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ON THE STRUCTURE OF 
FINITELY PRESENTED LATTICES 

G. GRATZER, A. P. HUHN AND H. LAKSER 

1. Introduction. A lattice L is finitely presented (or presentable) if 
and only if it can be described with finitely many generators and finitely 
many relations. Equivalently, L is the lattice freely generated by a finite 
partial lattice A, in notation, L = F (A). (For more detail, see Section 
1.5 of [6].) 

It is an old "conjecture" of lattice theory that in a finitely presented 
(or presentable) lattice the elements behave "freely" once we get far 
enough from the generators. 

In this paper we prove a structure theorem that could be said to verify 
this conjecture. 

THEOREM 1. Let L be a finitely presentable lattice. Then there exists a 
congruence relation 6 such that L/6 is finite and each congruence class is 
embeddable in a free lattice. 

COROLLARY. Every finitely presentable lattice L can be written in the 
form L = C\ \J . . . VJ Cn, where the Ci are pair wise disjoint convex sub-
lattices of L and each d is a sublattice of a free lattice. 

As an application we shall prove that if L is a finitely presentable lat
tice, then modularity implies finiteness. 

2. Proof of theorem 1. Let X be a finite set and let A be a partial 
lattice defined on X. We outline the solution to the word problem in 
F(A), due to R. A. Dean [3]; see also H. Lakser [9]. 

Denote by P(X) the algebra of polynomial symbols in the two binary 
operation symbols V and A generated by the set X. Then F (A) is the 
image of P(X) under a homomorphism pA: P(X) —> F (A) with XpA — X 
for x £ X. We describe the kernel of pA. 

For each p £ P(X) we define an ideal pA and a dual ideal pA of A. 
For p G X,pA = (p] (in A) and pA = \p), 

(p V q)A = pA V qA, 

and 

(P A q)A = pA A qA, 
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the V and A on the right hand sides denoting the ideal join and meet 
in A. 

Dually, 

(p A q)A = pA V qA 

and 

(p V q)A = pA A qA. 

We define a quasiorder ^ o n P(X) ; p SA Q if and only if it follows 
from one of the five rules below: 

(Wc) pAnqA^&; 

(WW) p = p! V p2, p\ SA q and p2 SA q\ 

(AWO P = pi A p2, P\ SA q or ^2 ^ A g; 

(Ww) q = qi V q2, p SA q\ or p SA q<i\ 

(WA) q = qi A q2, p SA g\ and p SA £2. 

Note that, since 4̂ is finite wre can compute in the lattice 1(A) of ideals 
of A and in the lattice D(A) of dual ideals of A, and thus p SA q is 
decidable. 

Finally we define the relation ~A on P(X) ; 

p ~A q if and only if p SA q and q SA P-

The solution to the word problem is: 

PROPOSITION 1 (R. A. Dean [3]). (i) If p,q £ P(X), then ppA S qpA 

if and only if p S A q-
(ii) If p, q £ P(X), then ppA = qpA if and only if p~A q, that is, 

~A = Ker pA. 
(iii) IfpeP(X), then 

PA = (ppA]r\X 

and 

PA = IP PA) r\ x. 

A converse to Proposition 1 (i) is provided by the following proposition. 

PROPOSITION 2. Let p, q Ç P(X) and let p SA q-

(i) If p = pi V p2} then pi SA q and p2 ^ g . 
(ii) If q = qi A q2, then p S A 51 and p S A q^ 

(iii) Ifp = p1Ap2,q = qiV q2} and pA C\ qA = 0, 
then 

PA n (qi)A = pAr\ (q2)A = (p,)A n q A = (p2)
A r\qA = & 

and either pt SA q, i = 1 or 2, or p SA q%, i = I or 2. 
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Proof, (i) and (ii) follow immediately from Proposition l ( i ) . As for 

(Hi), 

0 = p*nqA = pAr\ ((g,)A V (qt)A) 3 pA H ((<ZI)A U fa»)*) 

= (^ n (3I)A) U (£A n («,)*), 
and similarly for £iA H çA. Finally, since p SA ç does not follow from 
condition (Wc), it must follow from either condition (AW) or condition 
(Wy), which is the final assertion of (iii). 

