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Classical and symmetrical horizontal convection is studied by means of direct
numerical simulations for Rayleigh numbers Ra up to 3× 1012 and Prandtl numbers
Pr= 0.1, 1 and 10. For both set-ups, a very good agreement in global quantities with
respect to heat and momentum transport is attained. Similar to Shishkina & Wagner
(Phys. Rev. Lett., vol. 116, 2016, 024302), we find Nusselt number Nu versus Ra
scaling transitions in a region 108 6Ra61011. Above a critical Ra, the flow undergoes
either a steady–oscillatory transition (small Pr) or a transition from steady state to a
transient state with detaching plumes (large Pr). The onset of the oscillations takes
place at Ra Pr−1

≈ 5× 109 and the onset of detaching plumes at Ra Pr5/4
≈ 9× 1010.

These onsets coincide with the onsets of scaling transitions.

Key words: buoyancy-driven instability, ocean circulation, turbulent convection

1. Introduction

In a horizontal convection (HC) system, heating and cooling take place over a
single horizontal surface of a fluid layer. Sandstrom (1908) argued that, due to the
absence of a pressure gradient, a closed circulation cannot be maintained in such
systems. However, six decades later, Rossby (1965) demonstrated in his experiments
that HC alone, independent of any other sources, is able to create a circulation of a
fluid and therefore a net convective buoyancy flux. Over the past decades, Rossby’s
set-up has become a popular paradigm case to study this important type of natural
convective system (Hughes & Griffiths 2008; Griffiths, Hughes & Gayen 2013), which
is relevant in geophysical flows like the meridional overturning circulation in the ocean
(Munk 1966; Killworth 1983; Scott, Marotzke & Adcroft 2001; Cushman-Roisin &
Beckers 2011; Scotti & White 2011), in astrophysical flows (Spiegel 1971) and in
engineering applications (Gramberg, Howell & Ockendon 2007). Investigations of HC
systems are also necessary for understanding the effect of polar amplification on the
ocean circulation (Holland & Bitz 2003), i.e. a phenomenon of global warming that
decreases the temperature contrast between the poles and mid-latitudes.
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In any convective system, a naturally arising question is: How do the global
heat transport (Nusselt number Nu) and momentum transport (Reynolds number Re)
depend on the main input parameters (Rayleigh number Ra and Prandtl number Pr)?
While considering a laminar boundary layer (BL) and balancing buoyancy and viscous
dissipation terms inside the BL, Rossby (1965) proposed a relation Nu∼Ra1/5Pr0. The
existence of the ∼Ra1/5 regime was supported by various numerical and experimental
studies (e.g. Mullarney, Griffiths & Hughes 2004; Gayen, Griffiths & Hughes 2014),
but the predicted Pr invariance of Nu does not hold for small Pr (e.g. Shishkina
& Wagner 2016). By considering the dynamics to be driven by a turbulent endwall
plume, Hughes et al. (2007) proposed the scaling Nu ∼ Ra1/5Pr1/5, but, as shown
in Shishkina & Wagner (2016), the proposed Pr scaling is too strong and is not
supported by direct numerical simulations (DNS). Whereas the Rossby model is
based solely on the BL scalings, the model by Shishkina, Grossmann & Lohse
(2016) (SGL model), which is an extension of the Grossmann & Lohse (2000, 2001,
2004) theory to HC, is able to account for laminar regimes as well as for regimes
where the mixing is governed by turbulent processes. In particular, the SGL model
suggests Nu∼ Pr0Ra1/4 for large-Pr and Nu∼ Pr1/10Ra1/5 for small-Pr laminar flows,
which was supported by several numerical studies (Shishkina & Wagner 2016; Ramme
& Hansen 2019).

However, verification of the other regimes needs further investigations. For this,
high-Ra DNS or experiments are needed, which turn out to be challenging tasks. On
the one hand, the very slow diffusion in the system is a critical problem for the DNS
of (almost) steady flows. On the other hand, in experiments, unwanted heat losses
through the vertical walls can affect the scaling results significantly (Ahlers 2000).
Therefore, in this work we focus on two set-ups: classical horizontal convection (CHC)
and symmetrical horizontal convection (SHC), which can be more suitable for future
experiments. Here we report three-dimensional (3-D) DNS results for Ra 6 3 × 1012

and Pr= 0.1, 1 and 10.

