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Linear stability theory (LST) is often used to model the large-scale flow structures in the
turbulent mixing region and near pressure field of high-speed jets. For perfectly expanded
single round jets, these models predict the dominance of azimuthal wavenumbers m = 0
and m = 1 helical modes for the lower frequency range, in agreement with empirical
data. When LST is applied to twin-jet systems, four solution families appear following
the odd/even behaviour of the pressure field about the symmetry planes. The interaction
between the unsteady pressure fields of the two jets also results in their coupling. The
individual modes of the different solution families no longer correspond to helical motions,
but to flapping oscillations of the jet plumes. In the limit of large jet separations, when the
jet coupling vanishes, the eigenvalues corresponding to the m = 1 mode in each family are
identical, and a linear combination of them recovers the helical motion. Conversely, as the
jet separation decreases, the eigenvalues for the m = 1 modes of each family diverge, thus
favouring a particular flapping oscillation over the others and preventing the appearance
of helical motions. The dominant mode of oscillation for a given jet Mach number Mj and
temperature ratio TR depends on the Strouhal number St and jet separation s. Increasing
both Mj and TR independently is found to augment the jet coupling and modify the
(St, s) map of the preferred oscillation mode. Present results predict the preference of
two modes when the jet interaction is relevant, namely varicose and especially sinuous
flapping oscillations on the nozzles’ plane.
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1. Introduction

Tactical fighters developed since the 1960s predominately feature fuselage-embedded
twin-jet engines. Additionally, multi-tube nozzles have been investigated as possible jet
noise suppressors, and designs of future distributed-propulsion systems involve placing
two or more parallel jet streams in close proximity. The closely spaced jets can interact
both at the hydrodynamic and acoustic levels, giving rise to complex flow structures when
compared with single round jets at equivalent operating conditions.

Following the seminal works of Mollo-Christensen (1967), the relation between the
dominant components of the far-field noise radiated by high-speed jets and large-scale
fluctuations in the turbulent mixing region, coherent over several nozzle diameters, has
been the subject of growing research (Jordan & Colonius 2013; Cavalieri, Jordan &
Lesshafft 2019). Radiated sound is correlated with large-scale, low-frequency fluctuations
in the mixing region and with very few azimuthal modes for single isolated jets (Juvé,
Sunyach & Compte-Bellot 1980; Hileman et al. 2005; Cavalieri et al. 2011). The existence
of coherent structures in turbulent jets was first identified by Crow & Champagne
(1971) and their resemblance to instability waves for harmonically forced supersonic jets
suggested the use of linear instability analysis to model them (Crighton & Gaster 1976;
Michalke 1984). The presence of wavepackets in high-speed jets was finally demonstrated
over the last two decades, as well as the ability of linear stability calculations to model
them faithfully (Suzuki & Colonius 2006; Gudmundsson & Colonius 2011; Cavalieri et al.
2013; Sinha et al. 2014). The success of linear stability analysis in predicting the large-scale
turbulent fluctuations is attributed to the observation that most nonlinearities are already
introduced in the establishment of the mean flow, and that in the natural turbulent jet
the different modes are, to some extent, allowed to coexist and develop independently
(Schmidt et al. 2018).

As opposed to single round jets, instability analyses for twin jets are scarce in the
literature, due to the mathematical complexity of the latter. The mean turbulent flow
corresponding to isolated round jets is axially symmetric, enabling the introduction of
azimuthal Fourier modes (each one characterised by an integer wavenumber m) and only
requires spatial discretisation in the radial direction. Bipolar coordinates were used by
Morris (1990) to study the inviscid instability of two axially homogeneous parallel jets.
He identified the counterparts of the different azimuthal Fourier modes known for single
jets and classified them according to the symmetries about the jet-centre plane and the
plane normal to it. Green & Crighton (1997) used a similar approach to study coupled
oscillation modes of the jet cores, considering varicose and sinuous flapping motions
of the two jets. More recently, Rodríguez, Jotkar & Gennaro (2018) and Nogueira &
Edgington-Mitchell (2021) analysed the local linear instability of twin-jet configurations
by applying two-dimensional cross-stream discretisations that do not restrict the spatial
structure of the wavepackets. Interestingly, the latter analyses recover the same families
of eigenmodes corresponding to the Fourier modes of single jets, albeit modified on
account of the jet–jet interaction; additional eigenmodes corresponding to mechanisms
not present for single jets were not identified. The recent conference paper Rodríguez
et al. (2022) revisits the parallel-flow instability of twin jets. Four independent discrete
eigenmodes appear for each m, regardless of whether the symmetry/anti-symmetry
conditions are imposed in the computations or not. Each eigenmode satisfies naturally
one of the possible combinations of symmetry/anti-symmetry conditions. It is observed
that the eigenfunctions for m > 0 modes do not correspond to helical oscillations, but
constitute combinations of the respective +m and −m helical modes with the precise phase
relationship such that they describe flapping motions on the lateral or vertical planes.
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On the preferred flapping motion of round twin jets

This is consistent with experimental observations and simulations in supersonic twin
round jets. Seiner, Manning & Ponton (1988) and Wlezien (1989) showed that the B-mode
of oscillation associated with screech manifests as a coupled flapping motion of the
plumes occurring in the plane containing the jets. Alkislar et al. (2005) reported that
the coupling between the two jets, for their particular conditions of jet Mach number
Mj and jet separation s, results in a symmetric flapping with respect to the mid-plane
and dominant jet oscillations occurring in the plane containing the jets (referred to as
lateral flapping). A similar observation was made by Gao, Xu & Li (2016) based on large
eddy simulations. The experiments by Kuo, Cluts & Samimy (2017) considered a twin-jet
configuration with separation s/D = 2 and convergent–divergent nozzles with a design
Mach number of 1.23 and jet Mach numbers between Mj = 1.15 and 1.4. The jets exhibited
coupled oscillations, with a varicose (symmetric) lateral flapping motion being observed at
conditions in which a single jet would present the helical oscillations typical of the screech
B-modes. Experiments undertaken by Knast et al. (2018) and Bell et al. (2018) reported
both helical and flapping oscillations in twin jets, but due to experimental constraints, the
presence or absence of helical modes could not be rigorously determined. Later, Bell et al.
(2021) demonstrated that, even at a fixed operation condition, twin-jet oscillations present
intermittency. At some time lapses the motion of the two jets can be uncorrelated and
present helical motions; at other lapses they are strongly correlated and present a coupled
lateral flapping.

