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The theory of nonlinear complex systems has become a proven problem-solving

approach in the natural sciences from cosmic and quantum systems to cellular

organisms and the brain. Even in modern engineering science self-organizing

systems are developed to manage complex networks and processes. It is now

recognized that many of our ecological, social, economic, and political problems are

also of a global, complex, and nonlinear nature. Modern evolutionary economics

can be modelled in the framework of complex systems and nonlinear dynamics.

Historically, evolutionary economics was inspired by Schumpeterian concepts of

business cycles and innovation dynamics. What are the laws of sociodynamics?

What can we learn from nonlinear dynamics for complexity management in social,

economic, financial and political systems? Is self-organization an acceptable

strategy to handle the complexity in firms, institutions and organizations? The

world-wide crisis of financial markets and economies is a challenge for complexity

research. Misleading concepts of linear thinking and mild randomness (e.g.

Gaussian distributions of Brownian motion) must be overcome by new approaches

of nonlinear mathematics (e.g. non-Gaussian distribution), modelling the wild

randomness of turbulence at the stock markets. Systemic crises need systemic

answers. Nevertheless, human cognitive capabilities are often overwhelmed by the

complexity of nonlinear systems they are forced to manage. Traditional mathe-

matical decision theory assumed perfect rationality of economic agents (homo

oeconomicus). Herbert Simon, Nobel Prize laureate of economics and one of the

leading pioneers of systems science and cognitive science, introduced the principle

of bounded rationality. Therefore, we need new insights into the factual micro-

economic behaviour of economic agents by methods of humanities, cognitive and

social sciences, which are sometimes called ‘experimental economics’. Social and

economic dynamics are interdisciplinary challenges of modern complexity research.
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From linear to nonlinear and stochastic dynamics

A dynamical system is characterized by its elements and the time-dependent
development of their states. The states can refer to moving planets, molecules in
a gas, the excitation of neurons in a neural net, nutrition of populations in an
ecological system, or products in a market system. The dynamics of a system, i.e.
the change of system states depending on time, is mathematically described by
differential equations. A conservative (Hamiltonian) system, e.g. an ideal pen-
dulum, is determined by the reversibility of time direction and conservation of
energy. Dissipative systems, e.g. a real pendulum with friction, are irreversible.

In classical physics, the dynamics of a system is considered a continuous process.
However, continuity is only a mathematical idealization. Actually, a scientist has
single observations or measurements at discrete-time points which are chosen to be
equidistant or defined by other measurement devices. In discrete processes, there are
finite differences between the measured states and no infinitely small differences
(differentials), which are assumed in a continuous process. Thus, discrete processes
are mathematically described by difference equations.

Random events (e.g. Brownian motion in a fluid, mutation in evolution,
innovations in economy) are represented by additional fluctuation terms. Clas-
sical stochastic processes, e.g. the billions of unknown molecular states in a fluid,
are defined by time-dependent differential equations with distribution functions
of probabilistic states. In quantum systems of elementary particles, the dynamics
of quantum states is defined by Schrödinger’s equation with observables (e.g.
position and momentum of a particle) depending on Heisenberg’s principle of
uncertainty, which allows only probabilistic forecasts of future states.

Historically, during the centuries of classical physics, the universe was con-
sidered a deterministic and conservative system. The astronomer and mathe-
matician P.S. Laplace (1814), for example, assumed the total computability and
predictability of nature if all natural laws and initial states of celestial bodies are
well known. The Laplacean spirit expressed the belief of philosophers in
determinism and computability of the world during the 18th and 19th centuries.

Laplace was right about linear and conservative dynamical systems. In general, a
linear relation means that the rate of change in a system is proportional to its cause:
small changes cause small effects while large changes cause large effects. Changes
of a dynamical system can be modelled in one dimension by changing values of a
time-depending quantity along the time axis (time series). Mathematically, linear
equations are completely computable. This is the deeper reason for Laplace’s
philosophical assumption to be right for linear and conservative systems.

In systems theory, the complete information about a dynamical system at a
certain time is determined by its state at that time. In general, the state of a system
is determined by more than two quantities. Then, a higher dimensional phase
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space is needed to study the dynamics of a system. From a methodological point
of view, time series and phase spaces are important instruments to study systems
dynamics. The state space of a system contains the complete information of its
past, present and future behaviour.

At the end of the 19th century, H. Poincaré (1892) discovered that celestial
mechanics is not completely computable clockwork, even if it is considered as a
deterministic and conservative system. The mutual gravitational interactions of
more than two celestial bodies (‘Many-bodies-problem’) correspond to nonlinear
and non-integrable equations with instabilities and irregularities. According to
the Laplacean view, similar causes effectively determine similar effects. Thus, in
the phase space, trajectories that start close to each other also remain close to
each other during time evolution. Dynamical systems with deterministic chaos
exhibit an exponential dependence on initial conditions for bounded orbits: the
separation of trajectories with close initial states increases exponentially.

