
JFP 24 (2-3): 284–315, 2014. c© Cambridge University Press 2014

doi:10.1017/S0956796813000282 First published online 20 January 2014
284

Proof-producing translation of higher-order logic
into pure and stateful ML

M A G N U S O. M Y R E E N
Computer Laboratory, University of Cambridge, Cambridge, UK

(e-mail: magnus.myreen@cl.cam.ac.uk)

S C O T T O W E N S
School of Computing, University of Kent, Canterbury, UK

(e-mail: S.A.Owens@kent.ac.uk)

Abstract

The higher-order logic found in proof assistants such as Coq and various HOL systems provides
a convenient setting for the development and verification of functional programs. However, to ef-
ficiently run these programs, they must be converted (or ‘extracted’) to functional programs in a
programming language such as ML or Haskell. With current techniques, this step, which must be
trusted, relates similar looking objects that have very different semantic definitions, such as the set-
theoretic model of a logic and the operational semantics of a programming language. In this paper,
we show how to increase the trustworthiness of this step with an automated technique. Given a
functional program expressed in higher-order logic, our technique provides the corresponding pro-
gram for a functional language defined with an operational semantics, and it provides a mechanically
checked theorem relating the two. This theorem can then be used to transfer verified properties of the
logical function to the program. We have implemented our technique in the HOL4 theorem prover,
translating functions to a subset of Standard ML, and have applied the implementation to examples
including functional data structures, a parser generator, cryptographic algorithms, a garbage collector
and the 500-line kernel of the HOL light theorem prover. This paper extends our previous conference
publication with new material that shows how functions defined in terms of a state-and-exception
monad can be translated, with proofs, into stateful ML code. The HOL light example is also new.

1 Introduction

The logics of most proof assistants for higher-order logic (Coq, Isabelle/HOL, HOL4, PVS,
etc.) contain subsets which closely resemble pure functional programming languages. As
a result, it has become commonplace to verify functional programs by first coding up
algorithms as functions in a theorem prover’s logic, then using the prover to prove those
logical functions correct and then simply printing (sometimes called ‘extracting’) these
functions into the syntax of a functional programming language, typically Standard ML
(SML), OCaml, Lisp or Haskell. This approach is now used even in very large verification
efforts such as the CompCert verified compiler (Leroy, 2009) and several projects based
on CompCert (McCreight et al., 2010; Ševčı́k et al., 2011; Barthe et al., 2012); it has also
been used in database verification (Malecha et al., 2010).

https://doi.org/10.1017/S0956796813000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000282

Proof-producing translation of higher-order logic into ML 285

However, the printing step is a potential weak link, as Harrison remarks in a survey on
reflection (Harrison, 1995):

[...] the final jump from an abstract function inside the logic to a
concrete implementation in a serious programming language which
appears to correspond to it is a glaring leap of faith.

In this paper we show how this leap of faith can be made into a trustworthy step. We
show how the translation can be automatically performed via proof—a proof which states
that (A:) the translation is semantics preserving with respect to the logic and an operational
semantics of the target language. Ideally, one could then (B:) run the generated code on
a platform which has been proved to implement that operational semantics. This setup
provides the highest degree of trust in the executing code without any more effort on the
part of programmers and prover users than the current printing/extraction approach.

In previous work, we have shown that A and B are possible for the simple case of an
untyped first-order Lisp language (Myreen, 2012), i.e. we can synthesise verified Lisp
from Lisp-like functions living in higher-order logic (HOL); and achieve B by running
the generated programs on a verified Lisp implementation (Myreen & Davis, 2011) which
has been proved to implement our operational semantics.

In this paper, we tackle the more complex problem of performing A for higher-order,
typed ML-like functions, i.e. we show how semantics-preserving translations from HOL
into a subset of ML can be performed inside the theorem prover. We believe our method
works in general for connecting shallow and deep embeddings of functional programming
languages. However, for this paper, we target a specific subset of a SML language, for
which we are constructing a verified compiler (Kumar et al., 2014), so that B can be
achieved. Our verified compiler and runtime are similar to Chlipala (2010), Dargaye (2009)
and Myreen & Davis (2011). We call our ML subset CakeML and use SML syntax.

1.1 Example

To illustrate what our semantics-preserving translation provides, assume that the user de-
fines a summation function over lists using foldl as follows1:

sum = foldl (λx y. x+ y) 0

This sum function lives in HOL but falls within the subset of the logic that corresponds
directly to pure ML. As a result, we can translate sum into ML.2

val sum = foldl (fn x => fn y => x+y) 0

For each run, our translation process proves a certificate theorem relating the function in
the logic, sum, to the abstract syntax of the ML function, sum, with respect to an operational
semantics of ML. For sum, this automatically derived certificate theorem states: when the
closure that represents sum is applied to an argument of the right type, a list of numbers,

1 Throughout the paper, we will typeset HOL equations and definitions in sans-serif (constants) and italic
(variables and types), and CakeML code in typewriter.

2 Like Poly/ML (http://www.polyml.org), CakeML supports arbitrary precision integer arithmetic.

https://doi.org/10.1017/S0956796813000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000282

286 M. O. Myreen and S. Owens

then it will return a result, a number, which is exactly the same as the result of applying the
HOL function sum to the same input.

The challenge is to do this translation in an easily automated, mechanical manner. In
particular, one has to keep track of the relationship between shallowly embedded values,
e.g. mathematical functions in logic, and deeply embedded values in the ML semantics,
e.g. closures. Our solution involves refinement/coupling invariants and combinators over
refinement invariants.

1.2 Contribution

This paper is an expanded version of our ICFP ’12 paper ‘Proof-producing synthesis of
ML from higher-order logic’ (Myreen & Owens, 2012). The main technical addition is
the translation of HOL functions written in a state-and-exception monad into ML code
that uses imperative features (i.e. ref, raise and handle). The HOL light example of
Section 2 is also new, and the presentation has been reorganised.

The main contribution of the work overall is a new technique by which functions as
defined in HOL can be translated, with proof, into ML equipped with an operational
semantics. The ML-like subset of HOL we consider includes:

• total recursive functions,
• type variables,
• functions as first-class values,
• nested pattern matching and user-defined datatypes,
• partially specified functions, e.g. those with missing pattern match cases, and
• functions written in a state-and-exception monad.

We also show how our translation technique can be extended with new translations for
user-defined operations and types. As an example, we show how to add support for finite
sets and finite maps.

This work improves on the current state of the art of program synthesis from theorem
provers (sometimes called program extraction, e.g. extract in Coq, emit-ML in HOL4 and
code generation in Isabelle/HOL) by removing that step from the trusted computing base
without requiring any additional work from the user. We prove the trustworthiness of
the translation with certificate theorems stating that the generated code has exactly the
behaviour (including termination) of the original logic function.

We show that our technique is practical with case studies from the HOL4 examples
repository, and other examples from the literature, including functional data structures, a
parser generator, cryptographic algorithms and a theorem prover’s kernel.

Our translator, all of our examples, and our semantics for CakeML, are all part of the
ongoing CakeML project, https://cakeml.org/.

2 Examples

Before explaining how our technique works, we first present a few examples which show
what our proof-producing translation provides on simple examples. Section 6 lists several
larger and more significant examples.

https://doi.org/10.1017/S0956796813000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000282

Proof-producing translation of higher-order logic into ML 287

2.1 Quicksort—from algorithm proof to verified ML code

One can define quicksort for lists in HOL as follows.3 Here ++ appends lists and partition

splits a list into two lists: one with those elements that satisfy the given predicate and
another with those that do not.

(qsort R [] = []) ∧
(qsort R (h :: t) =

let (l1, l2) = partition (λy. R y h) t in

(qsort R l1)++[h]++(qsort R l2))

Given this definition of the algorithm, one can use a HOL theorem prover, such as HOL4,
to prove the correctness of quicksort: given a transitive, total relation R and a list l, qsort

returns a sorted permutation of list l.

∀R l l′.
transitive R ∧ total R ∧ (l′ = qsort R l) =⇒
perm l l′ ∧ sorted R l′

Such proofs are textbook exercises in program verification. Note that this definition and
proof could have been (and indeed were) developed without any reference to an intended
use of the ML synthesis technique presented in this paper.

Given quicksort’s definition, our translator can then generate the abstract syntax tree
(AST) for the following CakeML function. We write list cons as :: and nil as [].

fun qsort r = fn l => case l of

| [] => []

| (h::t) =>

let val x = partition (fn y => r y h) t in

case x of

| Pair(l1,l2) =>

append (append (qsort r l1) (h::[])) (qsort r l2)

end

In the process of generating the above code, the translator also establishes a correspon-
dence between CakeML values and HOL terms, and it automatically proves a theorem
stating correctness of the translation. We will call such theorems certificate theorems. The
following certificate theorem can informally be read as follows: when given an application
of qsort to arguments corresponding to HOL terms, the CakeML operational semantics
will terminate with a value that corresponds to the application of HOL function qsort

to those terms. The formal statement of this theorem is shown below. Here bool is a
refinement invariant, → is a refinement invariant combinator and Eval is a judgement about
the CakeML semantics. These concepts (Eval, →, bool, etc.) are defined in later sections.

DeclAssum qsort ml env =⇒
Eval env �qsort	 (((a → a → bool) → list a → list a) qsort)

3 In fact, we are re-using Konrad Slind’s verified quicksort algorithm from HOL4’s library.

https://doi.org/10.1017/S0956796813000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000282

288 M. O. Myreen and S. Owens

The beauty of these certificate theorems is that they allow the result of the algorithm
verification to also apply to the generated CakeML code. By a trivial combination of the
two theorems above, one can prove that the generated CakeML code always terminates and
returns a sorted permutation of its input list whenever the generated qsort code has been
loaded and the function value r corresponds to a transitive and total relation. The formal
statement of this theorem is given below for reference.

