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Abstract

Dietary patterns derived empirically using principal components analysis (PCA) are widely employed for investigating diet–disease

relationships. In the present study, we investigated whether PCA performed better at identifying such associations than an analysis of

each food on a FFQ separately, referred to here as an exhaustive single food analysis (ESFA). Data on diet and disease were simulated

using real FFQ data and by assuming a number of food intakes in combination that were associated with the risk of disease. In each simu-

lation, ESFA and PCA were employed to identify the combinations of foods that are associated with the risk of disease using logistic

regression, allowing for multiple testing and adjusting for energy intake. ESFA was also separately adjusted for principal components of

diet, foods that were significant in the unadjusted ESFA and propensity scores. For each method, we investigated the power with

which an association between diet and disease could be identified, and the power and false discovery rate (FDR) for identifying the specific

combination of food intakes. In some scenarios, ESFA had greater power to detect a diet–disease association than PCA. ESFA also typically

had a greater power and a lower FDR for identifying the combinations of food intakes that are associated with the risk of disease. The FDR

of both methods increased with increasing sample size, but when ESFA was adjusted for foods that were significant in the unadjusted

ESFA, FDR were controlled at the desired level. These results question the widespread use of PCA in nutritional epidemiology. The adjusted

ESFA identifies the combinations of foods that are causally linked to the risk of disease with low FDR and surprisingly good power.
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Over the last two decades, there has been an explosion in the

use of principal components analysis (PCA) to identify dietary

patterns in nutritional epidemiological studies(1–10). The main

reason for the explosion of PCA is that recent results have

raised questions about the role of diet in the aetiology of

certain chronic diseases. A lack of empirical evidence from

randomised controlled trials based on observational findings

has been noted in chronic diseases such as asthma(11),

cancer(12,13) and CVD(14), and it has been argued that single

foods or nutrients may be less important than dietary patterns

in causing disease. Since the use of a single variable to explore

associations between diet and disease has led to unreliable

results, an alternative is to look at a small number of dietary

dimensions each made up of a combination of foods with

the use of PCA.

PCA of data from FFQ allocates food items according to the

degree with which their reported intakes are correlated. The

principal components identified are referred to as ‘dietary

patterns’ and can be investigated in relation to health and

disease. This approach proved successful, for example, in

two large US cohorts, in which the same two patterns

of diet – a ‘prudent’ dietary pattern characterised by intake

of vegetables, fruit, legumes, whole grains, fish and poultry

and a ‘Western’ dietary pattern characterised by intake of red

*Corresponding author: I. Bakolis, email i.bakolis@imperial.ac.uk

Abbreviations: ESFA, exhaustive single food analysis; FDR, false discovery rate; PCA, principal components analysis.

British Journal of Nutrition (2014), 112, 61–69 doi:10.1017/S0007114514000221
q The Authors 2014

B
ri
ti
sh

Jo
u
rn
al

o
f
N
u
tr
it
io
n

https://doi.org/10.1017/S0007114514000221  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114514000221


meat, processed meat, refined grains, sweets and desserts,

French fries and high-fat dairy products – were identified

and subsequently linked to differences in the occurrence of

CHD(15,16), colon cancer(17,18) and chronic obstructive pul-

monary disease(19,20).

PCA is often claimed to resolve the issue of confounding

between different dietary exposures(21,22), though, even

where there is a causal effect from diet, it is not clear whether

the foods singled out in a PCA are those that are directly

associated with the risk of disease, or are simply confounded

with other foods. Some authors have also suggested that by

aggregating the effects of different foods, PCA can demon-

strate the effects that are too small to be detected by analysing

each food separately(2,23). Slattery(24) claimed that eating

patterns derived from PCA characterise the diet-associated

disease risk better than any one food or nutrient. However,

in order for this statement to be useful in disease prevention,

we need PCA to identify all of the foods (and only those

foods) that, in combination, increase or decrease the risk

of disease.

As far as we are aware, justifications of this kind for using

PCA have not been critically evaluated. We set out to investi-

gate, using simulation, whether PCA really performs better in

these respects than an analysis of individual food intakes.

Materials and methods

Simulation

Simulations were performed in Stata 10 (Stata Corporation).