Thus, tiny deviations of initial data lead to exponentially increasing compu-
tational efforts for future data, limiting long-term predictions, even though the
dynamics are, in principle, uniquely determined. This is known as the ‘butterfly
effect’: initial, small and local causes soon lead to unpredictable, large and global
effects. According to the famous KAM-Theorem1 of A.N. Kolmogorov (1954),
V.I. Arnold (1963), and J.K. Moser (1967), trajectories in the phase space of
classical mechanics are neither completely regular, nor completely irregular, but
depend sensitively on the chosen initial conditions.

Dynamical systems can be classified on the basis of the effects of the dynamics
on a region of the phase space. A conservative system is defined by the fact that,
during time evolution, the volume of a region remains constant, although its
shape may be transformed. In a dissipative system, dynamics causes a volume
contraction.

An attractor is a region of a phase space into which all trajectories departing
from an adjacent region, the so-called basin of attraction, tend to converge. There
are different kinds of attractors. The simplest class of attractors contains the fixed
points. In this case, all trajectories of adjacent regions converge to a point. An
example is a dissipative harmonic oscillator with friction: the oscillating system
is gradually slowed down by frictional forces and finally comes to a rest at an
equilibrium point.

Conservative harmonic oscillators without friction belong to the second
class of attractors with limit cycles, which can be classified as being periodic or
quasi-periodic. A periodic orbit is a closed trajectory into which all trajectories
departing from an adjacent region converge. For a simple dynamical system with
only two degrees of freedom and continuous time, the only possible attractors are
fixed points or periodic limit cycles. An example is a Van der Pol oscillator
modelling a simple vacuum-tube oscillator circuit.2
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In continuous systems with a phase space of dimension n.2, more complex
attractors are possible. Dynamical systems with quasi-periodic limit cycles show a
time evolution that can be decomposed into different periodic parts without a unique
periodic regime. The corresponding time series consist of periodic parts of oscillation
without a common structure.3 Nevertheless, closely starting trajectories remain close
to each other during time evolution. The third class contains dynamical systems with
chaotic attractors which are non-periodic, with an exponential dependence on initial
conditions for bounded orbits. A famous example is the chaotic attractor of a Lorenz
system simulating the chaotic development of weather caused by local events, which
cannot be forecast in the long run (butterfly effect).

Measurements are often contaminated by unwanted noise, which must be
separated from the signals of specific interest. Further on, in order to forecast the
behaviour of a system, the development of its future states must be reconstructed
in a corresponding phase space from a finite sequence of measurements. Thus,
time-series analysis4,5 is an immense challenge in different fields of research
from, for example, climatic data in meteorology, ECG-signals in cardiology, and
EEG-data in brain research to economic data of economics and finance. Beyond
the patterns of dynamical attractors, randomness of data must be classified by
statistical distribution functions.

Typical phenomena of our world, such as weather, climate, the economy and
daily life, are far too complex for a simple deterministic description to exist. Even if
there is no doubt about the deterministic evolution of, for example, the atmosphere,
the current state whose knowledge would be needed for a deterministic prediction
contains too many variables in order to be measurable with sufficient accuracy.
Hence, our knowledge does not usually suffice for a deterministic model. Instead,
very often a stochastic approach is more situated. Ignoring the unobservable details
of a system, we accept a lack of knowledge. Depending on the unobserved details,
the observable part may evolve in different ways. However, if we assume a given
probability distribution for the unobserved details, then the different evolutions of
the observables also appear with specific probabilities. Thus, the lack of knowledge
about the system prevents us from deterministic predictions but allows us to assign
probabilities to the different possible future states. It is the task of a time series
analysis to extract the necessary information from past data.

Dynamical models contain nonlinear feedback, and the solutions to these are
usually obtained by numerical methods. Statistical models are data driven and try
to fit a given set of data using various distribution functions. There are also
hybrids, coupling dynamic and statistical aspects, including deterministic and
stochastic elements. Simulations are often based on computer programs (e.g.
cellular automata and network formalisms in Chapter 4), connecting input and
output in nonlinear ways. In this case, models are calibrated by training the
networks, in order to minimize the error between output and given test data.
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In the simplest case of statistical distribution functions, a Gaussian distribution
has exponential tails situated symmetrically to the far left and right of the peak
value. Extreme events (e.g. disasters, pandemics, floods) occur in the tails of the
probability distributions. Contrary to the Gaussian distribution, probabilistic
functions p(x) of heavy tails with extreme fluctuations are mathematically
characterized by power laws, e.g. p(x), x2a with a . 0. Power laws possess
scale invariance corresponding to the (at least statistical) self-similarity of their
time series of data. Mathematically, this property can be expressed as p(bx)5

b2ap(x) meaning that the change of variable x to bx results in a scaling factor
independent of x while the shape of distribution p is conserved. So, power laws
represent scale-free systems. The Gutenberg–Richter size distribution of earth-
quakes is a typical example of natural sciences. Historically, Pareto’s distribution
law of wealth was the first power law in the social sciences, with a fraction of
people presumably several times wealthier than the mass of a nation.6,7

