ON THE STRUCTURE OF FINITELY PRESENTED LATTICES

G. GRATZER, A. P. HUHN AND H. LAKSER

1. Introduction. A lattice L is finitely presented (or presentable) if and only if it can be described with finitely many generators and finitely many relations. Equivalently, L is the lattice freely generated by a finite partial lattice A, in notation, L = F(A). (For more detail, see Section 1.5 of [6].)

It is an old "conjecture" of lattice theory that in a finitely presented (or presentable) lattice the elements behave "freely" once we get far enough from the generators.

In this paper we prove a structure theorem that could be said to verify this conjecture.

THEOREM 1. Let L be a finitely presentable lattice. Then there exists a congruence relation θ such that L/θ is finite and each congruence class is embeddable in a free lattice.

COROLLARY. Every finitely presentable lattice L can be written in the form $L = C_1 \cup \ldots \cup C_n$, where the C_i are pairwise disjoint convex sublattices of L and each C_i is a sublattice of a free lattice.

As an application we shall prove that if L is a finitely presentable lattice, then modularity implies finiteness.

2. Proof of theorem 1. Let X be a finite set and let A be a partial lattice defined on X. We outline the solution to the word problem in F(A), due to R. A. Dean [3]; see also H. Lakser [9].

Denote by P(X) the algebra of polynomial symbols in the two binary operation symbols \vee and \wedge generated by the set X. Then F(A) is the image of P(X) under a homomorphism $\rho_A: P(X) \to F(A)$ with $x\rho_A = x$ for $x \in X$. We describe the kernel of ρ_A .

For each $p \in P(X)$ we define an ideal p_A and a dual ideal p^A of A. For $p \in X$, $p_A = (p]$ (in A) and $p^A = [p)$,

$$(p \lor q)_A = p_A \lor q_A,$$

and

$$(p \wedge q)_A = p_A \wedge q_A,$$

Received August 21, 1979 and in revised form April 17, 1980. The work of all three authors was supported by the NSERC of Canada.

404

the \lor and \land on the right hand sides denoting the ideal join and meet in A.

Dually,

$$(p \land q)^A = p^A \lor q^A$$

and

 $(p \lor q)^A = p^A \land q^A.$

We define a quasiorder \leq_A on P(X); $p \leq_A q$ if and only if it follows from one of the five rules below:

Note that, since A is finite we can compute in the lattice I(A) of ideals of A and in the lattice D(A) of dual ideals of A, and thus $p \leq_A q$ is decidable.

Finally we define the relation \sim_A on P(X);

 $p \sim_A q$ if and only if $p \leq_A q$ and $q \leq_A p$.

The solution to the word problem is:

PROPOSITION 1 (R. A. Dean [3]). (i) If $p, q \in P(X)$, then $p\rho_A \leq q\rho_A$ if and only if $p \leq q q$.

(ii) If $p, q \in P(X)$, then $p_{\rho_A} = q_{\rho_A}$ if and only if $p \sim_A q$, that is, $\sim_A = \text{Ker } \rho_A$.

(iii) If $p \in P(X)$, then

$$p_A = (p \rho_A] \cap X$$

and

 $p^A = [p\rho_A) \cap X.$

A converse to Proposition 1(i) is provided by the following proposition.

PROPOSITION 2. Let $p, q \in P(X)$ and let $p \leq A q$. (i) If $p = p_1 \lor p_2$, then $p_1 \leq A q$ and $p_2 \leq A q$. (ii) If $q = q_1 \land q_2$, then $p \leq A q_1$ and $p \leq A q_2$. (iii) If $p = p_1 \land p_2$, $q = q_1 \lor q_2$, and $p^A \cap q_A = \emptyset$, en

then

$$p^{A} \cap (q_{1})_{A} = p^{A} \cap (q_{2})_{A} = (p_{1})^{A} \cap q_{A} = (p_{2})^{A} \cap q_{A} = \emptyset$$

and either $p_i \leq A_q$, i = 1 or 2, or $p \leq A_q$, i = 1 or 2.