To simulate a dietary dataset with a realistic correlation struc-

ture, we sampled with replacement from a reference dataset

of real FFQ data. We used two different sets of reference diet-

ary data to allow replication of our findings. These datasets

comprised 856 adults aged 16–50 years living in Greenwich

who took part in the Food, Lifestyle and Asthma in Greenwich

(F.L.A.G.) survey (dataset 1)(25) and 201 adults aged 29–54

years living in Ipswich and Norwich who took part in the

UK European Community Respiratory Health Survey

(ECHRS) II diet survey (dataset 2)(26). Quantitative FFQ

recorded frequencies of 217 different foods (from never to

6 d/week) in the FLAG survey and of seventy-four different

foods (from never to 7 d/week) in the UK ECRHS II diet

survey over the previous 12 months. Using both datasets, we

created food intake variables by estimating weekly intake (g)

of foods and food groups by multiplying frequency of

consumption by the weight of standard portion sizes using Brit-

ish food composition tables(27). The UK ECHRS II study was

conducted according to the guidelines laid down in the Declara-

tion of Helsinki, and all procedures involving human partici-

pants were approved by the Ipswich Hospital and Norfolk

and Norwich Hospital ethics committees in the UK(26).

The F.L.A.G. survey was approved by the Greenwich Research

Ethics Committee(25). Written informed consent was obtained

from all the participants in both studies.

In each simulation, we assumed that disease risk depended

on a linear combination of m food intakes derived from the

FFQ. Let us suppose that these foods are indexed i1, i2,. . ., im,

and absolute food intakes xi1 ; xi2 ; . . .; xim
are standardised

to have zero mean and unit standard deviation. We assumed

a logistic model for the disease risk, p, that is:

p ¼ 1=ð1 þ exp ð2ða þ b1xi1 þ b2xi2 þ . . .þ bmxim
ÞÞÞ: ð1Þ

This model has been widely used in previous simulated epi-

demiological studies(28,29). We chose the constant a so that the

baseline risk at the average intake of all foods was 0·15, i.e.

a ¼ ln(0·15/(1 2 0·15)). The constants b1, b2,. . ., bm were

chosen so that the OR per standard deviation of food intake

was 1·5 or 1/1·5 depending on whether the food was assumed

to increase or decrease the risk of disease, i.e. bj ¼ ^ ln(1·5).

This is comparable to significant OR for dietary patterns that

were identified in the systematic review by Newby & Tucker(4).

The value of m was chosen to be about one in seven of the

total number of foods on the FFQ, i.e. m ¼ 30 (of 217) in dataset

1 and m ¼ 10 (of 74) in dataset 2. The m foods were chosen in

two different ways. First, they were randomly chosen in each

simulation. Results of these simulations inform us about the

average performance of different methods when we do not

restrict a priori the combinations of foods that might be import-

ant for disease risk. We considered two models of this kind:

in model 1, all m foods were assumed to be protective; in

model 2, all m foods were assumed to increase the risk of

disease. Second, they were predetermined in each simulation

to be foods making up a ‘Western’ dietary pattern, which was

assumed to be positively associated with the risk of disease

(model 3). These foods are listed in Table 1, and were chosen

as food intakes with the highest positive loadings on a ‘Western’

dietary pattern obtained using PCA from the original

reference dataset (further details are available from the authors).

Model 3 might be expected to favour PCA as a means of

identifying dietary associations, since the model is based on a

principal component in the population.

Having simulated the food intake data for a new individual

in the sample, we then calculated the probability of the out-

come, p, using equation 1. We determined whether or not

the individual had the disease by generating a uniform

random number between 0 and 1, and observing whether it

was less than p.

The simulated dietary data were then subjected to a PCA

(conducted on the correlation matrix of the reported food

intakes) with varimax rotation, and the resulting dietary pat-

terns were investigated for their associations with the risk of

disease using logistic regression. We considered the results

of extracting two, five and ten principal components, since

this was the range of components identified in the majority

of dietary pattern studies(3,4).

For comparison, we looked at the results of analysing each

food on the FFQ separately in relation to the risk of disease,

a process we refer to as an exhaustive single food analysis

(ESFA). This is a univariate or independent screening

approach as we know from, for example, SNP screening

in statistical genetics(30). All regression analyses of dietary

patterns and individual food intakes were adjusted for total

energy intake. Adjustment for energy intake is strongly

advised in the analysis of observational nutritional

studies(31,32). As pointed out by Willet(31), adjustment for
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total energy intake should be considered because the level of

intake might be a risk factor, might distort the effect of a food

or a nutrient on the potential outcome, and variations in nutri-

ent intake between individuals might reflect variations in indi-

viduals’ energy intake levels.