Complexity and nonlinear dynamics of evolution and brains

Structures in nature can be explained by the dynamics and attractors of complex
systems.8 They result from collective patterns of interacting elements that cannot be
reduced to the features of single elements in a complex system. Nonlinear interac-
tions in multi-component (‘complex’) systems often have synergetic effects that can
neither be traced back to single causes nor be forecast in the long run. The math-
ematical formalism of complex dynamical systems is taken from statistical physics.
In general, however, the theory of complex dynamical systems deals with profound
and striking analogies that have been discovered in the self-organized behaviour of
quite different systems in physics, chemistry, and biology. These multi-component
systems consist of many units, such as elementary particles, atoms, cells or organ-
isms. The elementary units, e.g. their position and momentum vectors, and their local
interactions, constitute the microscopic level of description, for instance, the inter-
acting molecules of a liquid or gas. The global state of the complex systems results
from the collective configurations of the local multi-component states. At the
macroscopic level, there are few collective (‘global’) quantities like, for instance,
pressure, density, temperature, and entropy, characterizing observable collective
patterns or figures of the units.

If the external conditions of a system are changed by varying certain control
parameters (e.g. temperature), the system may undergo a change in its macroscopic
global states at some threshold value. For instance, water as a complex system of
water molecules changes spontaneously from a liquid to a frozen state at the critical
value of temperature of zero Celsius. In physics, those transformations of collective
states are called ‘phase transitions’. Obviously, they describe a change of self-
organized behaviour between the interacting elements of a complex system.
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According to L.D. Landau (1959), the suitable macrovariables characterizing
this change of global order are denoted as ‘order parameters’. In statistical
mechanics, the order transition of complex systems such as fluids, gases, etc, is
modelled by differential equations of the global state. A paradigmatic example is
a ferromagnet consisting of many elementary atomic magnets (‘dipoles’). The
two possible local states of a dipole are represented by upwards and downwards
pointing arrows. If the temperature (‘control parameter’) is annealed to the
thermal equilibrium (Curie point), then the average distribution of upwards and
downwards pointing dipoles (‘order parameter’) is spontaneously aligned in one
regular direction. This regular pattern corresponds to the macroscopic state of
magnetization. Obviously, the emergence of magnetization is a self-organized
behaviour of atoms that is modelled by a phase transition of a certain order
parameter, the average distribution of upwards and downwards pointing dipoles.

Landau’s scheme of phase transitions cannot be generalized to all cases of
phase transitions. A main reason for its failure results from an inadequate
treatment of fluctuations, which are typical for many multi-component systems.
Nevertheless, Landau’s scheme can be used as a heuristic device to deal with
several non-equilibrium transitions. In this case, a complex system is driven
away from equilibrium by increasing energy (not decreasing energy as in the case
of equilibrium transitions such as freezing water or magnetizing ferromagnets).
The phase transitions of nonlinear dissipative complex systems far from thermal
equilibrium can be modelled by several mathematical methods.

In a more mathematical way, stochastic nonlinear differential equations (e.g.
Fokker–Planck equations, Master equation) are employed to model the dynamics of
complex systems. H. Haken6 suggested that the dominating order parameters
should be founded by the adiabatic elimination of fast relaxing variables of these
equations. The reason is that the relaxation time of unstable modes (order para-
meters) is very long compared with the fast relaxing variables of stable ones, which
can therefore be neglected. Thus, this concept of self-organization can be illustrated
by the quasi-biological slogan: long-living systems dominate short-living systems.

From the view point of dynamical systems, even rare, exceptional, catastrophic,
and surprising (‘extreme’) events are not generated randomly. They occur in
systems far from equilibrium in states of large variability and collective effects. For
example, weather extremes occur in a state of the Earth’s atmosphere that is
determined by well-known equations of motion such as the nonlinear Navier–
Stokes equations. Therefore, weather prediction is based on numerical simulations
of model equations, fed by observations and measurements as initial conditions.
In this framework, extreme events (e.g. hurricanes, cyclones) are considered as
manifestations of nonlinear dynamics of complex systems. The dynamical
mechanism explains why the system makes an excursion far from its normal
state. These scenarios are known as large deviations, deterministic chaos, or fully
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developed turbulence. The model of self-organized criticality (SOC) suggests
that a system reacts to a sequence of perturbations by manoeuvring itself into a
critical state without external tuning of appropriate control parameters. In this
case, huge fluctuations are the rule rather than the exception. The nonlinear
dynamics of SOC are used to explain statistical power law distribution functions
for the relevant observables. For example, the Gutenberg–Richter law of earthquake
magnitude distribution can be reproduced by suitable SOC-models. SOC provides a
remarkable connection between the phase transitions of dynamical systems and
statistical laws of extreme events. However, it is worth noting that this theory has,
until now, been mainly supported by results from computer simulations.