This paper revisits the locally parallel linear instability of twin-jet configurations. The
first objective is to demonstrate that the coupling of the two jets favours flapping motions
over helical ones. The analysis is focused on m = 1 modes, as experiments show their
prevalence over other modes for most flow conditions in the supersonic regime, especially
in the first diameters from the nozzle lip. The second objective is to map the preferred
flapping mode for each Strouhal number and jet separation, and the impact of the jet
Mach number and temperature ratio upon them. Two independent formulations of the
linearised equations are used: (i) an approach that discretises the cross-stream plane using
Cartesian coordinates, valid for of finite-thickness jets of arbitrary shape; and (ii) an
inviscid vortex-sheet method analogous to that used by Morris (1990), Du (1993) and
Stavropoulos et al. (2023). Section 2 describes the two formulations. Section 3 presents
the results of the analyses. The relevant eigenmode families are described briefly. The
impact of the interaction of the pressure fields of the two jets on the eigenmodes and the
appearance of preferred modes is then discussed. A parametric study is then presented
that analyses the effect of the jet Mach number and temperature ratio on the preferred
oscillation mode. The main conclusions are summarised in § 4.

2. Formulations of the linear stability problem for twin jets

The twin-jet geometry and geometrical parameters are shown in figure 1. The nozzle
diameter is D and the separation between the jet axes is s. The streamwise coordinate x is
oriented perpendicular to the paper towards the reader. Radial and azimuthal coordinates
measured from the origin are denoted by (r, θ), and those measured with respect to the axis
of each jet are denoted by (r1, θ1) and (r2, θ2). Physical quantities are made dimensionless
using D and the free-stream sound speed c∞ and density ρ∞. Pressure is scaled with
ρ∞c2∞ and temperature with (γ − 1)T∞, where γ is the ratio of specific heats. The jet
acoustic Mach number is defined as Mj = Uj/c∞, with Uj being the jet exit velocity. The
jet temperature ratio is defined as TR = Tj/T∞, where Tj is the jet exit temperature and
T∞ the free-stream temperature.

977 A4-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

93
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.935


D. Rodríguez and others

s

z

D

r2 r1

θ1

θ

θ2

r

y

Figure 1. Twin-jet configuration and geometry, showing the different coordinate systems employed.

(x, y)-plane (x, z)-plane Family Alt. name Azimuthal modes φy φz

Even Even SS I cos(2nθ) 1 1
Odd Even AS II cos(2n + 1)θ −1 −1
Even Odd SA III sin(2n + 1)θ −1 1
Odd Odd AA IV sin(2nθ) 1 −1

Table 1. Classification of mode families depending on the symmetries. The fourth column shows the relation
of the notation used here to that by Morris (1990). The azimuthal dependence for each family is also shown.
The last two columns show the values of φy and φz appearing in the vortex-sheet model.

Let q′ be a vector containing all the fluid variables of interest, e.g. the velocity v =
(u, v,w), density ρ, pressure p and temperature T . Linear stability theory (LST) studies
small-amplitude disturbances superimposed on a time-invariant flow, either steady laminar
or stationary turbulent mean flow, denoted here by q̄. Invoking the locally parallel-flow
assumption, modal disturbances of the form

q′(x, t) = q(y, z) exp(i (kx − ωt))+ c.c., (2.1)

are introduced, where ω is the circular frequency, k the streamwise wavenumber, t
the dimensionless time and c.c. denotes the complex conjugate. The Strouhal number,
defined as St = fD/Uj, is related to the dimensionless angular frequency by ω = 2πMjSt.
The derivation of the LST problem continues by substituting the modal decomposition
(2.1) into the linearised governing equations and recasting the result as an eigenvalue
problem. The spatial instability framework is used in this work, which consists of
prescribing a real frequency ω and obtaining the corresponding eigensolutions as
the eigenvalue/eigenfunction pairs (k, q). Thus, LST provides the dispersion relation
D(ω, k) = 0 that governs the evolution of linear instability waves.

The LST is applied here to twin-jet configurations. As opposed to single round jets, axial
symmetry cannot be exploited here to simplify the LST problem; however, the twin-jet
mean flow is symmetric with respect to the (x, y)- and (x, z)-planes. Following Morris
(1990), the LST solutions are separated into four families corresponding to the even or
odd character of their pressure field with respect to the two planes. The two-letter notation
used by Rodríguez et al. (2018) and Nogueira & Edgington-Mitchell (2021) is adopted to
classify the mode families, which is outlined in table 1. Two different formulations of the
LST problem are used in this work, as described next.
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On the preferred flapping motion of round twin jets

2.1. Formulation 1: complete compressible Navier–Stokes equations discretised in
Cartesian coordinates

This formulation is valid for finite-thickness jets of arbitrary shape and has been applied
previously to twin round jets (Rodríguez et al. 2018; Rodríguez 2021) and rectangular jets
(Rodríguez, Prasad & Gaitonde 2021). In these works, the results of the locally parallel
LST were used as initial conditions for the subsequent integration of the plane-marching
parabolised stability equations. The viscous compressible continuity, momentum and
energy equations in Cartesian coordinates are used as the departure point. Ideal gas is
assumed and the impact of temperature on viscosity is neglected. In the linearisation,
density and temperature are used for the mean flow and pressure and temperature for the
disturbances. The modal form (2.1) is introduced and the resulting generalised eigenvalue
problem is recast in the form

Lq = kRq, (2.2)

where matrix operators L and R depend on the mean flow and its derivatives, ω, the
physical parameters Re, Ma, Pr and γ (Reynolds, Mach and Prandtl numbers and ratio
of specific heats, respectively) and parameters describing the twin-jet configuration (e.g.
s/D, Mj, TR).

The rectangular domain Ω = [0, y∞] × [0, z∞] is used in the discretisation. An
analytical coordinate transformation is applied independently to the y and z coordinates
to concentrate points around the jet shear layer. The odd/even behaviours of each family
are imposed as boundary conditions along the y = 0 and z = 0 axes. For modes that are
respectively symmetric (S) and anti-symmetric (A) with respect to the (x, y)-plane, the
conditions

S :
∂p
∂y

= ∂T
∂y

= ∂u
∂y

= ∂v

∂y
= 0, w = 0, (2.3)

A : p = T = u = v = 0,
∂w
∂y

= 0, (2.4)

are imposed at y = 0, and similarly for the behaviour with respect to the (x, z)-plane.
Vanishing of the disturbance velocity and temperature is imposed as far-field boundary
conditions. A Neumann condition is imposed for the pressure. The rectangular domain
Ω = [0, 7.5] × [0, 5] was checked to be large enough for the convergence of the results
for the case with the largest jet separation considered herein (s/D = 5), and is used for all
calculations.