ESFA was, in the first instance, unadjusted for the effects of

other foods, but in order to deal with confounding, we also

carried out ESFA adjusting for other foods using three different

methods:

(a) Adjusting for the first five principal components of

diet. Because net confounding by correlated foods

and patterns could result in biased associations between

diet and disease, adjustment for dietary patterns has

been suggested in the literature(33). We chose five com-

ponents of diet because that was the number of dietary

patterns of diet that were identified in the original popu-

lations (data not shown).

(b) Adjusting for all foods that were significant in the unad-

justed ESFA. In this case, as a first step, we ran an ESFA

procedure adjusting for total energy intake keeping the

food variables (covariates) with those regression coeffi-

cient estimates that had a P value lower than a specific

threshold. The threshold was determined by the pro-

cedure of Benjamini & Hochberg(34), controlling the

rate of our false discoveries at 20 %. Then, we re-ran

an ESFA procedure adjusting for energy intake and for

all these foods (covariates) that were significant in the

first round of analysis (unadjusted ESFA). This method

is conceptually similar to the iterative sure indepen-

dence screening method proposed by Fan & Lv(35).

However, herein, we chose our covariates based on a

multiple test procedure and not on a penalised likeli-

hood method. Furthermore, we aimed to control the

false discovery rate (FDR), whereas the iterative sure

independence screening method focused on missed

discoveries.

(c) Adjusting for a propensity score for predicting the

amount of each index food intake consumed from

other food intakes(36). Once the propensity score was

estimated, it was used as a confounder in our multi-

variate model(37).

The process of simulation and testing was repeated a large

number of times (10 000) in order to determine the long-run

performance of PCA and ESFA in detecting the associations

between diet and disease.

Using the ‘powerlog’ sample size calculation routine in

Stata(38), we determined that a sample size of 330 would

achieve 80 % power at the 5 % significance level to detect an

OR of 1·5 per standard deviation, using an unadjusted logistic

regression with no allowance for multiple testing. We present

results herein for sample sizes of 300, 1200 and 4800.

Evaluating the performance of exhaustive single food
analysis and principal components analysis

First, we investigated the statistical power with which ESFA

and PCA could detect whether there was any association

between diet and disease. For the ESFA, we considered that an

association had been found if any of the food intakes were

significantly associated with the risk of disease after applying a

Bonferroni correction for the number of foods tested (family-

wise P,0·05)(39). For the PCA, we considered an association

had been found if any of the dietary patterns were significantly

associated with the risk of disease after applying a Bonferroni

correction for the number of patterns identified.

We also wanted to see how well the two procedures

identified the specific combination of food intakes that were

causally associated with the risk of disease. We compared the

power and the FDR of ESFA and PCA for detecting these associ-

ations. In this context, we extended the concept of ‘power’ to

mean the proportion of foods included in the model that were

correctly identified as significantly associated with the disease

outcome (Fig. 1). The FDR is the proportion of discoveries, or

significant findings, that are false (Fig. 1).

For the ESFA, we considered that there was a ‘significant’

effect of a food if it was identified as such using the multiple

testing procedure of Benjamini & Hochberg(34), with a nom-

inal FDR set to 20 %. For the PCA, we considered that there

was a ‘significant’ effect of a food if it had a correlation

.0·3 or ,20·3 with a dietary pattern that was significantly

associated with the risk of disease (P,0·05) – this being

the way in which individual foods tend to be highlighted

Table 1. List of foods comprising a ‘Western’ dietary pattern for each
dataset*

Dataset 1 Dataset 2

Roast potatoes Sausages
Ham Doughnuts, pastries and tarts
Ice cream Beer
Pork (roast, chops) Corned beef and luncheon meat
Pork stew, casserole Hard cheeses
Omelette/scrambled egg Tomato ketchup
Fruit pies, tarts, crumbles Pizza
Beef stew, casserole, mince, curry Beef burger
Sponge cakes Fried egg, scrambled egg,

omeletteFried fish in batter/breadcrumb
Baked beans Chips
Chocolate biscuits
Sandwich/cream biscuits
Corned beef, spam, luncheon meat
White bread and rolls
Fizzy soft drinks (e.g. Coke)
Bacon
Fried egg
Milk chocolate
Breadcrumbed chicken

(e.g. chicken nuggets)
Crisps
Sponge puddings
Tomato ketchup
Chocolate snack bars
Meat pizza
Other fried snacks
Chips
Sausages (beef, pork)
Beef burger, hamburger
Pies/pasties/sausage rolls

* Dataset 1 is from the Food, Lifestyle and Asthma in Greenwich (F.L.A.G)
survey(25); Dataset 2 is from the UK European Community Respiratory Health
Survey (ECRHS) II diet survey(26).
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in a PCA. It should be noted that the procedure of Benjamini

& Hochberg(34) is designed to control the FDR at no more than

the nominal level, but here false discoveries (of foods) occur

not just as random errors, but also because of confounding

with other foods, so the nominal rate may be exceeded.