Proof. (i) and (ii) follow immediately from Proposition 1(i). As for (iii),

$$\emptyset = p^A \cap q_A = p^A \cap ((q_1)_A \vee (q_2)_A) \supseteq p^A \cap ((q_1)_A \cup (q_2)_A)$$
$$= (p^A \cap (q_1)_A) \cup (p^A \cap (q_2)_A),$$

and similarly for $p_i^A \cap q_A$. Finally, since $p \leq_A q$ does not follow from condition (W_c) , it must follow from either condition $(_{\Lambda}W)$ or condition (W_{V}) , which is the final assertion of (iii).

For a pair (I, J) with $I \in I(A)$ and $J \in D(A)$, let

$$P_A(I, J) = \{ p \in P(X) | p_A = I \text{ and } p^A = J \},\$$

and let

$$C_A(I,J) = (P_A(I,J))\rho_A.$$

PROPOSITION 3. If $P_A(I, J) \neq \emptyset$, then it is a subalgebra of P(X) and $C_A(I, J)$ is a convex sublattice of F(A). Moreover,

$$C_A(I, J) = \{a \in F(A) | (a] \cap X = I \text{ and } [a] \cap X = J\}.$$

Proof. If $p, q \in P_A(I, J)$, then e.g., $(p \lor q)_A = p_A \lor q_A = I \lor I = I$. Thus $P_A(I, J)$ is a subalgebra of P(X) and so $C_A(I, J)$ is a sublattice of F(A).

If $p, q \in P_A(I, J)$ and $p \leq_A r \leq_A q$ then, by 1(i) and 1(iii), $I = p_A \leq r_A \leq q_A = I$; thus $r_A = I$, and, similarly, $r^A = J$. Consequently, $C_A(I, J)$ is a convex sublattice of F(A).

The last clause of the proposition follows from Proposition 1(iii), concluding the proof of the proposition.

The sublattices of F(A) of the form $C_A(I, J)$ are finite in number, and it can be verified easily that the relation

$$a \equiv b(\theta)$$
 if and only if $(a] \cap X = (b] \cap X$ and
 $[a) \cap X = [b) \cap X$

is a congruence relation on F(A). Thus to complete the proof of Theorem 1 we need only show that each sublattice $C_A(I, J)$ can be embedded in a free lattice. To do this, we first embed $C_A(I, J)$ into the completely free lattice generated by the underlying poset of A. Now this poset can be regarded as a partial lattice B where joins and meets are defined only for comparable elements and then the completely free lattice is F(B). Without too much extra work we can establish a more general embedding theorem.

Let A and B be partial lattices defined on the finite set X. We say that B is *weaker than* A if they have the same underlying poset and any join or meet defined in B is also defined in A and has the same value. Note

that under this condition, any ideal (dual ideal) of A is an ideal (dual ideal) of B.

THEOREM 2. Let A and B be partial lattices on the finite set X. If B is weaker than A, then there is an order-embedding $f^*: F(A) \to F(B)$ with the property that if $I \in I(A), J \in D(A)$, and $C_A(I, J) \neq \emptyset$, then f^* restricted to $C_A(I, J)$ is a lattice embedding.

Proof. We define a mapping $f: P(X) \to P(X)$. Since \land and \lor in P(X) are neither commutative nor associative we first introduce a technical convention: we assign a fixed linear order (completely unrelated to the partial order determined by A and B) to X. The action of f is defined by the following three conditions:

(f_0) If $p \in X$, then pf = p;

 (f_{\vee}) If $p = p_1 \vee p_2$ and $p_A = \{x_1, \ldots, x_n\}$ with x_1, \ldots, x_n listed in the above linear order, then

$$pf = (\dots ((p_1f \lor p_2f) \lor x_1) \lor \dots) \lor x_n;$$

 (f_{Λ}) If $p = p_1 \wedge p_2$ and $p^A = \{y_1, \ldots, y_m\}$ with y_1, \ldots, y_m in the linear order, then

 $pf = (\dots ((p_1 f \land p_2 f) \land y_1) \land \dots) \land y_m.$

Note first of all that, for each $p \in P(X)$, $p_B \subseteq p_A$ and $p^B \subseteq p^A$ (as subsets of X). These facts are immediate from the definitions since ideals (dual ideals) of A are ideals (dual ideals) of B; consequently, if I, J are ideals (dual ideals) of A then $I \vee J$ in B is a subset of $I \vee J$ in A.