The linear operators L and R are discretised using a combination of variable-stencil
high-order finite differences and sparse algebra that exploits the banded structure of the
differentiation matrices. A 7-point stencil is used, which results in the optimal balance
between accuracy and computational cost (Gennaro et al. 2013; Rodríguez & Gennaro
2017). After discretisation of the linear operators, the matrix eigenvalue problem (2.2) is
solved using an in-house sparse implementation of the shift-and-invert Arnoldi algorithm
(Arnoldi 1951). Arnoldi’s algorithm requires the solution of a number of linear problems,
which is accomplished using the package MUMPS (Amestoy et al. 2001).

This formulation can also be applied without exploiting/imposing the symmetries, as
done in Rodríguez et al. (2018). In this case, the computational domain used is Ω =
[−y∞, y∞] × [−z∞, z∞] and the same mode families are recovered. The results of the
present formulation have been cross-validated with the formulation presented by Nogueira
& Edgington-Mitchell (2021), that employs a Floquet formalism on the azimuthal direction
to reduce the computation to a sector of the azimuthal domain and discretises it using a
two-dimensional mesh in polar coordinates.
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2.2. Formulation 2: vortex-sheet formulation for twin jets
The vortex-sheet model treats the shear layer as a boundary of infinitesimal width with a
uniform streamwise velocity inside the jet and zero streamwise velocity outside (Lessen,
Fox & Zien 1965; Michalke 1970). The inviscid equations governing the linear instability
waves, upon the introduction of the modal form (2.1) written in terms of the cylindrical
coordinates, reduce to the Helmholtz equation for the disturbance pressure p

∂2p
∂r2 + 1

r
∂p
∂r

+ 1
r2
∂2p
∂θ2 − λ2p = 0. (2.5)

This equation describes the disturbance pressure in the inner (i) and outer (o) regions to
the vortex sheet, depending on the definition of λ

λi =
√

k2 − 1
TR
(ω − Mjk)2, λo =

√
k2 − ω2. (2.6a,b)

In the twin-jet configuration (Morris 1990; Du 1993; Stavropoulos et al. 2023), the inner
and outer solutions are written in forms consistent with the separation in even/odd families
as

pi,1(r1, θ1) =
∞∑

m=0

ÂmIm(λir1) cos(mθ1)+ B̂mIm(λir1) sin(mθ1), (2.7)

po(r1, θ1, r2, θ2) =
∞∑

m=0

Am
[
Km(λor1) cos(mθ1)+ (−1)mKm(λor2) cos(mθ2)

]

+
∞∑

m=0

Bm
[
Km(λor1) cos(mθ1)− (−1)mKm(λor2) cos(mθ2)

]

+
∞∑

m=0

Cm
[
Km(λor1) sin(mθ1)+ (−1)mKm(λor2) sin(mθ2)

]

+
∞∑

m=0

Dm
[
Km(λor1) sin(mθ1)− (−1)mKm(λor2) sin(mθ2)

]
, (2.8)

where Im and Km are the modified Bessel functions of first and second kind. Each line of
(2.8) corresponds to one of the four families.

The inner and outer solutions are matched at the ideally expanded diameter Dj, that is
imposed to be equal to D in this work. Matching conditions impose the continuity of the
pressure and displacement across the vortex sheet

pi(λiDj/2) = po(λoDj/2), (2.9)

∂pi

∂r

∣∣∣∣
r=Dj/2

= 1
TR

(ω − kMj)
2

ω2
∂po

∂r

∣∣∣∣
r=Dj/2

. (2.10)

In order to impose the matching conditions, the outer solution (2.8) is re-written in
terms of the coordinates of a single jet using Graf’s addition theorem (Abramowitz &
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Stegun 1964)

Km(λor2) cos(mθ2) =
∞∑

n=−∞
(−1)nKm−n(λos)In(λor1) cos(nθ1), (2.11)

Km(λor2) sin(mθ2) =
∞∑

n=−∞
(−1)nKm−n(λos)In(λor1) sin(nθ1). (2.12)

Combining (2.7)–(2.12) and collecting terms corresponding to the same family yields
the dispersion relation for a twin-jet system as

D(ω, k; Mj, s/D,Dj) =
∞∑

m=0

ψm[annδmn + φy(−1)mcmn] = 0, (2.13)

where ψm correspond to the coefficients Am,Bm,Cm or Dm depending on the solution
family, δmn is the Kronecker delta and

ann = 1(
1 − kMj

ω

)2 − 1
TR

λo

λi

K′
n

(
Djλo

2

)
In

(
Djλi

2

)

I′n

(
Djλi

2

)
Kn

(
Djλo

2

) , (2.14)

cmn = (−1)nεn[Km−n(λos)+ φzKm+n(λ0s)]

×

⎡
⎢⎢⎢⎣

In

(
Djλo

2

)

Kn

(
Djλ0

2

) 1(
1 − kMj

ω

)2 − 1
TR

λo

λi

In

(
Djλi

2

)
I′n

(
Djλo

2

)

Kn

(
Djλo

2

)
I′n

(
Djλi

2

)
⎤
⎥⎥⎥⎦ . (2.15)

Here, εn is equal to 0.5 if n = 0 and 1 otherwise. The mode families are imposed through the
factors φy and φz in (2.13) and (2.15) (see table 1). For large s, the first factor in brackets in
(2.15) tends to zero, leaving only those from (2.14), which recovers the dispersion relation
for a single jet (Lessen et al. 1965; Towne et al. 2017). As opposed to the case of a single
jet, (2.13) couples all the azimuthal m numbers. For the practical solution, the summatory
is truncated at a finite N. The results presented in this work are computed using N = 5,
but their convergence has been checked with a maximum N of 10.