Results

Table 2 displays the estimates of the power of PCA and ESFA

for detecting an association between diet and disease, for

different sample sizes and numbers of principal component

scenarios. In model 3, the estimates of power for a sample

size of 300 were all close to 100 %, so the estimates for a

sample size of 100 are also given. Neither method consistently

outperformed the other in this respect.

Table 3 shows the estimates of the power and FDR of PCA

and ESFA for identifying the combinations of food intakes that

were causally associated with the risk of disease. In most parts

of the table, ESFA ‘dominates’ PCA in the sense of having both

a higher power and a lower FDR. In the remainder of the

table, neither one dominates the other.

Adjusting for other foods that were significant in an unad-

justed analysis successfully controlled the FDR at about the

20 % nominal level, though with some loss of power, particu-

larly with low sample sizes (Table 4). Attempting to control

the FDR of ESFA by adjusting for principal components of

diet, or by adjusting for a propensity score, was not successful

(Table 4).

Discussion

In some scenarios, ESFA had greater power than PCA to detect

an association of diet with the risk of disease. Allowing

for multiple testing using the procedure of Benjamini &

Hochberg(34), ESFA also typically had a higher power and a

lower FDR for identifying the combinations of foods that

were causally linked with the risk of disease than PCA in

Table 2. Power (%) of exhaustive single food analysis (ESFA) and principal components analysis (PCA) for detecting
any association between diet and disease*

PCA

No. of components

Dataset and model† Sample size ESFA 2 5 10

Dataset 1: F.L.A.G. survey(25)

Model 1 300 77·2 98·2‡ 98·2‡ 97·2‡
1200 100·0 100·0 100·0 100·0
4800 100·0 100·0 100·0 100·0

Model 2 300 94·2 98·1‡ 99·9‡ 98·4‡
1200 100·0 100·0 100·0 100·0
4800 100·0 100·0 100·0 100·0

Model 3 100 70·1 99·5‡ 99·5‡ 99·3‡
300 100·0 100·0 100·0 100·0

1200 100·0 100·0 100·0 100·0
4800 100·0 100·0 100·0 100·0

Dataset 2: UK ECRHS II diet survey(26)

Model 1 300 30·2 44·5‡ 49·5‡ 49·4‡
1200 99·7 82·8 92·5 96·6
4800 100·0 96·1 99·5 99·9

Model 2 300 81·2 61·6 71·4 76·3
1200 100·0 90·0 97·6 99·5
4800 100·0 97·8 99·8 99·9

Model 3 100 43·1‡ 72·2‡ 73·5‡ 65·0‡
300 99·9 99·9 99·9 100·0‡

1200 100·0 100·0 100·0 100·0
4800 100·0 100·0 100·0 100·0

F.L.A.G., Food, Lifestyle and Asthma in Greenwich; ECRHS, European Community Respiratory Health Survey.
* All estimates of power have a standard error ,0·5 %.
† In models 1 and 2, one in seven foods (thirty in dataset 1 and ten in dataset 2) are selected at random in each replication from the foods

on the FFQ. In model 1, all selected food intakes are negatively associated with the risk of disease; in model 2, all selected food intakes
are positively associated with the risk of disease. In model 3, foods comprising a ‘Western’ dietary pattern (thirty in dataset 1 and ten in
dataset 2; see Table 1) are used in each replication, with all these food intakes being positively associated with the risk of disease.

‡ Power of PCA exceeds that of ESFA.

Foods declared
non-significant

Foods declared
significant

FP

TN

TP

FN

Foods not
causally linked
with disease

Foods causally
linked with
disease

Fig. 1. How the results of dietary analyses can be broken down. TN, true

negatives; FN, false negatives; FP, false positives; TP, true positives.