We now verify some statements.

Statement (1). If $p \in P(X)$, then $p_A = (pf)_B$ and $p^A = (pf)^B$.

The proof is by induction on the rank of p. If $p \in X$, then $p_A = (pf)_A = (pf)_B$ by definition. If $p = p_1 \vee p_2$ and $p_A = \{x_1, \ldots, x_n\}$, then

$$(pf)_B = (p_1f)_B \lor (p_2f)_B \lor (x_1] \lor \ldots \lor (x_n]$$
$$= (p_1f)_B \lor (p_2f)_B \lor p_A$$
$$= (p_1)_A \lor (p_2)_A \lor p_A \text{ (by induction)}$$
$$= p_A$$

since

 $(p_1)_A, (p_2)_A \subseteq p_A$

where all ideal joins on the right are in I(B). If $p = p_1 \wedge p_2$ and $p^4 = \{x_1, \ldots, x_n\}$, then

$$(pf)_B = (p_1f)_B \cap (p_2f)_B \cap (x_1] \cap \ldots \cap (x_n]$$

= $(p_1)_A \cap (p_2)_A \cap (x_1] \cap \ldots \cap (x_n]$ (by induction)
= $p_A \cap (x_1] \cap \ldots \cap (x_n]$
= p_A

since $p_A \subseteq (x_i]$ by Proposition 1(iii). The dual argument establishes $p^A = (pf)^B$.

Statement (2). Let $x_1, \ldots, x_m, y_1, \ldots, y_n \in X$, let $p_1, p_2, q_1, q_2 \in P(X)$, and let $p = (\ldots ((p_1 \land p_2) \land x_1) \land \ldots) \land x_m, q = (\ldots ((q_1 \lor q_2) \lor y_1) \lor \ldots) \lor y_n$. If $p \leq Bq$ and $p^B \cap q_B = \emptyset$, then either $p_i \leq Bq$ for i = 1 or 2 or $p \leq Bq_i$ for i = 1 or 2.

The proof proceeds by induction on m + n. If m + n = 0, then the result follows by Proposition 2(iii). In general, by Proposition 2(iii) one of the following four conditions must hold

(i) $x_m \leq B q$; (ii) $p \leq B y_n$; (iii) $(\dots((p_1 \land p_2) \land x_1) \land \dots) \land x_{m-1} \leq B q$; (iv) $p \leq B (\dots((q_1 \lor q_2) \lor y_1) \lor \dots) \lor y_{n-1}$.

(i) and (ii) contradict the hypothesis $p^B \cap q_B = \emptyset$. From (iii) we conclude by induction that either

$$p_i \leq B_{B} q$$
, $i = 1 \text{ or } 2$, or
 $(\dots((p_1 \land p_2) \land x_1) \land \dots) \land x_{m-1} \leq B_{B} q_i$, $i = 1 \text{ or } 2$.

Since $p \leq_B (\dots ((p_1 \land p_2) \land x_1) \land \dots) \land x_{m-1}$ we conclude, in the latter case, that $p \leq_B q_i$, i = 1 or 2. If condition (iv) holds we proceed in a similar manner.

Statement (3). Let $p, q \in P(X)$. Then $p \leq A q$ if and only if $pf \leq B qf$.