∀env a ord R l xs.
DeclAssum qsort ml env ∧
list a l xs ∧ (lookup "xs" env = some xs) ∧
(a → a → bool) ord R ∧ (lookup "R" env = some R) ∧
transitive ord ∧ total ord
=⇒
∃l′ xs′.
〈emp,env〉 �qsort R xs	 ⇓ 〈emp,Rval xs′〉 ∧
list a l′ xs′ ∧ perm l l′ ∧ sorted ord l′

In summary, we have taken the quicksort algorithm, expressed as a definition in HOL
and verified in that setting, and we have generated a pure functional CakeML program and
automatically proved that it is correct, according to the operational semantics of CakeML.
Note that the meaning of HOL’s qsort function is in terms of the proof theory or model
theory of HOL, while the CakeML qsort function has an operational meaning, which is
understood by ML compilers.

2.2 RedBlack trees—from algorithm proofs to more advanced translations

The translation technique described in this paper can translate ML-like functions’ defi-
nitions from HOL into CakeML. However, the ML-like subset of HOL that is supported
is not fixed and can easily be extended. The translation routine can be ‘taught’ how to
translate new HOL types and terms.

The following example will show how operations over finite maps can be translated
into operations over RedBlack trees in CakeML. First, we look at how the finite-map
type, (α,β) fmap, is defined in HOL. In HOL, every non-primitive type must map into
some previously defined type, its representation type. New types are defined based on a
representation type, a characteristic predicate and a theorem that proves that the predicate
can be satisfied. For finite maps, we can use representation type α → β +unit and predicate
is fmap m = finite {a | m a �= inr ()}, and prove ∃m. is fmap m. Using these components,
a type definition can be made. A type definition results in a new type, e.g. (α,β) fmap, and
two functions: one that maps terms of the new type into the representation type and another
that performs the reverse translation; e.g. fmap rep and fmap abs respectively. Using these
new functions, it is a simple exercise to define finite-map update �→:

m[x �→ y] = fmap abs (λa. if a = x then inl y else fmap rep f a)

Most HOL provers come equipped with such type definitions, and a long list of lemmas
about them, as part of their standard library.

https://doi.org/10.1017/S0956796813000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000282

Proof-producing translation of higher-order logic into ML 289

As an example, consider that we want to translate the finite-map update operation, �→,
into a corresponding operation over RedBlack trees. The first step is to formalise RedBlack
tree operations, such as lookup and update, as functions in HOL:

color = Red | Black

(α,β) tree = Empty | Tree color tree α β tree

lookup R x Empty = None

lookup R x (Tree color a y z b) =
if R x y then lookup R x a else

if R y x then lookup R x b else Some z

update R x y t =
case upd R x y t of Tree a x y b ⇒ Tree Black a x y b

upd R x y t = . . .

One can then prove that the RedBlack trees correctly implement operations over finite maps
if a RedBlack tree invariant is met. For example, for update one can prove the following,
given an appropriate definition of a relationship between RedBlack trees and finite maps:
redblack represents fmap.

∀R tree fmap x y.
redblack represents fmap R tree fmap =⇒
redblack represents fmap R (update R x y tree) (fmap[x �→ y])

(1)

By translating the ML-like functions, we can produce CakeML code that is proved to
implement the RedBlack tree operations. The translation of update produces a certificate
theorem of the following form:

DeclAssum redblack ml env =⇒
Eval env �update	 (((a → a → bool) → a → b → tree a b → tree a b) update)

(2)

By combining Lemmas (1) and (2), we can prove a theorem expressed in terms of HOL’s
finite maps, rather than the tree type, in terms of which update is defined. For simplicity,
in this example, we instantiate α to int, a to int and R to �.

DeclAssum redblack ml env =⇒
Eval env �update (<=)	 ((int → b → fmap b → fmap b) (�→))

where fmap b m v = ∃t. redblack represents fmap (�) t m ∧ tree int b t v

(3)

By supplying altered certificate theorems, such as (3), back to the translation routine, fu-
ture translations can translate more abstract opera operations over finite maps into CakeML.
For example, the translation of HOL term m[2 �→ x][y �→ z] produces the following CakeML
using Lemma (3) whenever it encounters �→ for finite maps:

update (<=) y z (update (<=) 2 x m)

The same also works for nested refinement invariants, e.g. term m[2 �→ (t[y �→ z])] translates
into the following with refinement invariant fmap (fmap a).

update (<=) 2 (update (<=) y z t) m)

https://doi.org/10.1017/S0956796813000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000282

290 M. O. Myreen and S. Owens

This extension mechanism is discussed in Section 4.4.4.

2.3 HOL light—from state-and-exception monads to stateful CakeML code

Functions in HOL are pure and stateless. As a result, translation into pure CakeML is
natural. However, as is shown in Section 5, if the HOL functions are written using a state-
and-exception monad then the functions can be translated into CakeML code that uses
imperative features such as references and exceptions. With only a few modifications to
the core definitions for translation into pure CakeML (Section 4) we can perform exactly
the same style of translation into stateful CakeML.

In the HOL light case study, we encountered functions that read from and write to
references, raise exceptions, and pass monadic functions as first-class values, e.g. assoc

can raise an exception

assoc s l =
case l of

[] ⇒ failwith "not in list"

| ((x,y) :: t) ⇒ if s = x then return y else assoc s t

and map takes a monadic function f as input

map f l =
case l of

[] ⇒ return []
| (h :: t) ⇒ do h′ ← f h ; t ′ ← map f t ; return (h′ :: t ′) od

The most complicated function in the HOL light case study uses exceptions to perform
efficient backtracking in the implementation of type instantiation.

The generated code uses CakeML’s let expressions for translation of the monadic bind
operator. For example, the generated code for map is as follows:

fun map f l =

case l of

[] => []

| (h::t) => let

val h’ = f h

val t’ = map f t

in

h’::t’

end

The resulting certificate theorems are now stated in terms of slightly modified version of
the predicates used above, e.g. instead of Eval we have EvalM.

. . . =⇒ EvalM env �map	 (refinement invariant map)

where refinement invariant is ((pure a →M M b) →M pure (list a) →M M (list b)).

https://doi.org/10.1017/S0956796813000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000282

Proof-producing translation of higher-order logic into ML 291

3 Target language: CakeML

In this paper, the target of translation is a subset of SML that we call CakeML. The subset
supports:

• arbitrary precision integers,
• mutually recursive datatype definitions,
• higher-order, anonymous and mutually recursive functions,
• nested pattern matching,
• references, and
• handled exceptions.

Unsupported features include records, functors and local definitions. Figure 1 gives the
source grammar for CakeML types t, literals l, patterns p, expressions e, type definitions
td/c and top-level definitions d.

We define, in HOL4, a CakeML big-step, call-by-value operational semantics, with
function values represented as closures. Figure 2 gives the auxiliary definitions needed
to support the semantics: values v, environments env, locations loc, reference stores s and
evaluation results r. The big-step semantics is deterministic:

∀s1 env e r1 r2.

〈s,env〉 e ⇓ r1 ∧ 〈s,env〉 e ⇓ r2 =⇒ (r1 = r2)

3.1 Design rationale

CakeML is designed to be the interface between the two tasks from Section 1: A—
translating from logic to a programming language, and B—building a verified platform
for running the language. In this paper, we solve task A, but we also take care to ensure
that CakeML is a suitable language for task B (Kumar et al., 2014). Here, we explain our
design choices:

1. CakeML is a non-trivial subset of a real programming language. A simple λ -
calculus-like programming language would satisfy the technical requirements of
being expressive enough to map HOL functions to, and of being simple enough to
support a fully verified implementation. However, that choice would limit the use of
both the translator (part A) and compiler (part B). By making CakeML a subset of
a real language, we generate code that can be used with existing industrial-strength
optimising compilers for cases where verified compilation is not considered neces-
sary (e.g. regression testing of an application to be verified). By making CakeML a
large enough subset to actually program in, we ensure that the result of task B will
be useful for functions that do not originate in a proof assistant.

2. CakeML is a subset of SML. Of existing programming languages, HOL’s logic
is most similar to ML, so it is a natural choice, and because we only translate
terminating functions, call-by-value semantics are acceptable. SML has a minor
advantage over OCaml in this setting: evaluation order of function arguments is well
defined in SML (but not in Ocaml). However, adapting the translation process to
such a setting is a simple exercise in just inserting the necessary let-expressions to
force a left-to-right evaluation order.

https://doi.org/10.1017/S0956796813000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000282

292 M. O. Myreen and S. Owens

t ::= α | int | bool | unit | t * t | t -> t | t list | t ref | tc | (t(,t)∗) tc | (t)
l ::= i | true | false | () | []
p ::= | x | l | C | C p | (p(,p)∗) | p::p | [p(,p)∗] | ref p

e ::= l literal constant
| x variable reference
| C constant constructor
| C e constructor
| (e,e(,e)∗) tuple
| [e,e(,e)∗] list
| raise e exception raising
| e handle p => e (|p => e)∗ exception handling
| fn x => e function
| e e function application
| uop e unary operator
| e op e binary operator
| ((e;)∗e) sequencing
| if e then e else e conditional
| case e of p => e (|p => e)∗ pattern matching
| let (ld|;)∗ in (e ;)∗ e end let definitions

ld ::= val x = e value definition
| fun x y+ = e (and x y+ = e)∗ function definition

uop ::= ref | ! reference and dereference
| ~ negation

op ::= := assignment
| + | - | * | div | mod arithmetic
| = | < | <= | > | >= | <> comparison
| :: cons
| before | andalso | orelse sequencing and logical

c ::= C | C of t
tyn ::= (α(,α)∗) x | α x | x
tyd ::= tyn = c (| c)∗

d := val p = e value declaration
| fun x y+ = e (and x y+ = e)∗ function declaration
| datatype tyd (and tyd)∗ type declaration
| exception c exception declaration

where x and y range over identifiers (must not start with a capital letter), α over SML-style type
variable (e.g. ’a), C over constructor names (must start with a capital letter), tc over type
constructor names and i over integers.