2. Theoretical background

We consider a fluid layer that is confined in a rectangular box and heated and
cooled locally from the bottom. In the CHC set-up, heating and cooling are applied to
the opposite bottom ends (figure 1a); while in the SHC set-up, the bottom is cooled at
the ends and heated in the central part (figure 1b). The advantage of the SHC set-up
over the HC one is the absence of the vertical endwall attached to the heated plate,
which is difficult to isolate thermally in experiments. For both set-ups, we conducted
extensive 3-D DNS over the range of parameters shown in figure 1(c), where the DNS
data for CHC and Ra< 3× 1011 are taken from Shishkina (2017).

The governing equations in the Oberbeck–Boussinesq approximation for the
dimensionless velocity u, temperature θ and pressure p read as follows:

∂u/∂t+ u · ∇u+∇p=
√

Pr/Ra∇2u+ θez,

∂θ/∂t+ u · ∇θ = 1/
√

PrRa∇2θ, ∇ · u= 0.

The equations were made dimensionless using the free-fall velocity uff ≡ (αg1L)1/2,
the free-fall time tff ≡ L/uff , the temperature difference ∆≡ T+ − T− between heated
(T+) and cooled (T−) plates, and L the cell length (CHC) or half cell length (SHC).
The dimensionless parameters Ra and Pr and the aspect ratio Γ are then defined as

Ra≡ αg1L3/(κν), Pr≡ ν/κ, Γ ≡ L/H = 10,
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FIGURE 1. Sketch of (a) CHC and (b) SHC set-ups. Colours inside the cells represent the
lengthwise velocity ux: ux > 0 (pink) and ux < 0 (blue). (c) The studied parameter range
for CHC (closed symbols) and SHC (open symbols).

I∗l Il IIl III∞ IVu IVl

Nu∼ Pr0Ra1/4 Pr1/10Ra1/5 Pr1/6Ra1/6 Pr0Ra1/4 Pr0Ra1/4 Pr1/3Ra1/3

Re∼ Pr−1Ra1/2 Pr−4/5Ra2/5 Pr−2/3Ra1/3 Pr−1Ra1/2 Pr−2/3Ra1/3 Pr−2/3Ra1/3

TABLE 1. Limiting scaling regimes in HC, according to Shishkina et al. (2016).

where H is the cell height, ν the kinematic viscosity, α the isobaric thermal expansion
coefficient, κ the thermal diffusivity and g the acceleration due to gravity. In the CHC
configuration, the temperature boundary conditions (BCs) at the bottom are θ = 0.5 for
0 6 x 6 0.1 and θ =−0.5 for 0.9 6 x 6 1. The other walls are adiabatic, ∂θ/∂n= 0,
where n is the wall-normal vector. The velocity BCs are no-slip everywhere. In the
SHC set-up, the small vertical endwall near the heated plate is removed and the whole
cell is extended by reflection of the cell with respect to the removed endwall. The
used finite-volume code is Goldfish (Kooij et al. 2018). A list of all simulations, their
spatial resolutions and averaging times are included in the supplementary material
available at https://doi.org/10.1017/jfm.2020.211.

The SGL model proposes different scaling regimes based on an assumption that, in
HC, the globally averaged kinetic (εu) and thermal (εθ ) dissipation rates,

〈εu〉V = αg〈uzθ〉V 6 αgκ∆/(2H)= (Γ /2)(ν3/L4)Ra Pr−2, (2.1)
〈εθ 〉V =−(κ/H)〈θ∂θ/∂z〉z=0 = (Γ /2)(κ∆2/L2)Nu, (2.2)

are determined by either the BLs (laminar flows) or the bulk (turbulent flows). Here
〈·〉V denotes the time and volume average and 〈·〉z=0 the time and area average at z=0.
All this leads to different scaling regimes of Nu and Re versus Ra and Pr (see table 1).
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FIGURE 2. (a) The log–log plot of Nu versus Ra for Pr= 0.1 (circles), Pr= 1 (squares)
and Pr= 10 (diamonds) for CHC (closed symbols) and SHC (open symbols). (b–d) Plots
of Re based on 〈U2

〉V (circles) and of Re+ based on 〈U2
〉+ (squares), the kinetic energy

average only above the heated plate. The first onsets in the scalings coincide with the
instability onsets found in § 3.2; other irregularities correspond to changes in the flow
regimes – e.g. (c) Ra ≈ 1011 and onset to plume regime – as shown in figure 4. The
straight scaling lines are a guide to the eye.