For a pair (I, / ) with I £ 1(A) and J £ D(A), let 

PA(I,J) = {p G P ( X ) | ^ = J a n d ^ = / } , 

and let 

CA(I,J) = (PA(I,J))PA. 

PROPOSITION 3. / / PA(I, J) 9e 0, /feew it is a subalgebra of P(X) and 
CA(I, J) is a convex sublattice of F (A). Moreover, 

CA(I,J) = K F(A)\(a]r\X = I and [a) n X = J}. 

Proof. Hp,q e PA(I, J ) , then e.g., (p V q)A = pA V qA = I V I = I. 
Thus PA(Ij J) is a subalgebra of P(X) and so CA(Ij J) is a sublattice of 
F (A). 

H p,q e PA(I,J) and £ SA r SA a then, by l(i) and 1 (iii), / = 
PA S ? A S aA = I\ thus rA = I, and, similarly, rA = J. Consequently, 
CA(I, J) is a convex sublattice of F (A). 

The last clause of the proposition follows from Proposition l(iii), 
concluding the proof of the proposition. 

The sublattices of F (A) of the form CA(I, J) are finite in number, and 
it can be verified easily that the relation 

a = b(d) if and only if (a] H X = (b] Pi X and 

[a) r\ x = [&) n x 
is a congruence relation on F (A). Thus to complete the proof of Theorem 
1 we need only show that each sublattice CA (I, J) can be embedded in a 
free lattice. To do this, we first embed CA (I, J) into the completely free 
lattice generated by the underlying poset of A. Now this poset can be 
regarded as a partial lattice B where joins and meets are defined only for 
comparable elements and then the completely free lattice is F(B). 
Without too much extra work we can establish a more general embedding 
theorem. 

Let A and B be partial lattices defined on the finite set X. We say that 
B is weaker than A if they have the same underlying poset and any join 
or meet defined in B is also defined in A and has the same value. Note 
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t ha t under this condition, any ideal (dual ideal) of A is an ideal (dual 
ideal) of B. 

T H E O R E M 2. Let A and B be partial lattices on the finite set X. If B is 
weaker than A, then there is an order-embedding f*': F (A) —> F(B) with the 
property that if I £ 1(A), J € D(A), and CA(I, J) j* 0, thenf* restricted 
to CA (I, J) is a lattice embedding. 

Proof. We define a mapping / : P(X) —>P(X). Since A and V in 
P(X) are neither commutat ive nor associative we first introduce a 
technical convention: we assign a fixed linear order (completely un
related to the part ial order determined by A and B) to X. T h e action of 
/ is defined by the following three conditions: 

(/„) Up e X, then pf = p; 
( / v ) If p = pi V p2 and pA = {xi, . . . , xn\ with x1} . . . , xn listed 

in the above linear order, then 

Pf= ('-'((PifVPtf) V x,) V . . . ) V xn; 

( /A) If p = p! A p2 and pA = {yu . . . , ym\ with yu . . . , ym in the 
linear order, then 

Pf=(-. -((Pif A p2f) A yi) A . . .) A ym. 

Note first of all tha t , for each p £ P(X), pB C pA and pB Ç pA (as 
subsets of X ) . These facts are immediate from the definitions since ideals 
(dual ideals) of A are ideals (dual ideals) of B; consequently, if / , / are 
ideals (dual ideals) of A then / V / in B is a subset of / V J in A. 

We now verify some s ta tements . 