In general, dynamical systems and their phase transitions deliver a successful
formalism to model the emergence of order in nature. However, these methods
are not reduced to special laws of physics, although their mathematical principles
were first discovered and successfully applied in physics. There is no physical-
ism, but an interdisciplinary methodology to explain the increasing complexity
and differentiation of forms by phase transitions. The question is how to select,
interpret and quantify the appropriate variables of dynamical models.

Models of thermodynamic self-organization are not sufficient to explain the
emergence of life. As a nonlinear mechanism of genetics we use the autocatalytic
process of genetic self-replication. The evolution of new species by mutation
and selection can be modelled by nonlinear stochastic equations of second-order
non-equilibrium phase transitions.9 Mutations are mathematized as ‘fluctuating
forces’ and selections as ‘driving forces’. Fitness degrees are the order para-
meters dominating the phase transitions to new species. During evolution, a
sensible network of equilibria between populations of animals and plants has
developed. Open dissipative systems of ecology may become unstable by local
perturbations, e.g. pollution of the atmosphere, leading to global chaos of the
atmosphere in the sense of the butterfly effect.7

In brain research, the brain is considered as a complex dynamical system of firing
and non-firing neurons, self-organizing in macroscopic patterns of cell assemblies
by neurochemical interactions. Their dynamical attractors are correlated with
states of perception, motion, emotion, thoughts, or even consciousness. There is no
‘mother neuron’ that can feel, think or at least coordinate the appropriate neurons.
The famous binding problem of pixels and features in a perception is explained by
clusters of synchronously firing neurons dominated by learnt attractors of brain
dynamics. The brain is also a self-monitoring and self-mapping system of all bodily,
cognitive, and emotional states leading to self-awareness and self-consciousness,
which can be interpreted as dominating order parameters. Thus, even human
subjectivity, the traditional philosophical problem of ‘qualia’, can be explained
by nonlinear dynamics of complex systems. Human intentions and preferences
correspond to attractors of brain dynamics influencing human acting and behaviour.
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Complexity and nonlinear dynamics of economies and finance

The self-organization of complex systems can also be observed in social groups. An
application of social dynamics is the behaviour of car drivers. In automobile traffic
systems, a phase transition from non-jamming to jamming phases depends on the
averaged car density as the control parameter. The spontaneous emergence of
chaotic patterns of traffic is a famous self-organizing effect of nonlinear interactions,
which can often not be reduced to single causes. At a critical value, fluctuations
with fractal or self-similar features can be observed. The term self-similarity states
that the time series of measured traffic flow looks the same at different time scales,
at least from a qualitative point of view, with small statistical deviations. This
phenomenon is also called ‘fractality’.10 In the theory of complex systems, self-
similarity is a (not sufficient) hint on chaotic dynamics. These signals can be used
by traffic guide systems.

In a political community, collective trends or majorities of opinions can be
considered as order parameters, which are produced by mutual discussions and
interaction of the people in a more or less ‘heated’ situation. They can even be
initiated by a few people in a critical and unstable (‘revolutionary’) situation of
the whole community. There may be a competition of order concepts during
heavy fluctuations. The essential point is that the winning concept of order will
dominate the collective behaviour of the people. Thus, there is a kind of feed-
back: the collective order of a complex system is generated by the interactions of
its elements (‘self organization’). After thermodynamic, genetic, and neural self-
organization we also distinguish social and economic self-organization. On the
one side, the behaviour of the elements is dominated by the collective order. On
the other side, people have their individual will to influence collective trends of
society. Nevertheless, they are also driven by attractors of collective behaviour.

Sometimes, this approach is called ‘econophysics’ (i.e. a combination of
‘economics’ and ‘physics’). However, modelling self-organizing social systems
is no physicalism because the mathematical formalism of complex systems
and nonlinear dynamics is independent of physical concepts and only considers
economic and social data. Therefore, we prefer the term ‘sociodynamics’. A
brilliant forerunner of modern sociodynamics was the Austrian economist
Joseph F. Schumpeter, who analysed the correlation of innovation dynamics and
economic cycle theory. New ideas arise steadily. When enough ideas have
accumulated, a group of innovations are introduced by entrepreneurship. They
develop slowly at first, then accelerate as the methods are improved. A logistic
development characterizes the typical trajectory of an innovation. Some invest-
ment must precede the introduction of an innovation. Investment stimulates
demand. Increased demand facilitates the spread of the innovation. Then, as all
innovations are fully exploited, the process decelerates towards zero.
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Schumpeter called this phenomenon the ‘swarming’ of innovations. In his
three-cycle model, the first short cycle relates to the stocks cycle and innovations
play no role. The following longer cycle is related to innovations. Schumpeter
recognized the significance of historical statistics and related the evidence of long
waves to the fact that the most important innovations, like steam, steel, railways,
steamships and electricity, required 30 to 100 years to become completely
integrated into the economy.