Fig. 1. CakeML source grammar (excluding modules).

3. CakeML has big-step operational semantics. Because the translator is inductive on
the syntax of HOL functions, it is most convenient to have a semantics that is induc-
tive on CakeML’s syntax. However, as part of task B, different semantics are required
for different purposes. Their equivalence needs to be proved.

4. CakeML’s semantics are not taken directly from the definition of SML (Milner et al.,
1997). Although they are similar, CakeML is simpler because it omits some com-
plexities. For example, CakeML does not include arbitrary declarations, including

https://doi.org/10.1017/S0956796813000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000282

Proof-producing translation of higher-order logic into ML 293

v := Lit l literal constant
| Con C [v1, . . . ,vn] constructor
| Closure env x e closure
| Recclosure env [(x1,y1,e1), . . . ,(xn,yn,en)]] x recursive function closure
| Loc loc a reference to the store

r := 〈s,Rval v〉
| 〈s,Rerr ex〉

where env ranges over finite maps from x to v,
loc ranges over store locations, and
s ranges over finite maps from loc to v.

Fig. 2. Semantic auxiliaries for CakeML.

datatype, inside of let, and it enforces the OCaml-style restriction that construc-
tors begin upper-case and other names begin lower case.

5. CakeML’s native integers are arbitrary precision. This is most convenient for trans-
lation from HOL’s logic which uses natural numbers; however, there is precedent
in practical implementation: the Poly/ML compiler implements arbitrary precision
integers natively; other ML implementations usually support them as a library. This
decision requires that the part B compiler come equipped with a verified bignum
library to implement arbitrary precision arithmetic (Myreen & Curello, 2013).

4 Synthesis of pure ML

The following sections explain our approach to proof-producing synthesis of CakeML from
functions in HOL. This section explains our approach for producing pure ML functions.
Section 5 describes an extension which can produce stateful ML.

4.1 Core definitions and concepts

Each run of the translation algorithm produces a proof with respect to the CakeML opera-
tional semantics (Section 3). The entire translation approach is developed to produce such
proofs, and thus centred around the operational semantics. The synthesis algorithm does
not make direct statements about the operational semantics; instead a predicate called Eval

is used to express properties of the operational semantics.
We define Eval env exp post to be true if CakeML expression exp evaluates, in environ-

ment env, to some value val such that post is true for val, i.e. post val. The fact that it returns
a value—as opposed to an error—tells us that evaluation terminates and that no error
happened during evaluation, e.g. evaluation did not hit any missing cases while pattern
matching. Below, ⇓ is the evaluation relation from the big-step semantics for CakeML,
emp is the empty state and post has type v → bool. Here Eval requires that the expression
is pure: given an empty state, evaluation must return an empty state.

Eval env exp post = ∃val. (〈emp,env〉 exp ⇓ 〈emp,Rval val〉) ∧ post val

The interesting part is how post gets instantiated and used. We instantiate post with
predicates that relate terms in HOL with CakeML values from the semantics of CakeML,
i.e. values of type v. These predicates are refinement invariants, sometimes called coupling

https://doi.org/10.1017/S0956796813000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000282

294 M. O. Myreen and S. Owens

invariants. The most basic refinement invariants relate HOL representations of boolean and
integers to the same concepts in the CakeML semantics. We define refinement invariants
bool and int as follows:

bool true = λv. (v = Lit true)
bool false = λv. (v = Lit false)

int i = λv. (v = Lit i) where i is an integer.

We make statements in terms of Eval and refinement invariants. For example, Eval and
int can be used to state that the constant CakeML expression 5 always evaluates to an
CakeML value that is related to integer 5 in HOL. Throughout, we write SML syntax
enclosed within �·	 as an abbreviation for the often verbose AST for CakeML:

Eval env �5	 (int 5)

Similarly, the Eval predicate can also be used to make statements about variables. Using
Eval, we can, for example, state that CakeML expression n, i.e. CakeML variable n, eval-
uates to a value that corresponds to HOL integer n:

Eval env �n	 (int n)

4.2 Bottom-up translation of terms

Given a HOL term to translate, e.g. n+5, the goal of our proof-producing translation is to
construct a CakeML expression, in this case �n+5	, and prove a theorem that relates the
HOL term with the evaluation of the CakeML expression. The resulting theorem is stated
in terms of Eval. For n + 5, this resulting theorem is to state that n + 5 is Eval-related to
�n+5	, if n is related to HOL variable n.

Eval env �n	 (int n) =⇒
Eval env �n+5	 (int (n+5))

For a given HOL term t and generated CakeML expression exp, the shape of the resulting
theorem is always the following, for some appropriate refinement invariant inv:

assumptions =⇒ Eval env exp (inv t) (4)

Translation of HOL terms is performed as a bottom-up traversal based on the syntax of
the given HOL term. Each recursive call in this traversal returns a theorem of shape (4).
For term n + 5, the leaves of this bottom-up traversal, i.e. n and 5, prove the following
theorems:

Eval env �n	 (int n) =⇒ Eval env �n	 (int n) (5)

true =⇒ Eval env �5	 (int 5) (6)

Compound expressions are combined using lemmas that aid translation. For the running
example, the HOL operation for integer addition is translated using the following lemma

https://doi.org/10.1017/S0956796813000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000282

Proof-producing translation of higher-order logic into ML 295

relating integer addition in HOL (+) with integer addition in CakeML (+):

∀e1 e2 i j.

Eval env �e1	 (int i) ∧
Eval env �e2	 (int j) =⇒
Eval env �e1 + e2	 (int (i+ j))

The lemma above is used to combine theorems (5) and (6), to prove the desired theorem,
which is as follows:

Eval env �n	 (int n) =⇒ Eval env �n+5	 (int (n+5)) (7)

The same lemma can, of course, be used to translate any combination of integer HOL
variables, integer constants and integer addition, e.g.

Eval env �n	 (int n) =⇒ Eval env �n+n+5+5	 (int (n+n+5+5))

Entire term translation—as opposed to translation of recursive functions (Section 4.3)—
is performed in exactly this bottom-up manner. The following subsections detail how
features such as type variables and λ -abstractions fit into this approach to term translation.
Support for ML-like features such as pattern-matching and partial specifications is covered
in Section 4.4.

4.2.1 Functions as first-class values

Both HOL and CakeML support the use of functions as first-class values. In order to allow
for function values in the translation, we need a refinement invariant that relates function
values in HOL with function values in CakeML, i.e. closures. For this purpose, we have a
refinement combinator →. Given refinement invariants, a and b, this refinement combinator
a → b is a refinement invariant between function values in HOL and CakeML. We define
(a → b) f cl to be true if cl is a closure such that, whenever the closure is applied to a value
v satisfying refinement invariant input a, it returns a value u satisfying output invariant b;
and furthermore, its input–output relation coincides with f with respect to a and b.

This combinator’s formal definition is based on an evaluation relation for application
of closures, evaluate closure (which is defined in terms of ⇓ and applies to non-recursive
and recursive closures). Read evaluate closure v cl u as saying: application of closure cl to
argument v returns value u. We define a → b to be true for function f and closure cl if and
only if, for every input x and CakeML value v such that a x v, the closure cl applied to v
evaluates to some value u such that refinement invariant b relates f applied to x with u.

(a → b) f = λcl. ∀x v. a x v =⇒∃u. evaluate closure v cl u∧b (f x) u

Here the type of f is α → β , and cl, v and u are CakeML values, i.e. have type v.
This refinement combinator allows us to make statements about function values. For

example, the following states that f evaluates to a closure which corresponds to a HOL
function f which maps integers to integers.

Eval env �f	 ((int → int) f)

https://doi.org/10.1017/S0956796813000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000282

296 M. O. Myreen and S. Owens

To aid translation we have a few lemmas for reasoning about function values: one for
function application, and a few for translation of λ -abstractions. The lemma which enables
translation of function application is the following:

Eval env �f	 ((a → b) f) ∧
Eval env �x	 (a x) =⇒
Eval env �f x	 (b (f x))

With this lemma, it is easy to translate f 5 into CakeML using the bottom-up traversal
technique outlined above. The result of such a translation is a theorem:

Eval env �f	 ((int → int) f) =⇒ Eval env �f 5	 (int (f 5))

The simplest lemma for the translation of λ -abstractions is the following. This lemma
requires that the abstract and concrete values, x and v, can be universally quantified. Here
n is a name and n �→ v extends the environment env with binding: name n maps to value v.4

(∀x v. a x v =⇒ Eval (env[n �→ v]) �body	 (b (f x))) =⇒
Eval env �fn n => body	 ((a → b) f)

As an example, this lemma allows for the translation of terms such as λn. n+5. The proof
essentially matches (7) with the left-hand side of the lemma above in order to reach the
following:

Eval env �fn n => n+5	 ((int → int) (λn. n+5))

The lemma above is sometimes not directly applicable. The reason is that the universal
quantifier on x on the left-hand side of the lemma above is too restrictive. Consider, for
example, translation of the term λn. 5 div n. Translation of the body produces a theorem
where n has a side condition other than just a binding to name n.

n �= 0 ∧ Eval env �n	 (int n) =⇒ Eval env �5 div n	 (int (5 div n))

In such cases, a less restrictive form of the lemma from above is used. The less restrictive
lemma is the same except that the abstract variable is not universally quantified. The price
one must pay is the introduction of an eq combinator that restricts the input to be exactly
value x. Here and throughout eq a x y v = (x = y)∧a y v.