First assume that $p \leq_A q$. If $p \leq_A q$ by condition (W_c) , that is, if $p^A \cap q_A \neq \emptyset$, then, by Statement (1), $(pf)^B \cap (qf)_B \neq \emptyset$, that is, $pf \leq_B qf$. Otherwise, we proceed by induction on the sum of the ranks of p and q. If $p \leq_A q$ by condition $(_{\vee}W)$, that is, if $p = p_1 \vee p_2$ and $p_1 \leq_A q$, $p_2 \leq_A q$, then $p_1 f \leq_B qf$ and $p_2 f \leq_B qf$ and, if $x \in p_A$, then $x \leq_A p \leq_A q$ and so $x = xf \leq_B qf$. Thus $pf \leq_B qf$ by successive applications of $(_{\vee}W)$.

If $p \leq_A q$ follows by $({}^{\mathsf{W}})$, that is, if $p = p_1 \land p_2$ and say, $p_1 \leq_A q$, then $p_1 f \leq_B q f$ and so $p f \leq_B q f$ by successive applications of $({}^{\mathsf{W}})$.

If $p \leq_A q$ follows by condition (W_{Λ}) (W_{\vee}) , the situation is the dual of the above. We thus conclude that $p \leq_A q$ implies $pf \leq_B qf$.

Now assume that $pf \leq g_B qf$. If $(pf)^B \cap (qf) \neq \emptyset$ then, by Statement (1), $p^A \cap q_A \neq \emptyset$ and so $p \leq A q$. We can thus assume that $(pf)^B \cap (qf)_B = \emptyset$. If $p = p_1 \lor p_2$, then $pf \leq g_B qf$ implies that $p_1f \leq g_B qf$ and $p_2f \leq g_B qf$.

By induction on the sum of the ranks of p and q we conclude that $p_1 \leq_A q$ and $p_2 \leq_A q$, that is, $p \leq_A q$ by condition $({}_{\mathsf{V}}W)$.

The dual situation obtains if $q = q_1 \wedge q_2$. We are thus left only with the case $p = p_1 \wedge p_2$ and $q = q_1 \vee q_2$. By (f_V) and (f_A) ,

$$pf = (\dots ((p_1f \land p_2f) \land x_1) \land \dots) \land x_m$$

and

$$qf = (\dots ((q_1 f \lor q_2 f) \lor y_1) \lor \dots) \lor y_n,$$

where $p^A = \{x_1, \ldots, x_m\}$ and $q_A = \{y_1, \ldots, y_n\}$. Since $(pf)^B \cap (qf)_B = \emptyset$, we apply Statement (2) and conclude that $p_i f \leq B q f$, i = 1 or 2 or $pf \leq B q i f$, i = 1 or 2. Again, by induction on the sum of the ranks of p and q, we conclude that $p_i \leq A q$, i = 1 or 2, or $p \leq A q_i$, i = 1 or 2, that is, that $p \leq A q$. Thus Statement (3) has been proved.

From Statement (3) we get a one-to-one isotone map $f^*: F(A) \to F(B)$ by setting

$$p \rho_A f^* = p f \rho_B.$$

Statement (4). If $p, q \in P_A(I, J)$, then
 $(p \lor q) f \sim_B p f \lor q f$

and

 $(p \wedge q)f \sim_B pf \wedge qf.$

Since

$$(\not p \lor q)f = (\dots (\not pf \lor qf) \lor x_1) \lor \dots) \lor x_n,$$

where $I = \{x_1, \ldots, x_n\}$, we conclude immediately that

 $pf \lor qf \leq B \ (p \lor q)f.$

If $x \in I = p_A$, then, by Statement (1), $x \in (pf)_B$, that is, $x \leq pf$. Thus $(p \lor q)f \leq pf \lor qf$, proving that $(p \lor q)f \sim_B pf \lor qf$. Dually,

 $(p \wedge q)f \sim_B pf \wedge qf,$

concluding the proof of Statement (4).

From Statement (4), f^* restricted to $C_A(I, J)$ is a lattice embedding, concluding the proof of Theorem 2.