3. Results

3.1. Global heat and momentum transport
We start our analysis with the Ra dependences of Nu and Re, using the definitions

Nu≡ 〈|∂zθ |〉z=0/〈|∂zθc|〉z=0, Re≡
√
〈U2
〉V L/ν,

where 〈|∂zθc|〉z=0 is the magnitude of the heat flux considering a pure conductive
system subjected to the same BCs (here 1

2 〈|∂zθc|〉z=0 ≈ 1.12) and Re is based on the
total kinetic energy. The results are presented in figure 2. First we observe that Nu
and Re in CHC (solid black) and SHC (open colour) match remarkably well, with
nearly equal absolute values over the whole parameter range. Therefore, both set-ups
can be used for the investigation of the global heat and momentum transport in
HC. However, there exist differences in the flow structures, which will be discussed
in § 3.2.
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The DNS reveal a rather complex scaling dependence, with multiple transitions.
Starting from left to right in figure 2(a) we find the following. First, Nu∼ Ra1/4 for
lower Ra, which corresponds to regime I∗l in the SGL model, previously supported by
Shishkina & Wagner (2016) and Ramme & Hansen (2019). As Ra increases, all three
sets of data for different Pr show a rather sharp transition to a scaling Nu ∼ Ra1/5.
Note that the critical Ra, where this transition occurs, increases with increasing Pr.
The ∼Ra1/5 scaling seems to persist up to our highest Ra for Pr= 0.1. Regime IIl of
the SGL model was not observed in our DNS, because Pr= 0.1 is still too large for
this regime (Passaggia, Scotti & White 2018). For Pr=1 and 10, the curves rise again
at higher Ra, leading to a scaling exponent of approximately 0.24 and 0.23. Figure
2(b–d) shows Re∼Ra2/5 for small Ra (regime Il) and Re∼Ra1/3 for larger Ra and no
I∗l regime at low Pr. However, when Re is based on 〈U2

〉+, where 〈·〉+ denotes average
in time and over the volume exclusively above the heated plate(s), we find scaling
transitions consistent with the Nu–Ra transitions of figure 2(a). In general, the Re
scaling is sensitive to its spatial averaging domain. This displays the inhomogeneous
nature of HC flows. To explain the scaling transitions, we will have a further closer
look at the flow topology and its changes and relate them to the transitions in the
scaling relations.

3.2. Dynamics: plumes and oscillations
In general, the HC dynamics are rich in flow structures and instability transitions.
Paparella & Young (2002) observed that HC flows become unsteady with growing Ra,
while higher-Pr flows are stable over a broader range of Ra. Chiu-Webster, Hinch &
Lister (2008) and Ramme & Hansen (2019) noticed the existence of time-dependent
flows for highly viscous flows. Gayen et al. (2014) showed, for Pr=5 and varying Ra,
that the flow goes through a sequence of stability transitions, starting with the growth
of plumes in the BL, followed by convective rolls at higher Ra, and finally show fully
3-D turbulence within a region above the hot BL at Ra≈ 5× 1011. The linear stability
analysis of Passaggia, Scotti & White (2017) for Pr = 1 supports these findings and
suggests that there exists a competition between 3-D rolls around a streamwise axis
and two-dimensional (2-D) Rayleigh–Taylor (RT) instability. The former seem to be
dominant in wider cells, as found by Sukhanovsky et al. (2012), whereas the latter
seems to be most relevant for no-slip BC in narrow cells. Sheard & King (2011) found
that the onset to unsteady flows is independent of vertical confinement for 0.16 6
Γ 6 2, and Passaggia et al. (2018) observed the maximum growth for the 2-D plume
instabilities at Γ = 6. HC instability was studied also for the cases of a BL synthetic
jet (Leigh, Tsai & Sheard 2016), 2-D HC (Tsai et al. 2016) and different temperature
BCs (Tsai et al. 2020).