3. Results

3.1. Finite-thickness single- and twin-jet mean flows
The calculations of finite-thickness single and twin jets in this work employ analytic mean
flows for the sake of reproducibility. The analytical velocity profile proposed by Michalke
(1970, 1984) is used

ū
Uj

= 1
2

[
1 + tanh

(
1
4

R
θ

(
R
r

− r
R

))]
, (3.1)

where r is the radial coordinate measured from the jet centre for a single jet and R
is the nozzle radius, R = D/2. A tailored mean flow field is constructed for twin-jet
configurations by combining the flow fields corresponding to two isolated round jets of
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the form (3.1) aligned with the x-direction and with the centres placed symmetrically at
the coordinates (y, z) = (±s/2, 0), as shown in figure 1. This is a good approximation of
the twin-jet mean flow in the region immediate downstream of the nozzles, known as the
converging region (Okamoto et al. 1985; Moustafa 1994), where the shear layers of the two
jets are still well separated, and has been used in the past in the linear stability calculations
by Morris (1990), Rodríguez et al. (2018) and Rodríguez (2021). Recently, Stavropoulos
et al. (2023) and Padilla-Montero et al. (2023) further assessed the validity of the tailored
mean flow by comparison with experimental measurements and numerical simulations of
the actual twin-jet geometry, showing it to be a valid approximation at least for the first ∼5
diameters of evolution for jets in close proximity.

A zero mean pressure gradient is assumed and the Crocco–Busemann relation
particularised for the temperature ratio TR

T̄
T∞

= (Uj − ū)
ū
2

+ 1
γ − 1

(
1 + (TR − 1)

ū
Uj

)
, (3.2)

is used to determine the mean temperature T̄ . All the quantities in this expression are
dimensionless, as explained in § 2. The mean density field ρ̄ is obtained from the state
equation. Following the parallel-flow assumption, cross-stream mean velocity components
are neglected. For the finite-thickness calculations herein, the jet Mach number is set at
Mj = 1.5 and TR = 1 and the parameter R/θ = 12.5, unless stated otherwise. This value of
R/θ is representative of the thin shear layer in the first diameter from the nozzle (Crighton
& Gaster 1976; Michalke 1984). The parameter R/θ is varied in § 3.4, that studies the
impact of the shear-layer thickness on the stability results. The Reynolds number Re =
5 × 104 is used in the calculations but identical results are recovered for Re = 105, showing
that the effect of viscosity is negligible.

3.2. The eigenspectra of single and twin jets
This section discusses the results of the LST analysis based on Cartesian coordinates,
described in § 2.2, when applied to single and twin jets.

3.2.1. Single round jets
When the local stability analysis is applied to single round jets, the axial symmetry of the
mean flow allows for the introduction of azimuthal Fourier modes of the form exp(imθ)
(e.g. Gill 1965; Michalke 1984). This is usually exploited to reduce the eigenvalue problem
to a one-dimensional one, dependent on the radial coordinate alone. For each m, the
stability analysis recovers different families of eigensolutions (Tam & Hu 1989; Rodríguez
et al. 2013), but only one discrete eigenmode is associated with the Kelvin–Helmholtz
(K–H) instability.

The present approach is based on Cartesian coordinates, discretising only the first
quadrant of the (y, z)-plane and imposing symmetric/anti-symmetric conditions at the
y = 0 and z = 0 planes. As a consequence, it does not isolate the individual azimuthal
eigenmodes. Conversely, the imposed symmetries separate the eigenmodes into four
families: SS, AS, SA and AA, as shown in table 1 and discussed elsewhere (Morris
1990; Rodríguez 2021; Rodríguez et al. 2021). When this approach is applied to a
single jet centred at the origin of coordinates, each eigenspectrum contains a number
of discrete K–H eigenmodes, each one corresponding to one m. Figure 2(a) shows the
eigenspectra for a single jet at St = 0.3. The different symbols correspond to one of
the solution families. Except for m = 0, which is only recovered in family SS, all other
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Figure 2. The LST eigenspectra corresponding to Mj = 1.5,TR = 1,R/θ = 12.5 and St = 0.3 and the four
solution families: SS (+), AS (◦), SA (×), AA (�). (a) Single jet; (b) twin jet with separation s/D = 2.2.

eigenvalues appear repeated in two families. In particular, the eigenmodes corresponding
to m = 1 are recovered in families AS and SA; in the following these eigenmodes are
referred to as AS1 and SA1, respectively. Their pressure eigenfunctions are shown in
figure 3(a,b). The three-dimensional pressure fields are reconstructed following (2.1),
with the eigenfunction p(y, z) normalised. To aid in the visualisation, an arbitrary
streamwise domain of length 10D is used and the pressure field amplitude is multiplied
by exp(−kix) to cancel the spatial growth, so that the amplitude remains constant.
The pressure vanishes simultaneously at one of the coordinate axes (different for SA
and AS) for the real and imaginary components. This behaviour is enforced here by
the symmetry/anti-symmetry conditions for each family, but a computation using the
domainΩ = [−y∞, y∞] × [−z∞, z∞] and not imposing the symmetries delivers identical
families of eigenfunctions (Rodríguez et al. 2018). Figure 3(d,e) shows the phase of the
pressure field, φ = arctan(Im( p)/Re( p)), extracted at a cylinder of radius 0.75D aligned
with the jet axis. The azimuthal angle θ1 is measured from the positive y axis as shown in
figure 1. Only the subdomain θ1 ∈ [0,π] is shown, but the omitted region can be inferred
from the symmetries. Mode SA1 presents a constant phase for −π/2 < θ1 < π/2 which
is shifted by an angle π for other values of θ1. Mode AS1 shows a similar behaviour
but with the phase shift at θ1 = π. Each of these eigenfunctions describes a jet flapping
motion. However, because the eigenvalues corresponding to the modes AS1 and SA1
are identical (kSA1 = kAS1), a linear combination of them is also a valid solution to the
general problem. With appropriately chosen amplitude coefficients for each eigenmode,
their linear combination recovers the features of a helical mode. This is illustrated in
figure 3(c, f ), in which the pressure fields of modes AS1 and SA1 are added as

p(x, y, z, t) = p̂SA1(y, z) exp(i(kSA1x − ωt))+ i p̂AS1(y, z) exp(i(kAS1x − ωt))+ c.c.
(3.3)

The helical nature of the resulting mode is manifest in the linear dependence of the phase
φ on the azimuthal angle θ1.