(∀v. a x v =⇒ Eval (env[n �→ v]) �body	 (b (f x))) =⇒
Eval env �fn n => body	 ((eq a x → b) f)

With this lemma, the translation of λn. 5 div n yields

∀n. n �= 0 =⇒ Eval env �fn n => 5 div n	 ((eq int n → int) (λn. 5 div n))

A different but somewhat similar looking lemma is used for translation of HOL’s let-
expressions. Below, let is HOL’s internal combinator which represents let-expressions. In

4 The CakeML semantics represents names in a very direct manner: the names appear as strings in the deep
embedding. Variable expressions are evaluated as look-ups in an environment that the semantics carries around.
Note that our tool never needs to perform substitution or α-conversion on CakeML expressions (for HOL terms
this is supported natively in the logic). The tool just constructs CakeML expressions bottom-up. It can therefore
avoid the many technical difficulties (Aydemir et al., 2005) associated with substitution and variable renaming
in deeply embedded syntax.

https://doi.org/10.1017/S0956796813000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000282

Proof-producing translation of higher-order logic into ML 297

HOL, let abbreviates λ f x. f x and the HOL printer knows to treat let as special, e.g.
let (λa. a+1) x is printed on the screen as let a = x in a+1.

Eval env �x	 (a x) ∧
(∀v. a x v =⇒ Eval (env[n �→ v]) �body	 (b (f x))) =⇒
Eval env �let val n = x in body end	 (b (let f x))

Lemmas for translation of recursive functions are described in Section 4.3.

4.2.2 Type variables

The examples above used int as a fixed type/invariant. So how do we translate something
that has HOL type α , i.e. a variable type? Answer: for this we use a regular HOL variable
for the invariant, e.g. we can use variable a with HOL type α → v → bool as the invariant.
The HOL type of the int refinement invariant is int → v → bool, i.e. all that we did was
abstract the constant int to a variable a and, similarly in its type, we abstracted the type int
to α .

With this variable a ranging over all possible refinement invariants, we can state that
CakeML variable x evaluates to HOL variable x of type α as follows.

Eval env �x	 (a x)

Similarly, we can use the invariant combinator from above to specify that the CakeML
value is a closure such that HOL function f of type α → α is an accurate representation.

Eval env �f	 ((a → a) f)

With this approach to translation of terms with free type variables, we can apply the
lemmas mentioned above at a more abstract level. For example, we can derive CakeML
code corresponding to a HOL function λ f x. f (f x) which contains a type variable α .

∀a. Eval env �fn f => fn x => f (f x)	
(((a → a) → a → a) (λ f x. f (f x)))

(8)

4.3 Translation of (recursive) functions

The previous section presented how terms can be translated with certificate proofs from
HOL to CakeML. The following subsections explain how we apply this term translation to
translate top-level function definitions, and, in particular, recursive functions.

4.3.1 Translation of non-recursive functions

When a term is translated into CakeML, as above, the result is a CakeML expression. How-
ever, at the top-level, a CakeML program consists of a list of declarations. We therefore
want top-level HOL terms to be translated into CakeML declararions, not expressions.

Before turning our attention to recursive functions, we first continue the example from
Section 4.2.2 on translation of a non-recursive function. We show how CakeML terms are
packaged up into lists of declarations.

https://doi.org/10.1017/S0956796813000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000282

298 M. O. Myreen and S. Owens

The example from Section 4.2.2 translated λ f x. f (f x) into a CakeML expression. The
certificate theorem produced is as follows:

Eval env �fn f => fn x => f (f x)	
(((a → a) → a → a) (λ f x. f (f x)))

If twice is a HOL constant defined to be λ f x. f (f x), then this can be rephrased as follows:

Eval env �fn f => fn x => f (f x)	
(((a → a) → a → a) twice)

To introduce a declaration giving a similar name to the generated CakeML expression, one
applies a lemma, explained below, which introduces a declaration assumption DeclAssum

(see Section 4.3.1). The result is a theorem which states: if the environment env is the result
of evaluating the top-level declarations in the DeclAssum, then evaluation of the CakeML
name twice corresponds to the behaviour of HOL function twice.

DeclAssum �val twice = fn f => fn x => f (f x);	 env =⇒
Eval env �twice	 (((a → a) → a → a) twice)

The goal of a complete translation effort is to produce a CakeML program, i.e. a list of
CakeML declararions.

The following lemma is used to introduce CakeML declarations for terms and non-
recursive functions. This lemma appends a new declaration to the end of a DeclAssum list
of declarations. In cases where there is no previous declaration assumption, one can simply
add a new assumption DeclAssum with an empty declaration list.

(∀env. DeclAssum �decs	 env =⇒ Eval env �exp	 post) =⇒
(∀env. DeclAssum �decs val n = exp;	 env =⇒ Eval env �n	 post)

A full translation consists of translating HOL function- and constant-definitions one at a
time. Each translation appends the new declaration to the list of generated declarations.

4.3.2 Algorithm for translation of (recursive) functions

The previous section provided an example which explained how a function constant from
HOL can be translated into a CakeML declaration. In this section, we summarise the high-
level steps that are involved in each function translation in general, whether non-recursive
or not. For clarity, this description assumes that the function is not mutually recursive. The
algorithm is, however, easily modified to also apply to mutually recursive functions. Our
implementation supports mutual recursion.

Information retrieval. Given a function f to translate, the initial phase collects the neces-
sary information about this function, e.g. is it a constant definition, is it recursive? If it
is recursive then the induction theorem associated with its definition is fetched from the
theory context. The recursive case will be explained in the next section.

Preprocessing. The next step prepares the definition for translation: the definition is col-
lapsed to a single top-level clause, as mentioned in Section 4.4.1, and certain implicit
pattern matching is rewritten into explicit pattern matching, e.g. λ (x,y). body is ex-
panded into λx. case x of (x,y) ⇒ body. For the rest of this section, assume that the

https://doi.org/10.1017/S0956796813000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000282

Proof-producing translation of higher-order logic into ML 299

definition is now of the following form:

f x1 x2 . . . xn = rhs

Bottom-up traversal. The next phase takes the right-hand side of the definition to be
translated and constructs an Eval-theorem, as demonstrated in Section 4.2. This theorem
is derived through a bottom-up traversal of the HOL term. At each stage, a proof rule or
lemma is applied to introduce the corresponding CakeML syntax into the Eval-theorem.
The result of this traversal is a theorem where the right-hand side of the HOL function
appears together with its derived CakeML counterpart.

assumptions =⇒ Eval env derived code (inv rhs)

The next phases attempt to discharge the assumptions. Trivial assumptions can be dis-
charged as part of the bottom-up traversal.

Packaging. The next phase reduces the term rhs to the function constant f. To do this, lem-
mas are applied that introduce a λ -abstraction for each formal parameter, and then the
following simplification on the right-hand side is performed: the definition is collapsed
and eta conversion is performed.

λx1 x2 . . . xn. rhs

= λx1 x2 . . . xn. f x1 x2 . . . xn

= f

Introduction of λ -abstractions on the right-hand side of the HOL expression introduces
closures on the CakeML side. For recursive functions, the final closure lemma is a
special rule for introducing a fun-declaration for recursive functions.

Induction. For recursive functions, the induction theorem associated with the function
definition is used to discharge the assumptions that were made at the recursive call
sites. The assumptions that the induction theorem fails to discharge are collected and
defined to be a side-condition. Such side conditions usually arise from partiality in
pattern matching, which will be presented in Section 4.4.2.

Future use. Once the translation is complete, the certificate theorem is stored into the
translator’s memory. Future translations can then use this certificate theorem in their
Bottom-up traversal phase, when function constant f is encountered. The resulting
certificate theorem is always of the form, for some inv and some possible precondition:

∀env. DeclAssum �declarations	 env ∧ precondition =⇒ Eval env �f	 (inv f)

4.3.3 Translation of recursive functions

CakeML code for non-recursive functions can be derived as shown above. Recursive HOL
functions require some additional effort. To illustrate why, consider the following definition
of the gcd function:

gcd m n = if 0 < n then gcd n (m mod n) else m

If we were to do the bottom-up traversal step for the right-hand side of the definition
of gcd in exactly the same way it is done for non-recursive functions, then we would get

https://doi.org/10.1017/S0956796813000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000282

300 M. O. Myreen and S. Owens

stuck. The method described in bottom-up derivation described in Section 4.2 would not
have an Eval-theorem describing the recursive call. At the stage where it gets stuck, one
would like to have a theorem of the following form:

. . . =⇒ Eval env �gcd	 ((int → int → int) gcd)

In other words, we would like to assume what we set out to prove.
Our solution is to make a more precise assumption: we formulate the assumption in such

a way that it records for what values it was applied; we then discharge these assumptions
using an induction which will be explained later.

We use the combinator eq, mentioned earlier in Section 4.2.1, to ‘record’ what values
we have assumed that the recursive call is applied to.

eq a x = λy v. (x = y)∧a y v

When this eq-combinator is used together with → it restricts the universal quantifier that is
hidden inside the → function combinator. One can informally read, the refinement invariant
int → . . . as saying ‘for any int input, . . . ’. Similarly, eq int i → . . . can be read as ‘for any
int input equal to i, . . . ’, which is the same as ‘for int input i, . . . ’.