In our DNS we found the existence of 2-D RT instabilities, which manifest
themselves as sheared plumes that arise above the heated plate and which travel
towards the endwall (CHC) or the centre (SHC), as shown in figure 3(a). However,
for small Pr and especially in SHC flows, we found a different time-dependent
behaviour prior to plumes emerging, which is an oscillatory instability, that breaks
symmetry in SHC (3b). These plume- and oscillatory-induced transitions to the
unsteady state are explained below.

3.2.1. Plumes
In terms of time scales, detached plumes can occur if the time scale of the

development of RT instabilities TRT is shorter than the advection time scale Twind of
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FIGURE 3. Snapshots of the temperature field for (a) detaching plumes (Pr = 10, Ra=
1010) and (b) oscillations (Pr= 0.1, Ra= 3× 108) in SHC.

the large-scale wind: TRT/Twind < Cp, for a certain constant Cp. The e-folding time
scale of RT instabilities (a characteristic time scale for RT instabilities to grow by
the factor 1/e) equals TRT ∼ ν

1/3/(αg∆)2/3 (Chandrasekhar 1981) and the time scale
of the wind velocity equals Twind ∼ L2/(Re ν), which leads to an estimate

Twind/TRT = Ra2/3/(Re Pr2/3). (3.1)

As the plumes detaching regime is anticipated for large Pr, we make use of the
scaling relation Re∼Pr−1Ra1/2 of the regime I∗l (see table 1), which gives Twind/TRT ∼

Pr1/3Ra1/6. Thus, a certain critical value of Pr1/3Ra1/6, or an equivalent critical value
of Pr2Ra, determines the onset of the detached plumes. Note that the absolute value of
the constant Cp can be determined from simulations or experimental data. This relation
shows that, for low Pr, the critical Ra increases. Physically explained, the larger wind
speed of low-Pr flows advects growing plumes faster to the endwall (CHC) or the
centre (SHC) before they become distinguishable from the thermal BL.

The solid red curves for Pr2Ra≈ 1011 in figure 4(a) and 4(b) give a rough estimate
of the Pr and Ra dependence of the onset of the plume-dominated regime. However,
using Re scaling relations from the DNS instead of the SGL model, namely Re∼Ra2/5

(figure 2b) and Re∼Pr−1 (Shishkina & Wagner 2016), together with (3.1), we obtain
∼Pr5/4Ra. And, indeed, DNS (dashed curves in figure 4) supports that a constant
Pr5/4Ra≈ 9× 1010 determines the onset of the detached plumes regime.

At higher Ra, plumes will detach faster, and for sufficiently large Ra one finds
multiple plumes detaching from the thermal BL. This phenomenon was reported in
Passaggia et al. (2017) for Ra = 9 × 1014, where plumes were visible immediately
after entering the convectively unstable region.

3.2.2. Oscillations
A laminar flow in SHC can be thought of as a configuration of two convective flows

in subcells meeting in the centre and circulating in opposite directions. While talking
about oscillations, we refer to a horizontal movement of these two large structures
and analyse an oscillatory movement at the location where the two rolls meet. This
location oscillates periodically around the geometric centre of the cell and thus breaks
its symmetry.

Following the same strategy as in the previous section, the onset of oscillations
can be described in a simplified way as follows. Assume there exists a temperature
fluctuation in one of the subcells near the centreline, which, due to buoyancy forces,
leads to a local velocity change 1v of a flow parcel travelling upwards (relative
to the base flow) against the viscous forces. As the speed increases, the pressure
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FIGURE 4. The Ra–Pr phase space of the flow dynamics: steady (diamonds), oscillations
(open squares), plumes (triangles) and chaotic (open circles). The solid lines in (a) and
(b) show the theoretically predicted onsets of oscillation and plume regime, the red dashed
line the semi-empirical predicted plume regime onset. The other four plots (c–f ) show
the evolution of the heat flux that enters the left half (red) and the heat flux that enters
through the right half of the heated plate (grey), which in the oscillatory regime are in
antiphase (represented by dashed lines in (d) and (e)). The normalized frequencies for
plume detaching fp and oscillatory movement fo are (c) fp ≈ 0.298, (d) fp ≈ 0.522 and
fo ≈ 0.070, (e) fo ≈ 0.068 and ( f ) chaotic.

drops according to Bernoulli’s theorem, which consequently initiates a horizontal
pressure gradient between the two convective subcells. This essentially reflects the
underlying role of the pressure term in the Navier–Stokes equations, which can
transfer energy between modes of different directions (Batchelor 1953). Therefore, a
vertically directed force (buoyancy) can induce horizontal oscillations.

