner over the past two decades (Figures 11c and d), which represents both high
central novelty and high extreme novelty. However, the share of the patents in
the sweet spot dropped from 2.10% to 1.00%. Such a visual comparison suggests
that the USA has a generally more valuable patent portfolio, with an increasing
portion of patents in the sweet spot; conversely, China has been producing more
novel patents over time, but is losing sight of the potential value of its patented
inventions. For interested readers, the novelty profiles of additional countries can
be found in the Supplementary Appendix.

Likewise, the same visual assessment can be applied to technical design
domains for comparative and trend analyses. For example, Figure 12 visualizes
the distributions of nanotechnology patents and hybrid electrical vehicle patents
in the USPTO patent database over two decades. The nanotechnology patents
are concentrated at the upper right corner of both high central and extreme
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novelty, with a tendency to disperse toward a lower periphery novelty over time
(Figures 12a and b). The percentage of nanotechnology patents within the sweet
spot dropped significantly, from 3.92% to 2.07%. In contrast, the concentration of
hybrid electrical vehicle patents shifted obviously from the center of the novelty
matrix to the upper right corner over time, suggesting a general increase in the
portion of more novel inventions in this domain (Figures 12c and d). However,
such an increase in proportion did not take place in the favorable sweet spot
for value; the percentage of patents in the sweet spot was almost unchanged
(from 1.50% to 1.48%). Nanotechnology inventions were generally more novel
andweremore present in the valuable sweet spot, whereas hybrid electrical vehicle
inventions increased in the more novel categories but not in the sweet spot. Such
differences in the visualized novelty profiles of domains may result from or reflect
their different technical natures and development stages.

In brief, the central–extreme novelty matrix, together with the knowledge
of the sweet spot in the matrix space, may enable more systematic, consistent,
and efficient data-driven evaluation (of novelty and value) of inventions or new
technologies than traditional approaches using subjective opinions of experts
(Hennessey & Amabile 2010). Thus, it will have a broad impact on general
inventive practices as well as innovation management and policy.

5. Concluding remarks
Our findings contribute to both creativity theories and inventive practices. The
most important finding is a specific ‘sweet spot’ in the central–extreme novelty
space. Too much or too little novelty in the center may limit the future value
realization of the invention and suppress the positive value contribution of
extreme novelty to an invention. To pursue hit inventions or breakthroughs,
inventors should be aware of the sweet spot at the beginning of the design
process. One can use sufficient but not excessive domain-specific technologies to
form a moderately novel center and infuse a small number of technologies from
distant domains to form a highly novel extreme in the combination space. This
finding about the novelty ‘sweet spot’ is aligned with those of Fu et al. (2013)
and Chan et al. (2015), despite different definitions of novelty, different types
of experiments, and different correlation factors. Another important finding is
that the combination of scientific and broader knowledge apart from patentable
technologies generally creates value for an invention, and it reinforces the
added value of the sweet spot over other regions in the central–extreme novelty
space. This finding suggests that inventors searching broadly for scientific and
non-patentable knowledge in the invention process may find more valuable
inventive opportunities.

Our findings favor T-shaped inventors, who are equipped with basic scientific
knowledge in various domains and deep design expertise in a specific domain.
Such inventors with the T-shaped knowledge structure are less likely to be
trapped by the conventional wisdoms of their domains of specialization, and
can consistently explore, leverage, and engage technologies from distant domains
for invention. This type of domain-crossing exploration is more effective if the
inventors engage scientific and broader knowledge to comprehend and integrate
technologies across domains. Our results support the movements of engineering
education to cultivate holistic inventors with such a T-shaped knowledge structure
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to promote innovation, and deal with the growing complexity in technological
inventions and the invention process (Luo &Wood 2017).

Furthermore, we demonstrate the use of the ‘central–extreme novelty matrix’
to profile the novelty structures of the patent portfolios of different countries and
of different technology domains. The visual analysis reveals that the USA had
a generally more valuable patent portfolio and an increasing concentration of
patents in the sweet spot, while China was losing sight of the value of inventions
(i.e., it had a decreasing portion of patents in the sweet spot), despite producing
more novel patents over time. We also visually found that nanotechnology
inventions were highly novel but had a decreasing portion in the valuable sweet
spot, whereas hybrid electrical vehicle inventions shifted their concentration to
the more novel categories but not in the sweet spot over the past two decades.
The novelty matrix and the knowledge of the sweet spot can be further applied to
assess and compare the invention portfolios of individual inventors, companies,
states, countries, and industries.

In summary, this paper contributes a scientific understanding of what novelty
structure is most likely to give inventions greater value. Such an understanding
is valuable for inventive practices in all fields. This paper also contributes a
promising novelty evaluation tool, i.e., the central–extreme novelty matrix. It
can characterize the two-dimensional novelty structures of inventions and the
patent portfolios of inventors at different aggregation levels, including persons,
organizations, regions, etc. This new understanding and our methodological
contributions are expected to inspire and enhance creativity in design practices,
engineering education, innovation management and policy, etc., across fields.

The study has limitations. For example, our method relies on a statistical
analysis of the data on patent references; thus, we focused on patents with at
least five references. As a result, we may have neglected highly novel patents with
few references. In addition, we only analyzed direct references, although indirect
references may also have implications for the combination space of invention.
For co-occurrences, pair is the simplest and most generic unit of analysis. Other
forms of co-occurrences, such as triples or specific topological structures, can be
considered for further study to explore additional insights into novelty structures.
In addition, the USPTO patent database is just one of many patent databases
worldwide. It would be interesting to conduct a similar analysis using other patent
databases, such as the patents filed in European, Chinese, and Japanese patent
offices, to explore whether our findings in this paper will hold or vary.

This study can move forward in a few directions for future research.
First, alternative measures of the novelty spectra can be explored to assess
inventions based on patent data. Second, we plan to work with industrial
companies and government organizations to apply our work and findings (e.g.,
the central–extreme novelty matrix and the ‘sweet spot’) for impact on innovation
practices. Third, new studies may bring new insights into invention by using
the novelty matrix to assess and compare the novelty profiles across different
ranges of patents, e.g., system patents versus device patents, singular patents
versus grandparent–parent–child families of patents, etc. Fourth, a data-driven
invention evaluation tool can be developed to automate the novelty assessment
and the visualization functions, as we preliminarily presented in this paper. Thus,
laymen (e.g., engineers, managers, patent lawyers, policy makers) can use the tool
to quantitatively and visually evaluate inventions and patent portfolios at different
scales. Furthermore, we hope that a systematic model to predict the value of new
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inventions can be developed in future research by incorporating additional factors
that affect invention value with central and extreme novelty.
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