3.2.2. Twin round jets
For the twin-jet configuration, the jet axes are not located at the origin of coordinates;
while the nomenclature used for the single jet remains valid, the four solution families do
not separate the odd and even m modes. Instead, each family contains one eigenmode for
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Figure 3. Pressure eigenfunctions corresponding to a single jet at Mj = 1.5,TR = 1,R/θ = 12.5 and St = 0.3.
The streamwise dependence is obtained from the corresponding eigenvalue, eliminating the spatial growth.
(a–c) Iso-contours of the real pressure component. The grey circle shows the nozzle circumference. (d–f )
Phase angle φ at a cylinder of radius 0.75D. (a,d) SA1; (b,e) AS1; (c, f ) linear combination of SA1 and AS1 to
produce the m = 1 helical mode.

each of the m > 0 modes. The symmetry of the mean flow about the mid-plane leads to the
recovery of the m = 0 mode only in the SS and SA families. Representative eigenspectra
for a twin-jet configuration with separation s/D = 2.2 at St = 0.3 are shown in figure 2(b),
to be compared with the single-jet eigenspectra in figure 2(a).

The interaction between the fluctuation fields of the two jets breaks the azimuthal
symmetry of the eigenmodes and the same m mode presents different eigenvalues k, one
for each symmetry family. This shift of the eigenvalues with respect to the single-jet
ones is stronger for m = 0 and gradually reduces for increasing m. This behaviour
is explained by the asymptotic decay of the single-jet eigenfunctions as r → ∞, q ∼
r−1/2 exp(−r

√
k2 − ω2) (Abramowitz & Stegun 1964). For a fixed frequency ω, the axial

wavenumber k increases with increasing m, and hence leads to a faster radial decay of the
fluctuations. Consequently, the amplitude of the pressure field associated with one jet that
reaches the other jet is reduced. For the same reason, the magnitude of the eigenvalue shift
is also inversely proportional to the jet separation s/D, as shown next.

In what follows, attention is focused on the m = 1 modes, which present the largest
growth rates for most of the conditions considered. These modes are denoted by SS1, SA1,
AS1 and AA1, where the two letters correspond to the symmetry family and the number
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Figure 4. Dependence of the m = 1 eigenvalues on the jet separation s/D: (a) the complex k plane. The
eigenvalues spiral outwards with s/D decreasing from 5 to 1.8. (b) Real and (c,d) imaginary parts. Panel (d) is
a zoom in of panel (c). Here, Mj = 1.5,TR = 1,R/θ = 12.5 and St = 0.3; SS (+), AS (◦), SA (×), AA (�).
The horizontal dashed line corresponds to the m = 1 mode of the single jet.

to the corresponding azimuthal number. Figure 4 shows the eigenvalues corresponding
to each of the four families as a function of the jet separation. While the magnitude of
the eigenvalue shift grows continuously with decreasing s/D, the dependence of the real
and imaginary parts of the eigenvalues is non-monotonic and different for each family.
The shift is stronger for modes SS1 and SA1, which correspond respectively to in-phase
(varicose) and counter-phase (sinuous) lateral flapping oscillations in the plane containing
the jet axes. For jet separation above s/D ≈ 2, the real part of the wavenumber k is reduced
(equivalently, the phase velocity is increased) for SA1, while it is increased for SS1. This
behaviour is reversed for very small jet separations. The flapping modes in the vertical
(perpendicular) plane follow a similar trend: the in-phase mode AS1 reduces its phase
velocity resulting from the presence of the other jet and the counter-phase AA1 increases
it. As shown in figure 4(c) and more clearly in the zoomed-in version 4(d), the spatial
growth rate presents a similar behaviour for the two pairs of modes:

(i) The in-phase flapping modes SS1 (blue) and AS1 (red) exhibit an increase of the
growth rate (−ki) as s/D is reduced from s/D → ∞, due to jet interactions. For
decreasing separations, the growth rate eventually reaches a maximum, then equals
that of the single jet and then becomes smaller, i.e. close jet proximity stabilises
the in-phase flapping modes. The jet separations for the destabilisation/stabilisation
inversion are different for the two modes: s/D ≈ 2.8 for SS1 and 2.5 for AS1.
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The variation of the growth rate is of bigger amplitude for the varicose lateral
flapping mode SS1.

(ii) The counter-phase modes SA1 (yellow) and AA1 (black) present opposite trends
to the in-phase modes. These modes have the largest growth rates for small jet
separations and, in particular, mode SA1 corresponding to sinuous lateral flapping
is the most amplified one.

The eigenvalue shift resulting from the coupling of the unsteady twin-jet pressure fields
has two inter-connected consequences. First, some of the m = 1 eigenmodes become
dominant over the others for a given combination of parameters (s/D, St, but also Mj
and TR, as shown later), suggesting that a preferred mode of flapping oscillation should
emerge, as opposed to the helical motion of a single jet. From the results of figure 4, mode
SS1 (varicose lateral flapping) should be expected for a jet separation above s/D ≈ 3 and
St = 0.3. For s/D < 3, mode SA1 (sinuous lateral flapping) becomes gradually dominant.
The second consequence of the eigenvalue shift is that m = 1 helical modes cannot be
recovered as the linear combination of different m = 1 modes. Owing to the exponential
dependence on ki (see (3.3)), even small differences in the spatial growth rate result in a
fast dominance of the most unstable flapping eigenmode. This is illustrated in figure 5 for
a jet separation of s/D = 2.2. As was done for figure 3, the streamwise amplification of
the eigenfunctions is re-scaled with the growth rate of the most unstable one (SA1 in this
case). As a result, the least amplified mode AA1 has its relative amplitude reduced along
the streamwise direction. A phase mismatch also appears due to the small differences in
kr. The combination of the two modes is shown in figure 5(c, f ): the pressure field behaves
initially as two anti-symmetric counter-rotating helical modes, but soon evolves towards
the sinuous lateral flapping of mode SA1.

3.3. Preferred mode of oscillation for finite-thickness twin jets
The results in the previous section suggest a strong dependence of the eigenvalue shift for
all modes with frequency and jet separation. Figure 6 shows the results of a parametric
study of the m = 1 modes for St varying between 0.1 and 0.6 and s/D varying between
1.8 and 5, extending the results of figure 4 for the twin jets with Mj = 1.5, TR = 1 and
R/θ = 12.5. Figure 6(a) shows the parametric regions in which each mode dominates, i.e.
its spatial growth rate is the largest among the m = 1 modes. Incidentally, it is noted that
the growth rate of all m = 1 is always larger than that of the m = 0 modes, as expected for
high Mj jets with relatively thin shear layer (Michalke 1984). The alternating dependence
of the leading mode with s/D described before is also obtained with St, and the region
of preference of the modes forms ‘stripes’ whose boundaries take approximately constant
values of the product St × s/D.