Statement (1). Up £ P(X), then pA = (pf)B and pA = (pf)B. 
T h e proof is by induction on the rank of p. If p £ X, then pA = 

(PI)A = ( £ / ) B by definition. lî p = p! V p2 and £A = {xi, . . . , xn}, 
then 

( # ) * = (Pif)** V ( M ) B V (xj] V . . . V ( x j 

= (Pif)n V (p2f)B y PA 

= (PI)A V (p2)A V ^ (by induction) 

= PA 

since 

( P I ) A , (^2)A Q PA 

where all ideal joins on the right are in 1(B). If p — p\ A pi and 

pA = {xu • • • , xn}, then 

(pf )B = (pif )B n (p2/ )B r\ (Xl] n . . . n (xj 
= (PI)A n ( £ 2 ) A H (xi] n . . . n ( x j (by induction) 

= PA n (xi] n ... n (xj 
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since pA C (x{] by Proposition l ( i i i ) . T h e dual a rgument establishes 

PA = {pf)B. 

Statement (2). Let xu . . , xm, yu • • ,yn 6 ^ let p i , p 2 , #i, g 2 G PCX"), 
and let p = (. . .((pi A p2) A *i) A . . .) A xm, g = (. . . ((ci V ç2) V 
3>i) V . . .) V yn. If p SB q and pB C\ qB = 0, then either pi SB q for 
i = 1 or 2 or f ^ B Ç J for i = 1 or 2. 

T h e proof proceeds by induction on m + n. If m + n = 0, then the 
result follows by Proposition 2(h i ) . In general, by Proposition 2(hi) one 
of the following four conditions mus t hold 

(i) xm SBq\ 
(ii) P SByn\ 

(hi) (. . .((pi A p2) A xi) A . . .) A xm-i SBq; 
(iv) p SB (•• .((gi V g2) V 3>0 V . . .) V yn-i. 

(i) and (ii) contradict the hypothesis pB C\ qB = 0. From (iii) we con
clude by induction t ha t either 

Pi SB q, i = 1 or 2, or 

(. . .((Pi A p 2 ) A Xi) A . . .) A xw_i SBqu i = 1 or 2. 

Since £ ^ B ( . . .((pi A £2) A Xj) A . . .) A xm_i we conclude, in the 
la t t e r case, t h a t p S B qu i = 1 or 2. If condition (iv) holds we proceed 
in a similar manner . 

Statement (3). Let p, q £ P(X). Then £ :gA 5 if and only if pf SB qf. 
First assume tha t p SA q- If p SA q by condition (Wc) , t h a t is, if 

pAC\qA9^ 0, then, by S ta t emen t (1), (pf ) B C\ (qf)B 9* 0, t h a t is, 
Pf SB qf- Otherwise, we proceed by induction on the sum of the ranks of 
p and q. If p SA q by condition (WW), t h a t is, if p = pi V p2 and 
pi^Aq, p2^Aq, then pif^Bqf and p2f ^Bqf and, if x 6 £A , then 
x ^ A P SAq and so x = xf SB qf. T h u s p / SB qf by successive applica
tions of (WW). 

If £ ^ A 5 follows by (AWO, t h a t is, if p = pi A p2 and say, p i SA q, 
then p i / SB qf and so pf S B qf by successive applications of ( A W ) . 

If P ^ A ? follows by condition (WA) (WW), the si tuat ion is the dual 
of the above. We thus conclude t h a t p SA q implies pf SB qf. 

Now assume t h a t pf ^Bqf. If (pf ) B P\ (qf ) ^ 0 then, by S ta t emen t 
(1), pA C\ qA 9^ 0 and so p SA q. W e can thus assume t h a t (pf ) B f~\ 
(qf )B = 0- If p = pi V p 2 , then pf ^Bqf implies t h a t pif SB qf and 
£2/ ^ B qf. 

By induction on the sum of the ranks of p and q we conclude t h a t 
pi SA q and p 2 SA q, t h a t is, p ^ A q by condition ( V W). 