In general, Schumpeter described economic evolution as a technical progress
in the form of ‘swarms’ that were explained in a logistic framework. A tech-
nological swarm is assumed to shift the equilibrium to a new fixed point attractor
in a cyclical way. The resulting new equilibrium is characterized by a higher real
wage and higher consumption and output. Thus, Schumpeter’s innovation
dynamics can easily be interpreted in terms of sociodynamics with attractors.
Innovation swarms at economical points of instability can be considered order
parameters dominating long-term business cycles.

Historically, the great Depression of the 1930s inspired economic models of
business cycles. However, from a mathematical point of view, the first models
(for instance Hansen–Samuelson and Lundberg–Metzler) were linear and hence
required exogenous shocks to explain their irregularity. The explanations by
exogenous shocks have the great disadvantage that they are often arbitrary ad hoc
hypotheses and hence can explain anything. The standard econometric metho-
dology has argued in this tradition, although an intrinsic analysis of cycles has
been possible since the mathematical discovery of strange attractors. The tradi-
tional linear models of the 1930s can easily be reformulated in the framework of
nonlinear systems. From a methodological point of view, endogenous nonlinear
models with attractors seem to be more satisfactory. Nevertheless, endogenous
nonlinear models and linear models with exogenous shocks must be taken in
earnest and tested in economics.

In contrast to physical, chemical, and biological systems, no equations of
motion on the microlevel are available for social systems. People are not atoms
or molecules, but human beings with intentions, motivations, and emotions. In
principle, their individual behaviour and decision-making could be explained by
their brain dynamics. Cognitive and emotional dynamics are determined by order
parameters characterizing individual thoughts, decisions, and motivations. But
this is only a theoretical option, because the corresponding neural equations are
not yet known. Furthermore, these equations would be too complex to solve and
predict the future behaviour of people.

Therefore an alternative approach is suggested which gets along without
microscopic equations, but nevertheless takes into account the decisions and
actions of individuals with probabilistic methods in order to derive the macro-
dynamics of social systems. The modelling design consists of three steps: in the
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first step, appropriate variables of social systems must be introduced to describe
the states and attitudes of individuals. The second step defines the change of
behaviour by probabilistic phase transitions of individual states. The third step
derives equations for the global dynamics of the system by stochastic methods.

In a society we can distinguish several sectors and sub-sectors that are denoted
by variables. There are variables for material states, extensive and intensive per-
sonal states. The socioconfiguration of a social system is characterized by these
material and personal macrovariables. They are measured by the usual methods of
demoscopy, sociology, or economics. As in thermodynamics, there are intensive
economic variables that are independent of the size of a system. Examples are
prices, productivity, and the density of commodities. Extensive variables are pro-
portional to the size of a system, and concern, for example, the extent of production
and investment, or the size and number of buildings. Collective material variables
are measurable. Their values are influenced by the individual activities of agents,
which are often not directly measurable. The social and political climate of a firm is
connected to socio-psychological processes, which are influenced by the attitudes,
opinions, or actions of individuals and their subgroups. Thus, in order to introduce
the socioconfiguration of collective personal variables, we must consider the states
of individuals, expressed by their attitudes, opinions, or actions. Furthermore, there
are subgroups with constant characteristics (e.g. sections or departments of a firm or
an institution), so that each individual is a member of one subgroup. The number of
members of a certain state is a measurable macrovariable. The socioconfiguration
of, for example, a company is a set of macrovariables describing the distribution
of attitudes, opinions, and actions among its subgroups at a particular time. The
total macroconfiguration is given by the multiple of material configuration and
socioconfiguration.