Figure 6(a) provides no information on the relative growth rates of the leading mode
with respect the others, or with respect to eigenmodes corresponding to a single jet.
Figure 6(b) shows, for the leading eigenmode at each (St, s/D), the relative change in
the growth rate resulting from the jet interaction, quantified as

�̃ki(St, s/D) = ki(St, s/D)− ki(St, s/D → ∞)

|ki(St, s/D → ∞)| . (3.4)

Note that the dispersion relation for twin jets k(St, s/D) recovers that of a single jet
in a smooth manner as s/D → ∞. Each colour level in figure 6(b) corresponds to a
relative increase of 1 % of �̃ki. The maximum colour level shown is 10 % but �̃ki reaches
larger values. As anticipated, the destabilisation of the leading eigenmode is inversely

977 A4-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

93
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.935


On the preferred flapping motion of round twin jets

SA1 Re(p) = ±0.25

1

0

–1

2
0

–2 0

5

z/D
10

1

0

–1

2
0

–2 0

5

z/D
10

1

0

–1

2
0

–2 0

5

z/D
10

x/D
x/Dy/D

AA1 Re(p) = ±0.25

SA1 + i AA1

Re(p) = ±0.25

π

3π/4

π/2θ1

π/4

π

π/2

0

–π/2

–π
0 5 10

(d )

π

3π/4

π/2θ1

π/4

π

π/2

0

–π/2

–π
0 5 10

(e)

π

3π/4

π/2θ1

π/4

π

π/2

0

–π/2

–π
0 5 10

( f )

(a)

(b)

(c)

Figure 5. Pressure eigenfunctions corresponding to twin jets with s/D = 2.2 at Mj = 1.5,TR = 1,R/θ = 12.5
and St = 0.3. The streamwise dependence is obtained from the corresponding eigenvalue, eliminating the
spatial growth corresponding to SA1. (a–c) Iso-contours of the real pressure component. The grey circle shows
the nozzle circumference. (d–f ) Phase angle φ at a cylinder of radius 0.75D centred on one jet. Panels show (a)
SA1; (b) AA1; (c) linear combination of SA1 and AA1.

proportional to jet separation. For a fixed jet separation, the envelope of |�̃ki| over all
modes is also inversely proportional to St, similarly to the dependence on s/D shown
in figure 6(d). Consequently, as the product St × s/D increases, �̃ki approaches zero.
This happens in this case for regions dominated by the modes SS1 and AS1. Figure 6(c)
shows again �̃ki, but colour coded to highlight the preferred oscillation mode. For the
jet conditions analysed herein (Mj = 1.5, TR = 1,R/θ = 12.5), these results predict the
dominance of mode SA1 leading to lateral sinuous oscillations for most jet separations
and Strouhal numbers. The white regions in figure 6(c) correspond to conditions in which
the jet interactions are weak, and hence do not lead to a substantial eigenvalue shift; the
oscillation modes converge towards their behaviour for single jets for which there is no
preferred mode. In this case, the jet may follow either a helical or flapping dynamics,
which may be selected by other characteristics of the turbulent flow.

977 A4-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

93
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.935


D. Rodríguez and others

2 3 4 5

s/D

0.1

0.2

0.3

0.4

0.5

0.6

St

SS

AS

SA

AA

(a)

2 3 4 5

s/D

0.1

0.2

0.3

0.4

0.5

0.6

St

–0.10

–0.08

–0.06

–0.04

–0.02

0
(b)

2 3 4 5

s/D

0.1

0.2

0.3

0.4

0.5

0.6

SS

AS

SA

AA

(c)

Figure 6. Preferred oscillation mode for twin jets as a function of the jet separation and Strouhal number. Here,
Mj = 1.5,TR = 1,R/θ = 12.5. (a) Leading eigenmode. (b) Relative increase of the growth rate with respect
to the single jet. (c) Same as (b), but colour coded to show the leading eigenmode. The same colour coding as
figure 4 is used: blue: SS1; red: AS1; yellow: SA1; black: AA1.

3.4. Influence of the shear-layer thickness
The results in previous sections were obtained for R/θ = 12.5, which corresponds to
a relatively thin shear-layer thickness representative of axial distances around 0.5D
downstream of the nozzle lip. This section considers the impact of the shear-layer thickness
on the preferred oscillation mode for twin jets.

For high-speed jets, θ grows approximately linearly with the distance from the nozzle.
Crighton & Gaster (1976) use the analytical profile (3.1), obtaining a reasonable fit to the
single-jet experiments by Crow & Champagne (1971) with the approximation

θ/R = 0.06(x/D)+ 0.04. (3.5)

The experiments by Okamoto et al. (1985) and Moustafa (1994) and the simulations by
Goparaju & Gaitonde (2018), to cite just a few, show that the shear-layer growth is also
approximately linear with the axial distance to the nozzle for high-speed twin jets.

Michalke (1984) discusses the impact of the shear-layer thickness on the locally parallel
linear stability for single round jets. In the limit of very thin shear layers (R/θ → ∞),
all the eigenmodes are unstable and their spatial growth rates grow monotonically with
St. As the jets develop downstream and the shear layer becomes thicker, the dispersion
relation also changes; high frequencies are gradually stabilised and the range of unstable
St is reduced. The growth rate reduction resulting from the increase of the shear-layer
thickness is proportional to the azimuthal number m. In consequence, modes m = 0 and
m = 1 exhibit the largest growth rates, and which one of them dominates depends on
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Figure 7. Preferred oscillation mode for twin jets as a function of the jet separation and Strouhal number. Here,
Mj = 1.5,TR = 1. Panels show (a) R/θ = 12.5; (b) R/θ = 7.5; (c) R/θ = 5; (d) R/θ = 3. Colours shows the
absolute change of the growth rate with respect to the single jet, colour coded to show the leading eigenmode.
Each colour level corresponds to an absolute decrease (i.e. destabilisation) of �ki = −0.1. The same colour
coding as figure 4 is used: blue: SS1; red: AS1; yellow: SA1; black: AA1. The black solid lines show the growth
rate ki(St, s/D) for the most unstable eigenmode. The thick black line corresponds to ki = 0.

the particular combination of parameters Mj, TR,R/θ and St. However, increasing the jet
Mach number favours helical modes over the axisymmetric ones, and for supersonic jets
the m = 1 mode presents, in general, larger growth rates.