Power ¼ TP/(FN þ TP). False discovery rate (FDR) ¼ FP/(FP þ TP) if FP þ

TP . 0. FDR ¼ 0 if FP þ TP ¼ 0.
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which foods were singled out if they correlated highly (.0·3

or ,20·3) with a significant dietary pattern. Even when a sim-

plified ‘Western’ dietary pattern was the real culprit, PCA could

not outperform ESFA in reconstructing the foods that were

linked with the risk of disease. These findings were replicated

in two different FFQ datasets.

In principal components regression, there is no standard

procedure for identifying foods as ‘significantly associated’

with the disease outcome. We used a definition that matches

what researchers typically do when they single out a combi-

nation of foods to mention in their abstract(40) or when they

devise an intervention based on the results(10); that is, to list

the foods that are highly correlated with a dietary pattern

that is itself strongly associated with the disease outcome.

We wanted to know whether this method was better at cor-

rectly identifying the combinations of foods that are associated

with the risk of disease than an ESFA. ‘Significant’ foods are

defined differently in each case (they are different methods),

but the performance of each method is assessed using the

same criterion: how often does it get it right? In fact, we use

two criteria: FDR and power. The two methods can differ in

both these respects, making comparison a little harder (think

of two different diagnostic tests that might differ both in

their sensitivity and specificity); nevertheless, if we observe

one method to have both a lower FDR and a higher power,

then we can conclude that it has superior performance.

It is common to try to control the FDR at a low level(34).

We have used a nominal FDR of 20 %; in genetic studies,

where the use of FDR is well established, FDR between 5

and 20 % are recommended depending on the circum-

stances(41). It should be noted that 20 % is still well below

the FDR of individual hypothesis testing using P,0·05 as a

cut-off(42). However, it is concerning that the observed FDR

of both ESFA (nominally controlled at 20 %) and PCA increase

in an uncontrolled fashion as the sample size and power

increase (Table 3). It is worth noting that when one in seven

foods are causally linked with the risk of disease, as here,

an FDR of about 86 % would be achieved by selecting ‘signifi-

cant’ foods entirely at random. The uncontrolled FDR occurs

because all food intakes are correlated to some extent with

the causal foods, leading to false positive findings (more

so as power increases). We tried a variety of approaches to

control for other foods in the ESFA, and found that the FDR

could be successfully controlled at the nominal level by adjust-

ing for foods that were significant in a univariate analysis.

Achieving a given power requires about twice the sample

size of an unadjusted ESFA (with its inflated FDR) and four

times the sample size from our original calculation, i.e. for

an unadjusted analysis with the criterion P,0·05.

Our models included one in seven of the foods on the FFQ.

We repeated our simulations with a smaller number of foods

in the models, and obtained qualitatively similar findings

Table 3. Power and false discovery rate (FDR) (%) of exhaustive single food analysis (ESFA) and principal components
analysis (PCA) for detecting the foods that are causally linked to the risk of disease*

PCA

No. of components

ESFA 2 5 10

Dataset and model† Sample size Power FDR Power FDR Power FDR Power FDR

Dataset 1: F.L.A.G. survey(25)

Model 1 300 49·1 70·3 35·5 85·7 46·1 85·3 55·2‡ 85·5‡
1200 89·7 80·3 36·2 86·1 49·5 86·1 58·6 85·8
4800 97·3 83·6 38·2 86·5 51·5 86·1 60·9 86·0

Model 2 300 55·3 71·8 35·0 85·2 47·8 85·8 55·6 85·4
1200 88·6 80·5 36·8 86·2 49·6 86·2 59·0 85·9
4800 98·7 83·5 39·0 86·4 50·1 86·4 60·2 86·1

Model 3 300 88·6 76·7 55·3 82·4 74·8 80·7 79·8 81·7
1200 99·7 82·8 78·2§ 74·3§ 86·9§ 77·4§ 86·4§ 80·7§
4800 100·0 84·9 87·3§ 71·5§ 93·1§ 75·2§ 87·7§ 80·4§

Dataset 2: UK ECRHS II diet survey(26)

Model 1 300 21·7 37·8 21·0 46·5 29·3‡ 64·9‡ 34·4‡ 75·4‡
1200 90·1 66·1 35·8 73·6 49·1 83·1 60·5 84·1
4800 99·5 79·6 45·3 83·1 61·4 85·7 75·2 85·4