Their probabilistic phase transitions can be used for setting up the macroevolu-
tion equation of a social system. The probabilistic macrobehaviour of a society is
described by a probability distribution function over its possible socioconfigurations
at a certain time. The distribution function P(m, n; t) can be interpreted as the
probability of finding a certain macroconfiguration of material configuration m
and socioconfiguration n at time t. The evolution of the social system is the time-
dependent change of its probabilistic macrobehaviour, i.e. the time derivative of the
probability function dP(m, n; t)/dt. Thus, we get a stochastic nonlinear differential
equation that is well-known in thermodynamics as a master equation.8

An example of social phase transitions and symmetry breaking is provided by
worldwide migration processes. The behaviour and the decisions of people to
stay or to leave a region are illustrated by spatial distributions of populations and
their change. The models may concern regional migration within a country,
motivated by different economic and urban developments, or even the dramatic
worldwide migration between poor and rich countries in the age of globalization.
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The migration interaction of two human populations may cause several macro-
phenomena, such as the emergence of a stable mixture, the emergence of two
separated, but stable ghettos, or the emergence of a restless migration process. In
numerical simulations and phase portraits of the migration dynamics, the macro-
phenomena can be identified with corresponding attractors.

The stability and welfare of our societies depend sensitively on the dynamics of
international financial markets. We have already mentioned that, in general, we do
not know the microscopic motions of economic data and agents. Therefore, in
1900, the French mathematician L. Bachelier11 considered the fluctuations of stock
prices as statistical random walk (Brownian motion) before physicists such as A.
Einstein (1905)12 discovered it in the microscopic motion of small particles in
fluids. Brownian motion does not only imply statistical stationarity of price
increments and scaling of prices (i.e. invariance under displacement and change of
scale), but also independence of price increments (knowing the past brings no
knowledge about the future), continuity of price variation (a sample of Brownian
motion is a continuous curve), rough evenness of price changes (normal Gaussian
distribution or ‘white noise’), absence of clustering (no emergence of local patterns
and structure) and absence of cyclic behaviour. Further on, Gaussian distribution
leads to the assumption of an efficient market and successful arbitraging with
prices following a martingale: whether the past is known in full, in part, or not at
all, price changes over all future time spans have zero as expectation.13

Modern theory and practice of finance is still more or less based upon these
fundamental beliefs. What makes an investment in the stock market risky is that
there is a spread of possible outcomes. The usual measure of this spread is
believed to be the standard deviation or variance in a bell-shaped (Gaussian)
normal distribution. On this basis, H. Markowitz (1952)14 suggested his well-
known construction of portfolios in order to diversify away unique risk. A stock’s
contribution to the risk of a fully diversified portfolio depends on its sensitivity to
market changes, which is measured by a parameter ‘beta’. Beta delivers the
benchmarks for the expected risk premium which, since the mid-1960s, was
calculated by the capital asset pricing model (CAPM). Bachelier did not only
suggest the random walk of price changes, but also considered the effects of
investing in options. A breakthrough in 1973 was the famous Black–Scholes
formula for calculating the present call option when there is a continuum of
possible future stock prices on the basis of a normal (Gaussian) distribution. Every
day dealers on the options exchanges still use this formula to make their trades.

Brownian motion is mathematically more manageable than any alternative.
But, unfortunately, it is an extremely poor approximation to financial reality.
Since the end of the 1980s, we can observe financial crashes and turbulences
deviating significantly from normal distributions. Investment portfolios collapsed
and hedging with options à la Black–Scholes failed. From the viewpoint of
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dynamical systems, patterns of time series analysis illustrate the failures of
traditional financial theory. While a record of Brownian motion changes looks
like a kind of ‘grass’ with normal length, a record of actual price changes looks
like an irregular alternation of quiet periods and bursts of volatility that stand
out from the normal length of the grass. This feature demonstrates the apparent
non-stationarity of the underlying rules. Further on, discontinuities appear as sharp
peaks from the normally distributed Gaussian ‘grass’. These peaks are not isolated
but bunched together. Cyclic (but not periodic) behaviour can be observed.
Instability of the sample variance is expressed by long-tailed distribution price
changes. Last but not least, there is a long-term dependence of data.

Financial markets display some common properties with fluid turbulence. As
for fluid turbulent fluctuations, financial fluctuations have intermittency at all
scales. In fluid turbulence, a cascade of energy flux is known to occur from the
large scale of injection to the small scales of dissipation. In the nonlinear and
fractal approach of the financial system, randomness can no longer be restricted
to the ‘normal’ Gaussian distribution of price changes. Non-Gaussian distribu-
tions with Levy- and Pareto-distributions are more appropriate to the wild
turbulence of financial markets of today. We must consider degrees of random-
ness.13 Gaussian distribution corresponds to a pattern of time series with a
‘normal’ length of ‘grass’ without extreme peaks. Therefore, it is called mild
randomness, which can be compared to a solid state of matter aggregation with
low energy, stabile structure and defined volume. Wild randomness resembles the
gas phase of matter with high energy, less structure and no defined volume.10

Slow randomness means the fluid state between the gas and solid state. From the
viewpoint of time series, mild randomness corresponds to short- and long-run
evenness. Slow randomness corresponds to short-run concentration and long-run
evenness. Wild randomness corresponds to short- and long-run concentration.