T h e dual s i tuat ion obtains if q = qi A q2. We are thus left only with 
the case p = pi A p 2 and q = qi V q2. By ( / v ) and ( / A ) , 

Pf = (-. -((Pif Ap2f) Axi) A ...) A xm 
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and 

gf= (• • .(fo/vgs/) v yi) v ...) v^, 
where£A = {xu . . . , xm) andg^ = {yi, . . . , yn). Since (£/" )B H (g/)* = 
0, we apply Statement (2) and conclude that ptf ^B qf} i = 1 or 2 or 
pf ^B g if, i = I or 2. Again, by induction on the sum of the ranks of p 
and g, we conclude that pt ^A g, i = 1 or 2, or p ^A qu i = 1 or 2, that 
is, that p t=zA q> Thus Statement (3) has been proved. 

From Statement (3) we get a one-to-one isotone map / * : F(A) —> 
F(B) by setting 

PPAI* = pfpB. 

Statement (4). / / p , q £ PA (I, J), then 

iP V q)f~BpfV qf 

and 

(£ A q)f~Bpf A g/. 

Since 

(P V g)/ = (. . .((/>/ V ? / ) V x i ) V . . . ) V xn, 

where / = {xx, . . . , xn], we conclude immediately that 

pfV gf^B (P V q)f. 

If x G / = ^A, then, by Statement (1), x £ (P/)B, that is, x ^Bpf> 
Thus (£ V q)f ^BpfV qf, proving that (£ V g ) / ~ B # V g/. Dually, 

(£ A q)f~Bpf Agf, 

concluding the proof of Statement (4). 

From Statement ( 4 ) , / * restricted to CA(I, J) is a lattice embedding, 
concluding the proof of Theorem 2. 

To prove Theorem 1, let B be the partial lattice structure defined on 
X with joins and meets defined only for comparable elements. Obviously, 
B is weaker than A. By Theorem 2, we conclude that each CA(I, J) is 
isomorphic to a sublattice of the lattice F{B). By a result of [2], F{B) 
is isomorphic to a sublattice of a free lattice, concluding the proof of 
Thoerem 1. 

3. Some comments . There are two key ideas in this paper : the 
"canonical" decomposition of F (A) (which appears to be new) and the 
(Scholl's) normal form pf for a polynomial p. The latter has some history 
behind it. In [7], a map pf is defined which gives the join support with 
lower cover. This is used to provide a short proof of Sorkin's theorem on 
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isotone maps. A more refined version of this idea appears in [1] to show 
that a free product has an isotone embedding in a CF(P) ; this they 
utilize to investigate chain conditions in free products. Finally, the 
''smooth representation" [8] is almost identical with pf\ in [8] this is 
used to investigate common refinement properties of amalgamated free 
products. 

A sublattice of a free lattice has many nice properties: (S-DA), (SDW), 

(W) (for notation and historic references, see [6]), every element is a 
join of join-irreducibles, every element is a meet of meet-irreducibles, 
every chain is countable, etc. 

Thus Theorem 1 yields a very powerful decomposition. Here is one 
illustration. 

Let L be a modular lattice having a decomposition d U . . . U Cm 

into sublattices satisfying (SD^). Then all C{ are distributive. This 
property of L (having a decomposition into the union of finitely many 
distributive sublattices) is preserved under the formation of sublattices 
and homomorphic images. 

We use this to conclude a result of [4]: FM(4) (the free modular lattice 
on 4 generators) is not finitely presentable. 

Indeed, if FM(4.) is finitely presented, then it has a decomposition 
Ci U . . . U Cn into distributive sublattices. But FM(£) has Mzn as a 
sublattice of a quotient (namely, the rational projective plane). Hence 
we obtain an M% in some Cu contradicting that it is distributive. 

In fact, we can prove more: 

THEOREM 3. Let L be a finitely presented lattice. If L is modular, then L 
is finite. 

Proof. We proceed as before, and decompose the lattice: 

L = & VJ . . . VJ Cn, 

where each C* is a distributive sublattice of a free lattice. By a result of 
[5], each d has width g 3, hence the width of L S 3n, which is finite. 
By [10], a finitely generated modular lattice of finite width is finite, hence 
L is finite, concluding the proof of Theorem 3. 

The structure theorem leads naturally to the following problem: which 
sublattices of a free lattice can occur in a representation of a finitely 
presented lattice? 
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