The characteristic velocity of this Stokes-type flow is 1v∼ (αg1L2)/ν and the time
scale is Tp≈ L/(1v)= ν/(αg1L). The stabilizing antagonist here is the viscous force,
which acts as preserving for the symmetric flow profiles and the viscous time scale
is Tν = L2/ν. The oscillations happen as soon as the shear time scale becomes large,
unable to smooth out the asymmetric flow profiles at a certain constant value of Tν/Tp:

Tν/Tp = Ra/Pr=Gr. (3.2)

Our DNS results (figure 4a,b) indicate that the critical value is Ra/Pr ≈ 5 × 109,
supporting the above described physical picture. This is consistent with the results
of Paparella & Young (2002), who found that the transition to a time-dependent
flow occurs at Ra/Pr ≈ 1.6× 108. The discrepancy in the prefactors is explained by
different BCs and that their simulations were 2-D. Two remarks about figure 4 should
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FIGURE 5. Kinetic dissipation rate versus Re (as defined in § 3), for (a,d) Pr = 0.1,
(b,e) Pr= 1 and (c, f ) Pr= 10 in (a–c) CHC and (d–f ) SHC. Vertical dashed lines indicate
the corresponding onsets of oscillations (O) and plumes (P). Shown are total dissipation
rate (εu) and contributions from the mean flow (εu) averaged over the whole domain 〈·〉V
or averaged specifically over the domain above the heated plate 〈·〉+. Negative slopes
(inclined dashed lines) show εu ∼ Re2; positive slopes show εu ∼ Re3.

be made. First, especially for low Pr, periodic oscillations exist only near the onset
of the instability (figure 4e). With increasing Ra, the flow becomes chaotic (figure
4f ). Second, we cannot identify the regime of oscillations in CHC, but found the
onset to a time-dependent and not plume-determined flow with a similar trend.

The different plots in figure 4(c–f ) show the time signals of the vertical heat
flux, averaged over the heated plates. As discussed, low-Pr flows show oscillations
and chaotic behaviour, while for large Pr we find the presence of plumes and
a combination of plumes and oscillations. In general, the frequency of detaching
plumes is an order of magnitude larger than the oscillatory frequency (see caption of
figure 4). It remains to be noted that the locations of onsets to time-dependent flows
shown in figure 4(a,b) coincide with Nu and Re transitions as seen in figure 2(a,b).

3.3. Dissipation rates
To study how the transition to a time-dependent flow can affect the global scalings
(analysed in § 3.1), we now analyse the kinetic (εu) and thermal (εθ ) dissipation
rates and assess the results in the context of the SGL model. Following Ng et al.
(2015), we decompose the dissipation rates into their mean and fluctuating parts:
〈εu〉V = 〈εu〉V + 〈ε

′

u〉V = ν[〈(∂Ui/∂xj)
2
〉V + 〈(∂u′i/∂xj)

2
〉V]. This will give us a qualitative

understanding about the role that fluctuations have on the mixing process. Additionally,
we consider the volume averages restricted to the domain part above the heated plate,
〈·〉+, where we expect the most turbulent fluctuations.
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FIGURE 6. Thermal dissipation rate versus Re (as defined in § 3) for (a,d) Pr = 0.1,
(b,e) Pr= 1 and (c, f ) Pr= 10 in (a–c) CHC and (d–f ) SHC. Vertical dashed lines indicate
the corresponding onsets of oscillations (O) and plumes (P). Shown are total dissipation
rate (εθ ) and contributions from the mean flow (εθ ) averaged over the whole domain 〈·〉V
or averaged specifically over the domain above the heated plate 〈·〉+.