The rationality of human decision is bounded by the wild randomness of
markets. Human cognitive capabilities are overwhelmed by the complexity of
nonlinear systems they are forced to manage. Traditional mathematical decision
theory assumed perfect rationality of economic agents (homo oeconomicus).
Herbert Simon, Nobel Prize laureate of economics and one of the leading pio-
neers of systems science and artificial intelligence, introduced the principle of
bounded rationality in 1959.

The capacity of the human mind for formulating and solving complex problems
is very small compared with the size of the problem whose solution is required
for objectively rational behavior in the real world or even for a reasonable
approximation to such objective rationality.15

Bounded rationality is not only given by the limitations of human knowledge,
information and time. It is not only the incompleteness of our knowledge and the
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simplification of our model. The constraints of short-term memory and of infor-
mation storage in long-term memory are well-established. In stressful situations
people are overwhelmed by a flood of information, which must be filtered under
time pressure. People deviate from game-theoretically predicted equilibria. They act
neither in the strict sense of the homo oeconomicus nor completely chaotically.
Therefore, we must refer to the real features of human information processing and
decision making, which is characterized by emotional, subconscious, and kinds of
affective and non-rational factors. Even experts and managers often prefer to rely on
rules of thumb and heuristics, which are based on intuitive feelings of former
experience. Experience shows that human intuition does not only mean lack of
information and the failure to make decisions. Our affective behaviour and intuitive
feeling are parts of our evolutionary heritage that enable us to make decisions when
matters of survival are at stake. Therefore, we must know more about the factual
microeconomic acting of people, their cognitive and emotional behaviour, in order
to understand macroeconomic trends and dynamics. This is the goal of experimental
economics, observing, measuring, and analysing the behaviour of economic agents
with methods of psychology, cognitive and social sciences in, for example, stock
markets or in situations of economic competition.

Complexity and nonlinear dynamics of computational and
information systems

Dynamical systems can be characterized by information and computational
concepts. A dynamical system can be considered as an information processing
machine, computing a present state as output from an initial state of input. Thus,
the computational efforts to determine the states of a system characterize the
complexity of a dynamical system. The transition from regular to chaotic systems
correspond to increasing computational problems, according to increasing
degrees in the computational theory of complexity. In statistical mechanics, the
information flow of a dynamical system describes the intrinsic evolution of
statistical correlations. In chaotic systems with sensitivity to the initial states,
there is an increasing loss of information about the initial data, according to the
decay of correlations between the entire past and future states of the system. In
general, dynamical systems can be considered as deterministic, stochastic, or
quantum computers, computing information about present or future states from
initial conditions by the corresponding dynamical equations. In the case of
quantum systems, the binary concept of information is replaced by quantum
information with the superposition of binary digits. Thus, quantum information
only provides probabilistic forecasts of future states.

The idea of conceiving dynamical systems as automata dates back to the
mechanistic world-view of the 17th and 18th centuries. In the philosophy of
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Leibniz, even organic systems are considered as ‘natural automata surpassing all
artificial automata infinitely’.16 John von Neumann’s concept of cellular automata
delivered the first hints of computational models of living organisms conceived as
self-reproducing automata and self-organizing complex systems.17 The phase space
is a homogeneous lattice that is divided into equal cells like a chess board. An
elementary cellular automaton is a cell that can have different states; for instance,
binary states of ‘black’ (1) and ‘white’ (0). An aggregation of elementary automata
is called a composite or complex automaton. Each elementary automaton is char-
acterized by its environment, i.e. the neighbouring cells. They change their states
according to Boolean transformation rules depending on their cellular environ-
ments. The dynamics of a complex automaton are determined by synchronous
applications of the transformation rules producing cellular patterns of black cells.
These clusters can be considered as attractors at which the dynamics of cellular
automata aim. Thus, there are classes of automata with fixed points and oscillating
patterns, independent of initial cellular configurations, contrary to chaotic patterns
of automata, depending sensitively on tiny changes of initial configurations.

Unlike program-controlled computers, the human brain is characterized by
fuzziness, incompleteness, robustness, and resistance to noise, but also by chaotic
states, dependence on sensitive initial conditions, and – last but not least – by
learning processes. These features are well known in the nonlinear complex
system approach. Concerning the architecture of program-controlled computers
and complex systems, an essential limitation derives from the sequential and
centralized control of computers, but nonlinear complex dynamical systems are
intrinsically parallel and self-organized.