We state the assumption at call sites using the eq combinator, for some m and n:

Eval env �gcd	 ((eq int m → eq int n → int) gcd) (9)

For the rest of this example we abbreviate (9) as P m n. In order to derive an Eval theorem
for the expression gcd n (m mod n), we first derive an Eval theorem for argument n,

Eval env �n	 (int n) =⇒
Eval env �n	 (int n)

and an Eval theorem for argument m mod n,

Eval env �m	 (int m) ∧
Eval env �n	 (int n) ∧ n �= 0 =⇒
Eval env �m mod n	 (int (m mod n))

Next, we use the following rule to introduce eq combinators to the above theorems:

∀a x m. Eval env m (a x) =⇒ Eval env m ((eq a x) x)

and then we apply to application lemma for → from Section 4.2.1 to get an Eval theorem
for gcd n (m mod n):

Eval env �m	 (int m) ∧ P n (m mod n) ∧
Eval env �n	 (int n) ∧ n �= 0 =⇒
Eval env �gcd n (m mod n)	 (int (gcd n (m mod n)))

By then continuing the bottom-up traversal as usual and packaging up the right-hand side
into a declaration, we arrive at the following theorem where our abbreviation P appears
both as an assumption and as the conclusion:

DedclAssum �fun gcd m = fn n => ...	 env =⇒
∀m n. (0 < n =⇒ P n (m mod n)) =⇒ P m n

(10)

https://doi.org/10.1017/S0956796813000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000282

Proof-producing translation of higher-order logic into ML 301

The shape of the right-hand side of the implication above matches the left-hand side of
the following induction theorem:

∀P. (∀m n. (0 < n =⇒ P n (m mod n)) =⇒ P m n) =⇒ (∀m n. P m n) (11)

Such induction theorems come out as a side product of the conventional definition mecha-
nisms that are built on top of HOL (Slind, 1999; Krauss, 2009). The most commonly used
definition mechanism uses (or guesses) a well-founded measure in order to prove totality
of recursive functions. Our translation algorithm relies on induction theorems that match
the shape of the function that is to be translated. If no such induction theorem exists, i.e.
the recursive function was not defined using the most common definition mechanism, then
custom induction theorems can be used instead. For the running of gcd, one might use a
custom induction theorem with an assumption gcd terminates for m n.

∀P. (∀m n. (0 < n =⇒ P n (m mod n)) =⇒ P m n) =⇒
(∀m n. gcd terminates for m n =⇒ P m n)

Note that this works for functions that do not ‘terminate’ for all input values.
By one application of modus ponens of (10) and (11), we arrive at a theorem with a

right-hand side: ∀m n. P m n. By expanding the abbreviation P and some simplification
to remove, when possible, eq (as will be explained in the next section), we arrive at the
following desired certificate theorem for the gcd function:

DedclAssum �fun gcd m = fn n => ...	 env =⇒
Eval env �gcd	 ((int → int → int) gcd)

The gcd function is a very simple function. However, the technique above is exactly
the same even for functions with nested recursion (e.g. as in McCarthy’s 91 function) and
mutual recursion (in such cases the induction has multiple conclusions). We always use the
eq combinator to record input values, then apply the induction arising from the function’s
totality proof to discharge these assumptions and finally rewrite away the remaining eq

combinators as described next.

4.3.4 Simplification of eq

The example above glossed over how eq combinators are removed. In this section, we
expand on that detail. When translating recursive functions, we use the eq combinator to
‘record’ what values we instantiate the inductive hypothesis with. Once the induction has
been applied, we are left with an Eval-theorem which is cluttered with these eq combina-
tors. The theorems have the following shape:

∀x1 x2 . . . xn.

Eval env code

((eq a1 x1 → eq a2 x2 → . . . → eq an xn → b) func)

Next, we show how these eq combinators can be removed by rewriting. First, we need
two new combinators. The examples below will illustrate their use.

A a y v = ∀x. a x y v

E a y v = ∃x. a x y v

https://doi.org/10.1017/S0956796813000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000282

302 M. O. Myreen and S. Owens

We use these combinators to push the external ∀ inwards. The following rewrite theo-
rem shows how we can turn an external ∀ into an application of the A combinator. Here
(Ax. p x) is an abbreviation for A (λx. p x).

(∀x. Eval env code ((p x) f)) = Eval env code ((Ax. p x) f) (12)

Once we have introduced A, we can push it through → using the following two rewrites:

Ax. (a → p x) = (a → (Ax. p x)) (13)

Ax. (p x → a) = ((Ex. p x) → a) (14)

These rewrites push the quantifiers all the way to the eq combinators. We arrive at a
situation where each eq combinator has an E quantifier surrounding it. Such occurrences
of E and eq cancel out

(Ex. eq a x) = a

leaving us with a theorem where all of the eq, A and E combinators have been removed:

Eval env code ((a1 → a2 → . . . → an → b) func)

The proofs of rewrites (12) and (13) require that the underlying big-step operational
semantics is deterministic. This requirement arises from the fact that these lemmas boil
down to an equation where an existential quantifier is moved across a universal quantifier.

(∀x. ∃r. (〈s,env〉 code ⇓ r)∧ . . .) = (∃r. (〈s,env〉 code ⇓ r)∧∀x. . . .)

Such equations can be proved if we assume that ⇓ is deterministic since then there is only
one r that can be chosen by the existential quantifier. Note that the definition of Eval in
Section 4.1 would not have had its intended meaning if the operational semantics had been
genuinely non-deterministic.

4.4 Supporting ML-like features

The previous sections explained how terms and functions can be translated with proof
into CakeML. All examples kept to simple types, such as bool and int, and functions
among such types. The following subsections explain how we translate a richer ML-like
subset of HOL: a subset with user-defined datatypes, partially specified functions and terms
involving equality tests.

4.4.1 Datatypes and pattern matching

We start with a look at the datatypes. HOL provides ways of defining ML-like datatypes,
e.g. the usual list datatype can be defined as follows:

datatype α list = Nil | Cons of α × (α list)

These datatypes can be used in ML-like pattern matching. In the following text we will
write Cons as :: and Nil as [].

We can support such datatypes in translations by defining a refinement invariant for each
datatype that is encountered. For α list, a new refinement invariant list is defined which

https://doi.org/10.1017/S0956796813000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000282

Proof-producing translation of higher-order logic into ML 303

takes a refinement invariant a as an argument. The definition of list can be automatically
produced from the datatype definition. Here Conv is a constructor-value.

list a [] v = (v = Conv "Nil" [])
list a (x :: xs) v = ∃v1 v2. (v = Conv "Cons" [v1,v2])

a x v1 ∧ list a xs v2

Based on this definition we automatically derive lemmas that aid translation of list-
constructor applications in HOL.

Eval env �Nil	 ((list a) [])

Eval env �x	 (a x) ∧
Eval env �xs	 ((list a) xs) =⇒
Eval env �Cons(x,xs)	 ((list a) (x :: xs))

We also derive lemmas which aid translation of pattern matching over these HOL con-
structors. HOL functions that have pattern matching at the top-level tend to be defined as
using multiple equations. For example, the map function is typically defined as follows:

map f [] = []
map f (x :: xs) = f x :: map f xs

In the process of defining this in HOL, the theorem prover reduces the multi-line definition
to a single line with a case statement, which is as follows:

map f xs = case xs of . . .

It is these single-line definitions that we translate into CakeML functions. By making
sure translations are always performed only on these collapsed single-line definitions, it
is sufficient to add support for translation of case statements for the new datatype:

case l of [] ⇒ . . . | (x :: xs) ⇒ . . .

In HOL, case statements (including complicated-looking nested case statements) are in-
ternally represented in terms of primitive ‘case functions’. The case function for the list
datatype is defined using the following two equations:

list case [] f1 f2 = f1

list case (x :: xs) f1 f2 = f2 x xs

Thus, in order to translate case statements for the list datatype, it is sufficient to be able
to translate any instantiation of list case l f1 f2. The lemma which we use for this is
shown below. This lemma can be read as a generalisation of the lemma for translations of

https://doi.org/10.1017/S0956796813000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000282

304 M. O. Myreen and S. Owens

let-expressions and if-statements.

(h0 =⇒ Eval env �l	 ((list a) l)) ∧
(h1 =⇒ Eval env �y	 (b f1)) ∧
(∀x xs v vs.

a x v∧ (list a) xs vs∧h2 x xs =⇒
Eval (env[n �→ v][m �→ vs]) �z	 (b (f2 x xs))) =⇒

(∀x xs.

h0 ∧ ((l = []) =⇒ h1) ∧
((l = x :: xs) =⇒ h2 x xs)) =⇒

Eval env �case l of Nil => y | Cons(n,m) => z	
(b (list case l f1 f2))

Each time a new datatype is encountered our implementation (Section 6) automatically
defines the refinement invariant and proves lemmas for translation of constructors and
pattern matching. The implementation also attempts to prove lemmas that aid reasoning
about the EqualityType predicate (see Section 4.4.3).

4.4.2 Partial functions and under-specification

The use of pattern matching leads to partiality.5 The simplest case of this partiality is the
definition of hd for lists, which is defined intentionally with only one case:

hd (x :: xs) = x

This definition could equally well have been defined in HOL as

hd xs = case xs of [] ⇒ ARB | (x :: xs) ⇒ x

using the special ARB6 constant in HOL, which cannot be related to any specific CakeML
value because one cannot prove anything in HOL about ARB.

When translating a partially specified definition into CakeML, we can only prove a
connection between CakeML and HOL for certain well-defined input values. For this
purpose we use eq, which was defined in Section 4.2.1, to restrict the possible input values.
The theorem that relates hd to its CakeML counterpart includes a side-condition xs �= [] on
the input, which is applied via eq:

DeclAssum . . . env ∧ xs �= [] =⇒
Eval env �hd	 ((eq (list a) xs → a) hd)

The generated CakeML code includes raise Error7 in the places where the translation
is disconnected from the HOL function.

hd xs = case xs of [] => raise Error | ...

5 All functions in HOL are total. However, their definitions can omit cases causing their equational specification
to appear partial, i.e. they are actually only partially specified.