Model 2 300 53·3 48·0 27·2 58·6 39·5 75·3 47·9 80·3
1200 92·9 73·2 39·5 78·3 54·4 84·5 68·0 84·6
4800 98·4 81·7 46·8 84·3 63·9 85·9 78·2 85·9

Model 3 300 92·4 63·0 54·7 83·8 67·6 81·4 80·0 81·3
1200 99·9 80·6 61·8 83·9 77·3 82·1 89·1 84·5
4800 100·0 84·2 66·1 83·5§ 87·9 81·8§ 91·8 84·5

F.L.A.G., Food, Lifestyle and Asthma in Greenwich; ECRHS, European Community Respiratory Health Survey.
* All estimates of power and FDR have a standard error ,0·5 %.
† In models 1 and 2, one in seven foods (thirty in dataset 1 and ten in dataset 2) are selected at random in each replication from the foods on the

FFQ. In model 1, all selected food intakes are negatively associated with the risk of disease; in model 2, all selected food intakes are positively
associated with the risk of disease. In model 3, foods comprising a ‘Western’ dietary pattern (thirty in dataset 1 and ten in dataset 2; see
Table 1) are used in each replication, with all these food intakes being positively associated with the risk of disease.

‡ Power of PCA exceeds that of ESFA, but FDR is also higher.
§ FDR of PCA is lower than that of ESFA, but power is also lower.
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(see online supplementary Tables S1–S3). We did not consider

interactive effects of foods in our models; this requires further

investigation. Studies have claimed that dietary constituents

interact with each other in complex ways(43,44), and these

interactions have an effect, for example, on the risk of

CVD(45) and breast cancer(46). PCA is often recommended

as a way of dealing with interactions between foods(2,20).

Furthermore, foods could be associated with the risk of

disease in a non-linear way. However, it is questionable

whether linear combinations of food intakes produced by

the PCA adequately address the issues of modelling inter-

actions or capture potential non-linear effects between diet

and disease.

Although we considered a model based on a ‘Western’ diet-

ary pattern, there is no reason why foods with truly causal

effects should be foods that are highly correlated with each

other in order to be associated with the risk of disease.

Hence, in the present simulation study, foods associated

with the risk of disease were not necessarily highly correlated.

Note it is not obvious that ESFA will outperform PCA in this

case, since ESFA must pay a much higher penalty for multiple

testing of all the individual foods, while each principal com-

ponent may include – even if only by chance – a number

of foods that have causal effects in the same direction.

Where disease risk is explained by other factors that are con-

founded with diet, however, this confounding is more likely to

be at the level of a dietary pattern than with an individual

food. A ‘prudent’ dietary pattern, for example, is associated

with older age(47), female sex(48), non-smoking(49), higher

income(50), higher educational level(51), exercise(52) and sup-

plement use(53). These factors are likely to be associated

with a number of food intakes contributing to a ‘prudent’

dietary pattern rather than with any one of these foods in

particular. This is another reason for adjusting each food

effect for others found to be significant, as we suggest this

should help control for both measured and some unmeasured

confounding. We did not include non-dietary confounders in

our simulations because there are just too many different

potential confounders and models for their effects to be

considered. We suspect, however, that as long as there are

foods with truly causal effects, the findings of the present

study will generalise to situations where other confounders

have been explicitly adjusted for.

PCA does not aim to obtain a clear picture of disease vari-

ation but to summarise the overall dietary intake variation in

the population. As Jolliffe(54) points out, the mistake when

PCA is employed for distinguishing between healthy and

unhealthy individuals is to assume that the separation

between these groups is along the axis of greatest variation

in diet. More appropriate statistical approaches in this respect

are linear discriminant analysis(54) and discriminant analysis of

principal components(55).

Table 4. Power and false discovery rate (FDR) (%) of exhaustive single food analysis with different methods of
adjustment for other foods*

Adjusted for
five principal
components

Adjusted for
foods that are
significant in

the unadjusted
analysis

Adjusted for
propensity scores

Dataset and model† Sample size Power FDR Power FDR Power FDR

Dataset 1: F.L.A.G. survey(25)

Model 1 300 1·7 27·5 4·8 29·4 0·9 8·5
1200 59·6 53·7 50·9 35·3 66·3 47·1
4800 95·1 72·6 91·4 24·3 98·6 69·7

Model 2 300 7·3 26·8 5·2 17·2 0·2 0·8
1200 67·5 57·3 64·5 41·9 24·9 19·4
4800 95·6 75·6 95·3 27·4 94·2 54·9