To prove Theorem 1, let *B* be the partial lattice structure defined on *X* with joins and meets defined only for comparable elements. Obviously, *B* is weaker than *A*. By Theorem 2, we conclude that each $C_A(I, J)$ is isomorphic to a sublattice of the lattice F(B). By a result of [2], F(B) is isomorphic to a sublattice of a free lattice, concluding the proof of Thoerem 1.

3. Some comments. There are two key ideas in this paper: the "canonical" decomposition of F(A) (which appears to be new) and the (Scholl's) normal form pf for a polynomial p. The latter has some history behind it. In [7], a map pf is defined which gives the join support with lower cover. This is used to provide a short proof of Sorkin's theorem on

isotone maps. A more refined version of this idea appears in [1] to show that a free product has an isotone embedding in a CF(P); this they utilize to investigate chain conditions in free products. Finally, the "smooth representation" [8] is almost identical with pf; in [8] this is used to investigate common refinement properties of amalgamated free products.

A sublattice of a free lattice has many nice properties: (SD_{Λ}) , (SD_{V}) , (W) (for notation and historic references, see [6]), every element is a join of join-irreducibles, every element is a meet of meet-irreducibles, every chain is countable, etc.

Thus Theorem 1 yields a very powerful decomposition. Here is one illustration.

Let L be a modular lattice having a decomposition $C_1 \cup \ldots \cup C_m$ into sublattices satisfying (SD_{Λ}) . Then all C_i are distributive. This property of L (having a decomposition into the union of finitely many distributive sublattices) is preserved under the formation of sublattices and homomorphic images.

We use this to conclude a result of [4]: $F_M(4)$ (the free modular lattice on 4 generators) is not finitely presentable.

Indeed, if $F_M(4)$ is finitely presented, then it has a decomposition $C_1 \cup \ldots \cup C_n$ into distributive sublattices. But $F_M(4)$ has M_{3n} as a sublattice of a quotient (namely, the rational projective plane). Hence we obtain an M_3 in some C_i , contradicting that it is distributive.

In fact, we can prove more:

THEOREM 3. Let L be a finitely presented lattice. If L is modular, then L is finite.

Proof. We proceed as before, and decompose the lattice:

 $L = C_1 \cup \ldots \cup C_n,$

where each C_i is a distributive sublattice of a free lattice. By a result of [5], each C_i has width ≤ 3 , hence the width of $L \leq 3n$, which is finite. By [10], a finitely generated modular lattice of finite width is finite, hence L is finite, concluding the proof of Theorem 3.

The structure theorem leads naturally to the following problem: which sublattices of a free lattice can occur in a representation of a finitely presented lattice?

References

- M. E. Adams and D. Kelly, Chain conditions in free products of lattices, Algebra Universalis 7 (1977), 235-243.
- R. A. Dean, Completely free lattices generated by partially ordered sets, Trans. Amer. Math. Soc. 83 (1956), 238-249.

- Free lattices generated by partially ordered sets and preserving bounds, Can. J. Math. 16 (1964), 136-148.
- T. Evans and D. X. Hong, The free modular lattice on four generators is not finitely presentable, Algebra Universalis 2 (1972), 284-285.
- 5. F. Galvin and B. Jónsson, Distributive sublattices of a free lattice, Can. J. Math. 13 (1961), 265-272.
- 6. G. Grätzer, *General lattice theory* (Pure and Applied Mathematics Series, Academic Press, New York, 1978).
- 7. G. Grätzer, H. Lakser and C. R. Platt, Free products of lattices, Fund. Math. 69 (1970), 233-240.
- 8. G. Grätzer and A. P. Huhn, Common refinements of amalgamated free products of lattices, Abstract. Notices Amer. Math. Soc.
- 9. H. Lakser, Free lattices generated by partially ordered sets, Ph.D. Thesis, University of Manitoba (1968).
- R. Wille, Jeder endlich erzeugte, modulare Verband endlicher Weite ist endlich, Mat. Casopis Sloven. Akad. Vied. 25 (1974), 77-80.

University of Manitoba, Winnipeg, Manitoba