The changes in the dispersion relation due to the downstream increase of the shear-layer
thickness can also impact on the preferred flapping mode for twin jets at any given
conditions. The relative change in the growth rate �̃ki used in the previous section (3.4) is
not adequate for monitoring the preferred mode for relatively thicker shear layers, because
the growth rate for the single jet ki(St, s/D → ∞), that appears in the denominator, is no
longer monotonic with St and eventually vanishes and changes sign. Instead, the absolute
change in the growth rate is considered here

�ki(St, s/D) = ki(St, s/D)− ki(St, s/D → ∞). (3.6)

Figure 7 shows �ki and the growth rate (−ki) of the leading flapping mode at each
(St, s/D) for four values of the thickness parameter, R/θ = 12.5, 7.5, 5 and 3, which are
representative of the shear-layer evolution from the nozzle lip to the end of the potential
core, respectively x/D ≈ 0.67, 1.6, 2.7 and 4.9 (Crighton & Gaster 1976). The colours
represent �ki for the leading mode, coded as in figure 6. Each colour level corresponds
to an absolute decrease (i.e. destabilisation) of �ki = −0.01. The solid lines show the
growth rate ki(St, s/D) for the most unstable eigenmode. The absolute and relative changes
in growth rate are qualitatively very similar for the very thin shear layer R/θ = 12.5
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(cf. figures 6(c) and 7(a)), as the leading mode is unstable. The striped structure of the
preferred mode region is maintained as R/θ decreases, with a slow deviation of the stripes
towards lower St.

Combined with �ki, the ki contours illustrate the relevance of the eigenvalue shift in
the preference of the twin-jet system to present a certain mode of flapping over the others.
For jet separations below s/D ≈ 3, the magnitude of�ki is comparable to ki and alters the
growth rate of the leading mode significantly with respect to the single jet counterpart. For
the first ∼2D from the nozzle (R/θ > 7.5), local stability results predict the dominance of
the sinuous flapping mode SA1 when the interaction between jets is relevant, i.e. for low
s/D values, while for large jet separations all the modes recover the single-jet behaviour.
As with the shear-layer thickens, the range of unstable St and the most unstable St drop
continuously. For R/θ = 3, corresponding to a cross-stream plane close to the end of the
potential core, the largest growth rate occurs for the mode AA1, instead of SA1. However,
at this location the peak growth rate is considerably weaker than in the first two diameters
of evolution.

Locally parallel instability analyses like those presented in figure 7 constitute a departure
point for the exploration of spatially evolving flows and serve as base to non-parallel
approaches like the multiple-scale expansion (Crighton & Gaster 1976) or parabolised
stability equations (Gudmundsson & Colonius 2011; Cavalieri et al. 2013; Rodríguez et al.
2013; Sinha et al. 2014; Rodríguez et al. 2015). The dominant oscillation mode predicted
at a certain downstream location does not depend on the local dispersion relation alone,
but also on the integrated growth of the modes along the streamwise direction. However,
present results show that the growth rate for all the m = 1 modes is substantially larger in
the first few diameters of evolution, coincident with the conditions in which a preferential
mode emerges. This suggests that the local instability results for thin shear layers can
be used as a first approximation to predict the preferred oscillation mode in twin-jet
configurations.

The results presented so far consider finite-thickness jets and are obtained using the
linear stability analysis formulation described in § 2.1. While those calculations are
performed using a personal computer, the parametric study leading to figure 6 requires the
numerical solution of over 10 000 individual matrix eigenvalue problems, which becomes
impractical for more comprehensive studies including the effect of the jet Mach number
and the temperature ratio. In the following section, such a study is performed using the
(zero-thickness) twin-jet shear-layer model presented in § 2.2.

3.5. Dependence of the preferred mode of oscillation on Mach number and temperature
ratio

This section presents a parametric study of the effect of the jet Mach number Mj and
temperature ratio TR on the preferred oscillation mode, using the vortex-sheet model for
twin round jets. The description of the eigenmode families, the eigenvalue shift and their
qualitative dependence on jet separation and Strouhal number given for finite-thickness
jets holds for the vortex-sheet model. For each (Mj, TR), the evolution of the four
m = 1 eigenmodes with jet separation and Strouhal number is monitored in a manner
analogous to that described in the previous section. The reduced computational cost of the
vortex-sheet model computations allows for a greater region of interest and a significant
refinement of the discretisation of the (St, s/D) space. The analysis for one (Mj, TR) case
involves the calculation of nearly 1.5 million eigenvalues, but takes less than an hour on a
modern personal computer.

977 A4-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

93
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.935


On the preferred flapping motion of round twin jets

1.0
Mj = 1.0, TR = 1.0 Mj = 1.2, TR = 1.0

Mj = 1.4, TR = 1.0 Mj = 1.6, TR = 1.0

Mj = 1.8, TR = 1.0 Mj = 2.0, TR = 1.0

AA

SA

AS

SS

AA

SA

AS

SS

0.8

0.6

0.4

0.2

0.1
2 4 6 8 10

1.0
0.8

0.6

0.4

0.2

0.1
2 4 6 8 10

1.0

AA

SA

AS

SS

AA

SA

AS

SS

0.8

0.6

0.4

0.2

0.1
2 4 6 8 10

1.0
0.8

0.6

0.4

0.2

0.1
2 4 6 8 10

1.0

AA

SA

AS

SS

AA

SA

AS

SS

0.8

0.6

0.4

0.2

0.1
2 4 6 8 10

1.0
0.8

0.6

0.4

0.2

0.1
2 4 6 8 10

St

St

St

s/D s/D

(a) (b)

(c) (d )

(e) ( f )

Figure 8. Preferred oscillation mode for twin jets as a function of the jet separation and Strouhal number.
Vortex-sheet model, TR = 1 and varying Mj. Contours as in figure 6(c). Blue: SS1; red: AS1; yellow: SA1;
black: AA1.

Figure 8 shows the leading oscillation mode for twin jets with TR = 1 and Mj between 1
and 2. The overall picture reproduces that already described for the finite-thickness Mj =
1.5 case:

(i) the regions in which each particular mode dominates in the (St, s/D) space form
alternating stripes;

(ii) the maximum eigenvalue shift, computed following (3.4), occurs for the smallest jet
separation within each strip;

(iii) as the jet separation is reduced, the Strouhal number for the maximum shift of the
growth rate is increased.