6 ARB is defined non-constructively using Hilbert’s arbitrary choice operator.
7 We could equally well have generated any other CakeML expression at this point.

https://doi.org/10.1017/S0956796813000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000282

Proof-producing translation of higher-order logic into ML 305

When translating ARB into CakeML, we use a trivially true lemma with false as the
assumption on the left-hand side of the implication.

false =⇒ Eval env �raise Error	 (a ARB)

This false assumption trickles up to the top level causing the side condition, xs �= [] for hd.
Translation of recursive, partially specified functions results in recursive side conditions,

e.g. the zip function is defined in HOL as

zip ([], []) = []
zip (x :: xs,y :: ys) = (x,y) :: zip (xs,ys)

The side condition which is produced for zip is

zip side ([], []) = true

zip side ([],y :: ys) = false

zip side (x :: xs, []) = false

zip side (x :: xs,y :: ys) = zip side (xs,ys)

These side conditions arise in the derivation as assumptions that are not discharged when
the definition-specific induction is applied (see Section 4.3.3).

4.4.3 Equality types

There is another source of partiality: equality tests. CakeML and HOL have different
semantics regarding equality. In CakeML, equality of function closures cannot be tested,
while equality of functions is allowed in HOL. Whenever an equality is to be translated,
we use the following lemma which introduces a condition EqualityType, defined below, on
the refinement invariant a for the values that are tested.

Eval env �x	 (a x)∧Eval env �y	 (a y) =⇒
EqualityType a =⇒
Eval env �x = y	 (bool (x = y))

In contrast to the partiality caused by missing patterns, this form of partiality is neater in
that it applies to the refinement invariant, not the actual input values.

A refinement invariant a supports equality if the corresponding CakeML value cannot
contain a closure and testing for structural equality of CakeML values is equivalent to
testing equality at the abstract level:

EqualityType a =
(∀x v. a x v =⇒¬(contains closure v)) ∧
(∀x v y w. a x v∧a y w =⇒ (v = w ⇐⇒ x = y))

Previously mentioned refinement invariants bool and int satisfy EqualityType.
For each datatype definition we attempt to prove a lemma which simplifies such equality

type constraints, e.g. for the list invariant we can automatically prove

∀a. EqualityType a =⇒ EqualityType (list a)

Such lemmas cannot always be proved, e.g. if the datatype contains a function type or is a
more abstract user-defined extension as outlined in the next section.

https://doi.org/10.1017/S0956796813000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000282

306 M. O. Myreen and S. Owens

4.4.4 User-defined extensions

Our approach to supporting user-defined datatypes in Section 4.4.1 involves machinery
which automatically defines new refinement invariants and proves lemmas that can be
used in the translation process. The same kind of extensions can also be provided by the
user with custom refinement invariants and lemmas for types defined in ways other than
datatype (e.g. a quotient construction).

As a simple example, consider the following naive refinement invariant for finite sets
represented as lists in CakeML:

set a s v = ∃xs. (list a) xs v∧ (s = set from list xs)

Using basic list operations we can prove judgements that can be used for translating
basic sets and set operations, e.g. {}, ∪ and ∈ are implemented by [], append and mem

respectively.

Eval env �[]	 ((set a) {})

Eval env �x	 ((set a) x)∧Eval env �y	 ((set a) y) =⇒
Eval env �append x y	 ((set a) (x∪ y))

Eval env �r	 (a r)∧Eval env �x	 ((set a) x)∧EqualityType a =⇒
Eval env �mem r x	 (bool (r ∈ x))

The example above is naive and can potentially produce very inefficient code. However,
the basic idea can be applied to more efficient data structures, e.g. the datatypes presented
in Okasaki’s book on functional data structures (Okasaki, 1998).

We have implemented extensions which can deal with finite sets, finite maps, natural
numbers and n-bit machine arithmetic.

5 Synthesis of stateful ML

The previous section explained how functions from HOL can be translated into pure func-
tions in CakeML. Functions in HOL have no side effects and as such the translation into
pure CakeML is the most natural target. However, ML code is sometimes significantly
more efficient if references and exceptions are used.

This section presents an experiment where we translate HOL functions into stateful
CakeML that makes use of references and exceptions. In order to translate into stateful
CakeML, we require the HOL functions to be written in terms of a state-and-exception
monad. Our experiment is motivated by a case study which aims to produce a verified
CakeML implementation of the HOL light theorem prover (Myreen et al., 2013).

As part of this case study, the entire HOL light kernel has been defined in HOL as
monadic functions and we have successfully translated all of these functions into stateful
CakeML using the technique outlined in the following subsections.

5.1 A state-and-exception monad

The HOL light case study uses a state-and-exception monad of the following type:

α M = hol refs → α hol result × hol refs

https://doi.org/10.1017/S0956796813000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000282

Proof-producing translation of higher-order logic into ML 307

where hol refs is a record type: the record holds the state of the HOL light kernel, i.e. lists
of that keep track of defined types, constants, axioms etc.

hol refs = <| the type constants : (string×num) list ;
the term constants : (string×hol type) list ;
the axioms : thm list ;
the definitions : def list ;
the clash var : hol term |>

Using this state-and-exception monad, each computation results in something of type
hol result, i.e. either a result or an error message.

α hol result = HolRes α | HolErr string

Based on these types, we define the obvious functions for working with the monad. The
definition of bind, return, failwith and an exception catching function otherwise are shown
below. There are also functions for accessing and updating the state, e.g. get the axioms

and set the axioms access one of the state components (accessing a field of the record).

bind (x : α M) (f : α → β M) state =
case x state of

(HolRes y,state) ⇒ f y state
| (HolErr e,state) ⇒ (HolErr e,state)

return (x : α) state =
(HolRes x,state)

failwith (e : string) state =
(HolErr e,state)

otherwise (x : α M) (y : α M) state =
case x state of

(HolRes y,state) ⇒ (HolRes y,state)
| (HolErr e,state) ⇒ y state

get the axioms state =
(HolRes (state.the axioms),state)

set the axioms x state =
(HolRes (),state[the axioms �→ x])

Using these operations and an appropriate do-notation, it is easy to define the HOL light
kernel as functions in HOL. One of the simplest functions is the definition of map given
in Section 2.3.

5.2 Core definitions for translation of monadic functions

When stateful ML is to be generated, the Eval predicate used for pure CakeML is insuf-
ficient since it cannot refer to the state. We define a version of Eval, called EvalM, that
can make statements about the reference store and exceptions. We define EvalM using an
invariant hol store that specifies the relationship between CakeML’s reference store and
the HOL representation of HOL light’s state, i.e. a record of type hol refs.

hol store refs s =
length s � 5 ∧
list (pair string num) refs.the type constants (store lookup 0 s) ∧
list (pair string hol type) refs.the term constants (store lookup 1 s) ∧
list thm refs.the axioms (store lookup 2 s) ∧
list def refs.the definitions (store lookup 3 s) ∧
hol term refs.the clash var (store lookup 4 s)

https://doi.org/10.1017/S0956796813000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000282

308 M. O. Myreen and S. Owens

We define EvalM env exp post to say that any evaluation from a reference store s that
satisfies the hol store invariant must evaluate to a new store s2 and result res such that post
relates the initial store s and state refs to the result value res, store s2 and state refs2.

EvalM env exp post = ∀s refs.
hol store refs s =⇒
∃s2 res refs2. 〈s,env〉 exp ⇓ 〈s2,res〉 ∧

post (refs,s) (refs2,s2,res) ∧ hol store refs2 s2

Again, the interesting part is how post is instantiated with refinement invariants. We
define M to lift refinement invariants used for Eval to refinement invariants that fit EvalM.
Given a refinement invariant a for use with Eval, M a is the equivalent refinement invariant
for EvalM. At present, the error message from the HOL level is not represented in the
generated CakeML, just to keep things simple.

M (a : α → v → bool) (x : α M) (refs1,state1) (refs2,state2,res) =
case (x refs1,res) of

((HolRes y,refs),Rval v) ⇒ (refs = refs2) ∧ a y v
| ((HolErr e,refs),Rerr s) ⇒ (refs = refs2)
| ⇒ false

Using M, we can state that a monadic computation f computes a list and accesses the state
in the same manner as evaluation of a CakeML expression exp:

EvalM env exp (M (list a) f)

Just as there is the → refinement invariant for Eval, a similar refinement invariant com-
binator, →M, for state-updating closures, is required for EvalM. We define this as follows.
Here evaluate stateful closure (s2,v) c (s3,res3) refers to the CakeML evaluation of clo-
sures: it is true if closure c on input v in state s2 evaluates to a new state s3 and result res3.
Its formal definition is omitted.

pure a x (refs1,s1) (refs2,s2,res) =
∃v. (res = Rval v) ∧ (refs1 = refs2) ∧ (s1 = s2) ∧ a x v

(a →P b) f c =
∀x refs1 s1 refs2 s2 res.

a x (refs1,s1) (refs2,s2,res) ∧ hol store refs1 s1 =⇒
(refs2 = refs1) ∧ (s2 = s1) ∧
∃v s3 res3 refs3.

(res = Rval v) ∧ evaluate stateful closure (s2,v) c (s3,res3) ∧
b (f x) (refs1,s1) (refs3,s3,res3) ∧ hol store refs3 s3

a →M b = pure (a →P b)

Using →M, we can now state the theorem that translation of the stateful map functions
from above is to prove. Here map has type (α → β M) → α list → (β list) M.

. . . =⇒ EvalM env �map	 (((pure a →M M b) →M pure (list a) →M M (list b)) map)

https://doi.org/10.1017/S0956796813000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000282

Proof-producing translation of higher-order logic into ML 309

5.3 Lemmas that aid translation of monadic functions

Translation of monadic functions into stateful CakeML is performed in very much the
same way as the translation into pure CakeML, as described in Section 4. The difference
is that theorems are expressed in terms of EvalM instead of Eval, →M instead of →, etc.
This section presents some of the key lemmas about EvalM that complement or replace the
lemmas about Eval used in Section 4.