Model 3 300 4·3 52·8 2·0 18·5 0·5 21·3
1200 32·7 75·6 57·5 38·8 19·7 77·7
4800 72·5 80·6 94·4 22·9 76·4 76·8

Dataset 2: UK ECRHS II diet survey(26)

Model 1 300 9·6 30·2 4·2 15·9 5·7 7·7
1200 77·5 55·4 67·5 19·7 73·6 16·0
4800 98·6 74·8 99·2 18·1 99·7 35·5

Model 2 300 32·3 35·1 23·0 16·8 3·0 5·5
1200 88·0 66·0 90·7 21·4 66·8 22·5
4800 98·2 79·5 99·9 21·4 98·6 58·0

Model 3 300 17·8 48·8 12·2 19·1 1·7 5·1
1200 65·3 72·0 79·3 20·2 52·8 32·6
4800 88·7 80·4 99·9 16·9 85·2 70·5

F.L.A.G., Food, Lifestyle and Asthma in Greenwich; ECRHS, European Community Respiratory Health Survey.
* All estimates of power and FDR have a standard error ,0·5 %.
† In models 1–3, one in seven foods (thirty in dataset 1 and ten in dataset 2) are selected at random in each replication from the

foods on the FFQ. In model 1, all selected food intakes are negatively associated with the risk of disease; in model 2, all
selected food intakes are positively associated with the risk of disease. In model 3, foods comprising a ‘Western’ dietary pattern
(thirty in dataset 1 and ten in dataset 2; see Table 1) are used in each replication, with all these food intakes being positively
associated with the risk of disease.
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Other multivariate approaches such as cluster analysis(56),

and data reduction techniques such as reduced-rank

regression(57) provide an alternative way for identifying

dietary patterns. The main advantage of cluster analysis over

PCA is that cluster analysis creates mutually exclusive groups

that can easily be used in the analysis. Reduced-rank

regression constructs dietary patterns according to the covari-

ance matrix of specific biomarkers (taken by blood samples,

for example) that are associated with dietary intake variables

and assumed to be linked with the investigated disease

outcome. Thus, the dietary pattern that is identified to be

associated with the risk of disease for a specific biological

reason and the combinations of foods that characterise the

pattern describe a specific biomarker in the causal pathway

between diet and disease.

Another approach is factor analysis, an ambiguous term

which in certain textbooks include both PCA and common

factor analysis. Even when investigators say that they are

employing factor analysis in nutritional studies, they may be

employing PCA. This misconception depends on the

statistical package that these studies have used, because cer-

tain statistical packages (e.g. SAS) treat PCA as a special cat-

egory of factor analysis. Factor analysis, which is a different

statistical technique from PCA(58), is not recommended for

the analysis of nutritional data(2), although factor analysis

based on the principal factor method gives generally similar

results to PCA(59).

Since ESFA outperforms PCA in the present simulation

study, dealing with high-dimensional multivariate dietary

exposures could be treated as a problem of variable model

selection, that is, finding the non-zero regression coefficients

in an unknown regression model. Our adjusted ESFA is

similar to the iterative sure independence screening method

for ultra-high-dimensional data(35). Other forms of penalised

likelihood estimation methods have been developed in the

last decade to cope with high-dimensional data and have

been lately reviewed(60). These methods could be potentially

useful in nutritional epidemiological studies, and further

research is needed.

There is a growing interest in designing dietary inter-

ventions around foods rather than nutrients(61) and around

particular foods rather than dietary patterns(61,62). Specifically,

Jacobs et al.(61) suggests that the evidence for beneficial effects

of a ‘prudent’ diet comes from interventions that only modi-

fied the intake of one or two foods. Furthermore, McCann

et al.(63) suggests that fruits and vegetables alone provided

the highest discrimination among endometrial cancer cases

and controls compared with PCA and other methods of

characterisation. Mann & Aune(62), evaluating the evidence

that fruits and vegetables can prevent diabetes, have called

for more studies looking at the effects of specific fruits and

vegetables.

In conclusion, an FFQ-wide study of associations bet-

ween food intakes and disease risk outperforms an analysis

of dietary patterns derived from PCA. Analysing each food

adjusting for others allows truly causal effects to be identi-

fied with a low rate of false discoveries and surprisingly

good power. Although PCA has proved extremely popular

in nutritional epidemiology to date, we question its routine

use in this context.
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