For 〈εu〉V one can expect either the BL scalings ∼Re2, ∼Re5/2 or bulk scaling ∼Re3.
Figure 5 shows a non-monotonic behaviour in all cases. First, for the lowest Re, the
scaling shows approximately 〈εu〉V ∼ Re2 behaviour, which corresponds to regime
I∗l with Nu ∼ Ra1/4. As Re increases, we observe a rather rapid increase of 〈εu〉V
leading to positive slopes in the compensated plot. The sudden increase in 〈εu〉V is
accompanied by a region where the dissipation of the mean flow starts to drop. The
total kinetic dissipation rate in the region above the heated plate 〈εu〉+ increases even
stronger and, for high Ra, most of the energy dissipates inside this region. The value
of Re where the first dissipation increase occurs correlates strongly with the transition
to a time-dependent flow, as indicated by the vertical dashed lines. Subsequently,
the curves drop again to slopes in between ∼Re5/2 and ∼Re3. For high Re and
especially for low Pr, we observe that the contribution from the mean flow 〈εu〉V is
no longer dominant, which matches the observations of Mullarney et al. (2004) and
Scotti & White (2011) that turbulent fluctuations start to become dominating in HC.
For our highest Ra and Pr = 1 (figure 5b), a transition to a turbulent regime ∼Re3

appears, but more data points at higher Re are needed to extend this trend. Another
observation one can make from figure 5(a,d) is that, for increasing Re, 〈εu〉V and
〈εu〉+ first converge and then slightly diverge again. This is explained by the fact that
the region where a turbulent flow is present starts above the heated plate, but then
spreads over an increasingly larger volume of the domain.

In figure 6 the thermal dissipation rate is analysed in a similar way. Other than for
the kinetic dissipation, there is no observable effect from the onset of the instabilities.
Moreover, it is evident that the contributions of turbulent fluctuations is small for
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all studied Ra and that the total thermal dissipation is well described by its mean
field contribution. Only for our largest Ra and only above the heated plate does the
mean flow dissipation deviate slightly from the total thermal dissipation. The scaling
is approximately εθ ∼ Re1/2 to εθ ∼ Re3/4 and nearly constant.

In summary, we found a strong enhancement of εu in the vicinity of the onset
of the first instabilities. These locally occurring changes can cause the sharp scaling
transitions, as observed in § 3.1, suggesting not a ‘scale-free’ region. The contributions
of the mean dissipation εu gradually decrease, and for large Re we observe εu ∼ Re3,
which hints towards a transition to a turbulent regime. The temperature fluctuations,
for all studied Ra, contribute little to the total thermal dissipation rate, in contrast to
the situation of the kinetic dissipation.

4. Conclusions

Long-runtime DNS were conducted for several decades of Ra and Pr = 0.1, 1
and 10, for classical and symmetrical HC, in order to investigate the global scaling
relations and the flow dynamics. The obtained results can be summarized as follows.

First, for the same parameters (Ra, Pr), the SHC and CHC systems provide nearly
the same heat and momentum transport (Nu,Re). Thus, we conclude that SHC set-ups
can serve as a good alternative to CHC in studying HC systems, which may give a
better experimental accuracy, since it gets along without isolating the critical hot wall.
The Nu versus Ra scaling analysis for both set-ups showed evidence for regimes
Il and I∗l , according to Shishkina et al. (2016), as found previously in Shishkina &
Wagner (2016) and Ramme & Hansen (2019). Further, the Nu evolution suggests
another transition phase for Ra> 1010 and Pr > 1, which we found to be presumably
related to the transition from a steady to a time-dependent bulk flow. For our highest
Ra= 3× 1012, both Pr show a slope of Nu∼ Ra0.24.

Second, the analysis of the dynamics of HC systems reveals three different unsteady
flow regimes: detached plume regime, oscillatory regime in SHC and chaotic regime.
The onsets of the former two instabilities have been obtained theoretically up to a
constant and were confirmed by our DNS data. Detaching plumes dominate high-Pr
flows and are found above a critical Ra Pr5/4

≈ 9 × 1010, while the oscillatory
instability starts at a Ra/Pr ≈ 5 × 109 and is therefore dominating especially in
small-Pr fluids. A subsequent examination of the kinetic and thermal dissipation rates
showed that the onsets of these instabilities coincide with a strong increase in the
total kinetic dissipation and a simultaneous decrease in its mean field contribution.
Our DNS show also that velocity fluctuations become the dominating part of 〈εu〉V ,
while the temperature fluctuations contribute only a little to 〈εθ 〉V (less than 5 %).

Further experimental or numerical investigations for Ra> 1012 are absolutely crucial
for verifying of the other regimes of the SGL model and for the understanding of the
role of buoyancy forcing on the ocean dynamics.
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