For Mj = 1 (figure 8a) and s/D ≤ 3, mode SS1 dominates for St ≤ 0.2. For larger St,
modes SA1 and AA1 become dominant but their eigenvalue shift is comparatively weak.
Increasing the jet Mach number at constant temperature ratio has two effects. First, the
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Figure 9. Preferred oscillation mode for twin jets as a function of the jet separation and Strouhal number.
Vortex-sheet model, Mj = 1.5 and varying TR. Contours as in figure 6(c). Blue: SS1; red: AS1; yellow: SA1;
black: AA1.

boundaries of the mode stripes are gradually displaced towards lower St and s/D values.
Second, the shift of the growth rates is increased. The latter implies that the interaction
between the fluctuation fields of the two jets intensifies with Mj. The combination of the
two effects leads to the gradual appearance of a new stripe of mode SS1 at higher St while
the corresponding stripe at the lower St region reduces. Simultaneously, the stripe of mode
SA1 is displaced to lower Strouhal numbers while its growth rate shift is increased. For Mj
above 1.5, mode SA1 (sinuous lateral oscillations) has the largest growth rate shift.

For Mj above 1.6 (figure 8d–f ), the results for mode SA1 present an anomalous
behaviour in the limit of lower separation and Strouhal number, that is clearly visible
in the figures. Instead of following the general trend, the boundary of the stripe forms
a horizontal segment (constant St) for s/D below a threshold value increases with Mj.
A preliminary study revealed that this anomaly is due to the appearance of a saddle
point in the evolution of mode SA1, which pinches with mode SA2 at a certain (St, s/D)
combination. This saddle point is not associated with an absolute instability, as it involves
two downstream-propagating K–H eigenmodes. A deep study regarding this issue is
currently underway but is beyond the scope of this paper.

Figure 9 shows the parametric study for twin jets with fixed jet Mach number Mj =
1.5 and temperature ratio increasing from TR = 1 to 4. The effect of increasing the jet
temperature follows the same trends as increasing the jet Mach number: the mode stripes
move towards lower St and s/D, reducing the region dominated by mode SS1 (dominant for
TR = 1) and increasing the relative importance of mode SA1 with increasing temperature.
Overall, the impact of the temperature ratio on the eigenmode shift is weaker than that of
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the jet Mach number, but still mode SA1 attains growth rates nearly 10 % larger than those
for the equivalent single jet.

4. Conclusions

Linear stability theory is often used to model the large-scale flow structures in the turbulent
mixing region and near pressure field of high-speed jets. For perfectly expanded single
round jets, these models predict the dominance of m = 1 helical modes for relatively low
frequencies and thin shear layers, in agreement with empirical data.

For twin-jet configurations, the interaction between their fluctuation fields results
in coupling. The symmetries present in the geometry lead to a separation of the
modes into four families, corresponding to the even/odd behaviour of the pressure field
about the symmetry plane and the plane containing the jet axes. The division into
families is inherent to the twin-jet geometry and not just an artefact of the problem
formulation: while it is exploited here to simplify the analyses, a formulation in which the
symmetries/anti-symmetries are not imposed recovers the same families (Rodríguez et al.
2018). The fluctuation field associated with m = 1 modes for twin jets does not correspond
to helical oscillations, but to flapping oscillations of the jet.

The coupling between the jets is quantified by monitoring the shift of the complex
wavenumber k (eigenvalue of the spatial linear stability problem) with respect to that of the
single jet,�k. The absolute value of�k is different for each oscillation mode, but for all of
them is inversely proportional to both the jet separation s/D and the Strouhal number St.
However, the real and imaginary parts of�k do not present a monotonic dependence on St
or s/D. This leads to regions in the (St, s/D) space in which different modes of oscillation
dominate over others.

The thickness of the jet’s shear layer, that has a strong impact on the spatial growth
rate for all eigenmodes and Strouhal numbers, is found to have a mild effect on the
preferred m = 1 mode for a given (St, s/D) condition. Incidentally, the growth rate for
these eigenmodes is much larger during the first few diameters from the nozzle, where the
shear layer is thinner; if the amplification of a particular flapping mode dominates during
the initial 1–2 diameters, it is likely to remain the preferred one at downstream locations.
This suggests that the local instability results in the limit of thin shear layers can be used
to predict the preferred oscillation mode, at least, to extent of the potential core. However,
it is to be noted that other factors, such as nonlinear interactions between modes leading
to their early saturation or a rigorous downstream integration of the modes amplitudes,
aspects that are not considered in the present work, can offer improved predictions.

A parametric study for zero-thickness shear-layer jets is presented in which the jet Mach
number Mj is varied between 1 and 2, and the jet temperature ratio TR is varied between
1 and 4. Increasing independently both Mj and TR is found to augment the jet coupling
and modify the (St, s/D) map of the preferred oscillation mode. Present results predict
that only two oscillation modes are likely to be observed when jet coupling is relevant,
namely in-phase (varicose) or counter-phase (sinuous) flapping oscillations on the plane
containing the nozzles (modes SS1 and SA1, respectively).

It should be noted that while flapping modes are the natural mode of oscillation of twin
jets, a superposition of them may still generate some helical motions in regions close to
the nozzle. However, owing to the differences between the growth rates of each mode and
their exponential amplification in the first few diameters, it can be expected that flapping
motions will dominate the flow as it develops downstream. Hence, the eventual helical
oscillations in twin-jet systems would be a spatially transient feature of the flow.
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The results presented in this work consider perfectly expanded jets. The preference of
certain oscillation modes over others is predicted based on the larger growth rate of the
corresponding K–H instability eigenmode. It may be expected that these results would
be applicable also to shock-containing jets, at least to some extent. The preference of
shock-containing twin jets to present flapping motions at conditions in which a single
jet presents helical motions has been shown by different authors (Seiner et al. 1988;
Wlezien 1989; Kuo et al. 2017; Knast et al. 2018; Bell et al. 2018, 2021). However,
one should be cautious when extending the present conclusions to shock-containing
jets. As these jets are subjected to the resonance loop associated with screech (Powell
1953; Edgington-Mitchell 2019; Nogueira et al. 2022b), the actual dominant oscillation
is a function of the symmetry associated with the most globally unstable resonance
mode. As shown in Tam & Tanna (1982), Edgington-Mitchell et al. (2021), Nogueira &
Edgington-Mitchell (2021), Nogueira et al. (2022a) and Edgington-Mitchell et al. (2022),
the closure mechanism of screech is strongly dependent on the wavenumber of the waves
involved in resonance, and less dependent on the growth rate of the K–H instability.
However, as the wavenumber of the K–H eigenmode is one of the driving components of
this phenomenon, the present results remain relevant: they may be used as input for screech
models in twin jets and help explain the preferred flapping mode in shock-containing jets
as well.
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