The most basic lemma is the following which allows use of pure terms as part of monadic
functions (in this case using return):

Eval env �exp	 (a x) =⇒
EvalM env �exp	 ((M a) (return x))

We translate bind into CakeML’s let expressions using the following lemma:

EvalM env �exp1	 ((M b) y) ∧
(∀x v. b x v =⇒ EvalM (env[n �→ v]) �exp2	((M a) (f x))) =⇒
EvalM env �let val n = exp1 in exp2 end	 ((M a) (bind y f))

Raising an exception is done with failwith and exceptions can be caught using otherwise:

EvalM env �raise 0	 ((M a) (failwith message))

EvalM env �exp1	 ((M a) x) ∧
EvalM env �exp2	 ((M a) y) =⇒
EvalM env �exp1 handle => exp2	 ((M a) (otherwise x y))

We also have lemmas that can be used for reasoning about monadic function values. A
monadic arrow →M can be applied to any expression with a matching refinement invariant:

EvalM env �f	 ((a →M b) f) ∧
EvalM env �x	 (a x) =⇒
EvalM env �f x	 (b (f x))

Similarly, →M can be introduced with either of the following lemmas:

(∀x v. a x v =⇒ EvalM (env[n �→ v]) �body	 (b (f x))) =⇒
EvalM env �fn n => body	 ((pure a →M b) f)

(∀v. a x v =⇒ EvalM (env[n �→ v]) �body	 (b (f x))) =⇒
EvalM env �fn n => body	 ((pure (eq a x) →M b) f)

Using the lemmas shown above and other similar results for EvalM, it is straightforward
to perform the style of proofs explained in Section 4 for translations that produce stateful
CakeML from monadic functions. The overall algorithm, as explained in Section 4.3.2,
is essentially unchanged once lemmas about Eval have been swapped for corresponding
lemmas about EvalM.

https://doi.org/10.1017/S0956796813000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000282

310 M. O. Myreen and S. Owens

6 Implementation and case studies

We have implemented our translation procedure for the HOL4 theorem prover.8 The imple-
mentation is an ML program which performs the proof steps outlined above. Concretely,
the ML program constructs elements of type thm (theorem) using the logical kernel’s
primitives (which correspond to axioms and inference rules of HOL). Following the LCF-
approach, this design ensures that all proved theorems are the result of the basic inference
rules of HOL.

Our implementation produces a certificate of correctness if the translation attempt suc-
ceeds. It is therefore useful to test the robustness of our implementation. The following
list describes examples that our tool successfully translates. The examples consist of a
variety of ML-like functions living within the collection of sample theories that are bundled
with the HOL4 prover. Our implementation has successfully translated a range of different
functions into pure CakeML:

• Miller-Rabin primality test (Hurd, 2003):
This example uses higher-order, recursive and partial functions, and it requires that
all three of these aspects be handled simultaneously.

• An SLR parser generator (Barthwal & Norrish, 2009):
This is a non-trivial algorithm with a long definition: 150 lines in HOL. Its definition
makes use of pattern matching.

• AES, RC6 and TEA private key encryption/decryption algorithms (Duan et al.,
2005):
These algorithms operate on fixed-size word values, which we support through the
technique for user-defined extensions (Section 4.4.4). We represent fixed-size words
as integers in CakeML and use a refinement invariant to make sure the correspon-
dence is maintained.

• McCarthy’s 91 function, quicksort (Slind, 1999) and a regular expression matching
function (Owens & Slind, 2008):
The 91 function and regular expression matcher both have intricate totality proofs,
but our technique can easily and automatically prove termination based on the HOL-
provided induction principles (which were justified by the original totality proofs).

• A copying Cheney garbage collector (Myreen, 2010):
This is a model of Cheney’s algorithm for copying garbage collection—a verified
algorithm used in constructing a verified Lisp runtime (Myreen & Davis, 2011).
It models memory as a mapping from natural numbers to a datatype of abstract
memory values.

• Functional data structures from Okasaki’s book (Okasaki, 1998):

1. heap datatypes: leftist, pairing, lazy, splay, binomial
2. set datatypes: unbalanced, red-black
3. sorting algorithms: merge sort
4. list datatypes: binary random-access lists
5. queues datatypes: batched, bankers, physicists, real-time, implicit, Hood-Melville

8 Source code and examples are available at: https://cakeml.org/

https://doi.org/10.1017/S0956796813000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000282

Proof-producing translation of higher-order logic into ML 311

• CakeML parser, elaborator, type inferencer and compiler (Kumar et al., 2014):
These functions constitute the core part of a verified implementation of CakeML
(part B). This example is much larger than the rest: it consists of approximately 600
functions, some of which are very large.

All algorithms, except those from Okasaki’s book and the last bullet point, have been
previously verified in HOL4. We have verified 13 of the 15 functional data structures from
the last point. These data structures are the examples that Charguéraud (2010) uses for his
characteristic formula technique (except that we omit the bootstrapped heap and catenable
list whose datatypes are not supported by HOL’s datatype package). Our verification proofs
are similar in length to Charguéraud’s. However, Charguéraud had to use special purpose
tactics to deal with his characteristic formulae. In contrast, our verification proofs use only
conventional HOL4 tactics. See the related work section for further comparison.

As mentioned in Section 5, we have used the translation into stateful CakeML on a
sizeable case study: a definition of the HOL light theorem prover’s logical kernel expressed
as monadic functions in HOL. This has been translated into CakeML code that uses refer-
ences and exceptions in the same manner as the original HOL light implementation. The
definition of the HOL light kernel is approximately 500 lines long when expressed in terms
of the state-exception monad that we use.

7 Discussion of related work

There is a long tradition in interactive theorem proving of using logics that look like func-
tional programming languages: notable examples include LCF (Milner, 1972), the Boyer-
Moore prover (Boyer & Moore, 1975), the Calculus of Constructions (Coquand & Huet,
1988) and TFL (Slind, 1999; Krauss, 2009). The logic of the Boyer–Moore prover (and its
successor, ACL2 (?)) are actual programming languages with standard denotational or op-
erational semantics. However, many other systems, including Coq (http://coq.inria.
fr/) and various HOL systems (Norrish & Slind, 2002) (including Isabelle/HOL
(http://www.cl.cam.ac.uk/research/hvg/isabelle/) and HOL4 (http://hol.
sourceforge.net/)), use a more mathematical logic with model-theoretic or proof-
theoretic semantics that differ from standard programming languages, e.g. the logics of
HOL systems include non-computational elements. However, because these logics are
based on various λ -calculi, they still resemble functional languages. A contribution of
our work is to make this resemblance concrete by showing how (computable) functions
in these logics can be moved to a language with a straight-forward operational semantics
while provably preserving their meaning.

Slind’s TFL library for HOL (Slind, 1999) and Krauss’ extensions (Krauss, 2009) make
HOL (which is roughly Church’s simple theory of types) look like a functional language
with support for well-founded general recursive definitions and nested pattern matching.
We rely on TFL to simplify pattern matching expressions (Section 4.4.1).

Extraction from Coq (Letouzey, 2003) has two phases. First, purely logical content
(e.g. proofs about the definitions) is removed from the definitions to be extracted, then
the remaining computational content is printed to a programming language. The first step
is theoretically well-justified; the second operates much as in HOL provers and is what we
address in this paper.

https://doi.org/10.1017/S0956796813000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000282

312 M. O. Myreen and S. Owens

ACL2 uses a first-order pure subset of Common Lisp as its logic, thus there is no
semantic mismatch or need to perform extraction; logical terms are directly executable
in the theorem prover. However, a translation technique similar to the one described in this
paper can be of use when verifying the correctness of such theorem provers (including the
correctness of their reflection mechanisms), as we did in previous work (Davis & Myreen,
2012; Myreen, 2012).

Proof-producing synthesis has previously been used in HOL for various low-level targets
including hardware (Slind et al., 2007) and assembly-like languages (Li & Slind, 2007,
2008; Li et al., 2007). These systems implement verified compilers by term rewriting in
the HOL4 logic. They apply a series of rewriting theorems to a HOL function yielding
a proof that it is equivalent to a second HOL function that uses only features that have
counterparts in the low-level language. Only then do they take a step relating these ‘low-
level’ HOL functions to the low-level language’s operational semantics. This approach
makes it easy to implement trustworthy compiler front-ends and optimisations, but signif-
icantly complicates the step that moves to the operational setting. In contrast, we move to
(CakeML’s) operational semantics immediately, which means that any preconditions we
need to generate are understandable in terms of the original function and not phrased in
terms of a low-level intermediate language. This is why we can easily re-use the HOL-
generated induction theorems to automatically prove termination.

In the other direction, proof producing decompilation techniques (Myreen et al., 2009;
Li, 2011) have addressed the problem of reasoning about low-level machine code by
translating such code into equivalent HOL functions; however, these functions retain the
low-level flavour of the machine language.

Charguéraud’s characteristic formulae approach also addresses translation in the other
direction, from OCaml to Coq (Charguéraud, 2010), and it can support imperative fea-
tures (Charguéraud, 2011). With his technique, an OCaml program is converted into a Coq
formula that describes the program’s behaviour, and verification is then carried out on this
formula. His approach tackles the problem of verifying existing OCaml programs, which,
in particular, require the ability to handle partial functions and side effects. In contrast,
this paper is about generating, from pure functional specifications, CakeML programs that
are correct by construction. Part of our approach was inspired by Charguéraud’s work; in
particular our Eval predicate was inspired by his AppReturns predicate.

8 Future work

In this paper, we show how to create a verified path from the theorem prover to an oper-
ational semantics that operates on ASTs. We have not attempted to solve the problem of
verified parsing or pretty printing. Ultimately, we want a verified compiler that will be able
to accept abstract syntax as input, avoiding the problem altogether. However, it would still
be useful to verify a translation from ASTs to concrete syntax strings for use with other
compilers.

We have implemented our technique in HOL4 for translation to CakeML; however, we
believe it would work for other target languages, so long as they both support ML-like
features and can be given big-step semantics. Haskell support should be straightforward;
laziness poses no problems because we are already proving termination under a strict

https://doi.org/10.1017/S0956796813000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000282

Proof-producing translation of higher-order logic into ML 313

semantics. We do rely on determinism of the big-step semantics for the quantifier shifting
used in eq combinator removal (Section 4.3.4), but most languages that do not define
evaluation order (e.g. Scheme, OCaml) should be able to support a deterministic semantics
for, at least, the pure, total subset.

Our technique should also extend to other provers, including Isabelle/HOL and possibly
even Coq. For function definitions that are in the ML-like fragment (i.e. they do not use
sophisticated type classes or dependent types), including most of those in CompCert, it
should be straightforward to implement our technique, although the details of the imple-
mentation of the automation will vary as certain provers make it inconvenient to program
extensions to the prover in the implementation language of the prover. The HOL4 theorem
prover has a design which encourages programming such extensions.

9 Conclusion

This paper’s contribution is a step towards making proof assistants into trustworthy and
practical program development platforms. We have shown how to give automated, verified
translations of functions in HOL to programs in functional languages. This increases the
trustworthiness of programs that have been verified by shallowly embedding them in an
interactive theorem prover, which has become a common verification strategy. We believe
this is the first automatic mechanically verified connection between HOL functions and
the operational semantics of a high-level programming language. Our case studies include
sophisticated data structures and algorithms, and validate the usefulness and scalability of
our technique.

Acknowledgments

The first author was funded by the Royal Society, UK. Many thanks to the JFP and ICFP
reviewers for their detailed and helpful comments.

References

Aydemir, B. E., Bohannon, A., Fairbairn, M., Foster, J. N., Pierce, B. C., Sewell, P., Vytiniotis, D.,
Washburn, G., Weirich, S. & Zdancewic, S. (2005) Mechanized metatheory for the masses: The
PoplMark challenge. In Theorem Proving in Higher Order Logics (TPHOLs), Hurd, J. & Melham,
T. F. (eds). Berlin: Springer, pp. 50–65.

Barthe, G., Demange, D. & Pichardie, D. (2012) A formally verified SSA-based middle-end: Static
single assignment meets CompCert. In Proceedings of European Symposium on Programming
(ESOP’12), Seidl, H. (ed), vol. 7211. Berlin: Springer, pp. 47–66.

Barthwal, A. & Norrish, M. (2009) Verified, executable parsing. In Proceedings of European
Symposium on Programming (ESOP’09), Castagna, G. (ed), vol. 5502. Berlin: Springer, pp.160–
174.

Boyer, R. S. & Moore, J. S. (1975) Proving theorems about LISP functions. J. Assoc. Comput. Mach.
22(1), 129–144.

Charguéraud, A. (2010) Program verification through characteristic formulae. In Proceedings of
International Conference on Functional Programming (ICFP’10). New York: ACM, 321–332.

https://doi.org/10.1017/S0956796813000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000282

314 M. O. Myreen and S. Owens

Charguéraud, A. (2011) Characteristic formulae for the verification of imperative programs. In
Proceedings of International Conference on Functional Programming (ICFP’11). New York:
ACM, pp. 418–430.

Chlipala, A. (2010) A verified compiler for an impure functional language. In Proceedings of
Principles of Programming Languages (POPL’10). New York: ACM, pp. 93–106.

Coquand, T. & Huet, G. (1988) The calculus of constructions. Inf. Comput. 76(2–3), 95–120.

Dargaye, Z. (2009) Vèrification formelle d’un compilateur pour langages fonctionnels. Paris:
Universitè Paris 7 Diderot.

Davis, J. & Myreen, M. O. (2012) The Self-Verifying Milawa Theorem Prover is Sound (Down to
the Machine Code that Runs it). Available at: http://www.cl.cam.ac.uk/∼mom22/jitawa/
Accessed Nov 1, 2013.

Duan, J., Hurd, J., Li, G., Owens, S., Slind, K. & Zhang, J. (2005) Functional correctness proofs of
encryption algorithms. In Logic for Programming, Artificial Intelligence, and Reasoning (LPAR),
Sutcliffe, G. & Voronkov, A. (eds). Berlin: Springer-Verlag, pp. 519–533.

Harrison, J. (1995) Metatheory and Reflection in Theorem Proving: A Survey and Critique, Technical
Report CRC-053. Cambridge, UK: SRI Cambridge.

Hurd, J. (2003) Verification of the Miller-Rabin probabilistic primality test. J. Log. Algebr. Program.
56(1–2), 3–21.

Krauss, A. (2009) Automating Recursive Definitions and Termination Proofs in Higher-Order Logic.
Munich: Technische Universitiät München.

Kumar, R., Myreen, M. O., Norrish, M. & Owens, S. (2014) CakeML: A verified implementation of
ML. In Principles of Programming Languages (POPL), Sewell, P. (ed). ACM.

Leroy, X. (2009) A formally verified compiler back-end. J. Autom. Reasoning 43(4), 363–446.

Letouzey, P. (2003) A new extraction for Coq. In Types for Proofs and Programs (TYPES). Berlin:
Springer, pp. 200–219.

Li, G. (2011) Validated compilation through logic. In Formal Methods (FM), Butler, M. & Schulte,
W. (eds), vol. 6664. Berlin: Springer, pp. 169–183.

Li, G., Owens, S. & Slind, K. (2007) Structure of a proof-producing compiler for a subset of
higher order logic. In European Symposium on Programming (ESOP), Nicola, R. De (ed). Berlin:
Springer, pp. 205–219.

Li, G. & Slind, K. (2007) Compilation as rewriting in higher order logic. In Automated Deduction
(CADE), Pfenning, F. (ed), vol. 4603. Berlin: Springer, pp. 19–34.

Li, G. & Slind, K. (2008) Trusted source translation of a total function language. In Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), Ramakrishnan, C. R. & Rehof,
J. (eds), vol. 4963. Berlin: Springer, pp. 471–485.

Malecha, J. G., Morrisett, G., Shinnar, A. & Wisnesky, R. (2010) Toward a verified relational
database management system. In Proceedings of Principles of Programming Languages
(POPL’10). New York: ACM, pp. 237–248.

McCreight, A., Chevalier, T. & Tolmach, A. P. (2010) A certified framework for compiling and
executing garbage-collected languages. In Proceedings of International Conference on Functional
Programming (ICFP’10). New York: ACM, pp. 273–284.

Milner, R. (1972) Logic for Computable Functions: Description of a Machine Implementation,
Technical Report STAN-CS-72-288, A.I. Memo 169. Stanford University.

Milner, R., Tofte, M., Harper, R. & MacQueen, D. (1997) The Definition of Standard ML (Revised).
Cambridge, MA: The MIT Press.

Myreen, M. O. (2010) Reusable verification of a copying collector. In Verified Software: Theories,
Tools, Experiments (VSTTE), Leavens, G. T., O’Hearn, P. W. & Rajamani, S. K. (eds). Berlin:
Springer, pp. 142–156.

https://doi.org/10.1017/S0956796813000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000282

Proof-producing translation of higher-order logic into ML 315

Myreen, M. O. (2012) Functional programs: conversions between deep and shallow embeddings. In
Interactive Theorem Proving (ITP), Beringer, L. & Felty, A. (eds), vol. 7406. Berlin: Springer,
pp. 412–417.

Myreen, M. O. & Curello, G. (2013) Proof pearl: A verified bignum implementation in x86-64
machine code. In Certified Programs and Proofs (CPP). Cham, Switzerland: Springer, pp. 66–
81.

Myreen, M. O. & Davis, J. (2011) A verified runtime for a verified theorem prover. In Interactive
Theorem Proving (ITP), van Eekelen, M. C. J. D., Geuvers, H., Schmaltz, J. & Wiedijk, F. (eds),
vol. 6898. Berlin: Springer, pp. 265–280.

Myreen, M. O. & Owens, S. (2012) Proof-producing synthesis of ML from higher-order logic. In
Proceedings of International Conference on Functional Programming (ICFP’12). New York:
ACM, pp. 115–126.

Myreen, M. O., Owens, S., & Kumar, R. (2013) Steps towards verified implementations of HOL
Light. In Interactive Theorem Proving (ITP), Blazy, S., Paulin-Mohring, C., & Pichardie, D. (eds).
Berlin: Springer, pp. 490–495.

Myreen, M. O., Slind, K. & Gordon, M. J. C. (2009) Extensible proof-producing compilation. In
Compiler Construction (CC), de Moor, O. & Schwartzbach, M. I. (eds). Berlin: Springer, pp. 2–
16.

Norrish, M. & Slind, K. (2002) A thread of HOL development. Comput. J. 45(1), 37–45.

Okasaki, C. (1998) Purely Functional Data Structures. Cambridge, UK: Cambridge University.

Owens, S. & Slind, K. (2008) Adapting functional programs to higher-order logic. Higher-order
Symb. Comput. 21(4), 377–409.

Ševčı́k , J., Vafeiadis, V., Nardelli, F. Z., Jagannathan, S. & Sewell, P. (2011) Relaxed-memory
concurrency and verified compilation. In Proceedings of Principles of Programming Languages
(POPL’11). New York: ACM, pp. 43–54.

Slind, K. (1999) Reasoning about Terminating Functional Programs, PhD Thesis. Technical
University of Munich.

Slind, K., Owens, S., Iyoda, J. & Gordon, M. (2007) Proof producing synthesis of arithmetic and
cryptographic hardware. Form. Asp. Comput. 19(3), 343–362.

https://doi.org/10.1017/S0956796813000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000282