The information processing of the human brain is simulated by complex neural
networks with learning algorithms. From a technical point of view, neural nets are
complex systems of cells with different layers like the architecture of our cortex.
Neurochemical interactions of cells are simulated by numerical weights of input
data, which affect the firing or non-firing of technical neurons in dependence of
certain threshold values. In this manner, microscopic neurons connect themselves in
macroscopic patterns. There is no central processor or commanding neuron that can
think or feel. Cognitive features of the brain are correlated to macroscopic patterns
of connected neurons. Perceptions are transformed into neural maps of the brain that
can be characterized by macroscopic order parameters. The complex system
approach is an empirical research program that can be specified and tested in
appropriate experimental applications to understand the dynamics of the human
cognitive system. Furthermore, it enables heuristic devices to construct artificial
systems with cognitive features in robotics.

In a dramatic step, the complex systems approach has been enlarged from
neural networks to global computer networks such as the World Wide Web.8 The
internet can be considered as a complex open computer network of autonomous
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nodes (hosts, routers, gateways, etc), self-organizing without central control
mechanisms. The information traffic is constructed by information packets with
source and destination addresses. Routers are nodes of the network determining
the local path of each packet by using local routing tables with cost metrics for
neighbouring routers. A router forwards each packet to a neighbouring router
with lowest costs to the destination. As a router can only deal with one packet,
other arriving packets at a certain time must be stored in a buffer. If more packets
arrive than a buffer can store, the router discards the overflowed packets. Senders
of packets wait for a confirmation message from the destination host. These
buffering and re-sending activities of routers can cause congestion in the internet.
A control parameter of data density is defined by the propagation of congestion
from a router to neighbouring routers and dissolution of the congestion at each
router. The cumulative distribution of congestion duration is an order parameter
of phase transition. At a critical point, when the congestion propagation rate is
equal to congestion dissolution, fractal and chaotic features can be observed in
data traffic.

Congested buffers behave in surprising analogy to infected people. If a buffer
is overloaded, it tries to send packets to the neighbouring routers. Therefore,
the congestion spreads spatially. On the other hand, routers can recover when
the congestion from and to their own subnet is lower than the service rate of
the router. That is not only an illustrative metaphor, but a hint on nonlinear
mathematical models describing true epidemic processes such as malaria, as well
as the dynamics of routers. Computer networks are computational ecologies. The
capability to manage the complexity of modern societies depends decisively on
effective communication networks.18

Complex networks like the internet, the World Wide Web (WWW), social
networks, and biochemical networks are characterized by power law distribu-
tions. The simplest local property of a vertex in a network is its degree, i.e. the
total number of edges attached to a vertex, which is simply the number of
the nearest neighbours of the vertex. Here, it is mainly the degree distribution of
the corresponding graph representation of the network that follows a power law.
Since power law distributions have no characteristic size, they are scale-free
systems. The question arises how the emergence of power laws in information
networks can be explained by phase transitions at critical states.

It is not only a metaphor to transform the internet into a ‘superbrain’ with self-
organizing features of learning and adapting. Information retrieval is already
realized by neural networks adapting to the information preferences of a human
user with synaptic plasticity. In sociobiology, we can learn from populations of
ants and termites how to organize traffic and information processing by swarm
intelligence. From a technical point of view, we need intelligent programs dis-
tributed in the nets. There are already more or less intelligent virtual organisms
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(‘agents’), learning, self-organizing and adapting to our individual preferences of
information, to select our e-mails, to prepare economic transactions or to defend
the attacks of hostile computer viruses, like the immune system of a human body.

The complexity of global networking does not only mean increasing numbers of
PCs, workstations, servers, and supercomputers interacting via data traffic in the
internet. Below the complexity of a PC, cheap and smart devices of low-power are
distributed in intelligent environments of our everyday world. Like GPS (Global
Position System) in cars, everyday life things could interact wirelessly by sensors.
The real power of the concept does not come from any one of these single devices.
In the sense of complex systems, the power emerges from the collective interaction
of all of them. For instance, the optimal use of energy could be considered as a
macroscopic order parameter of a household that is realized by the self-organizing
use of different household goods according to less consumption of electricity during
special time periods that have cheap prices. The processors, chips and displays of
these smart devices do not need a user’s interface, like a mouse, windows, or
keyboards, only a pleasant and effective place to get things done. Wireless com-
puting devices, of small scale, are becoming increasingly invisible to the user.
Ubiquitous computing enables people to live, work, use, and enjoy things directly
without being aware of their computing devices.

What can we learn from nonlinear dynamics of complex systems?

What are the human perspectives in these developments of dynamical, information,
and computational systems? In the age of globalization, modern societies, econo-
mies, and information networks are highly dimensional systems with complex
nonlinear dynamics. From a methodological point of view, it is a challenge to
improve and enlarge the instruments of modelling from low to high dimensional
systems. Modern systems science offers an interdisciplinary methodology to
understand typical features of self-organizing dynamics in nature and society. The
widespread presence of power laws has changed our point of view from regarding
extreme events as exceptional to regarding them as the norm of complex systems.
They affect people and the environment: e.g. societal disasters (pandemics such as
AIDS), natural disasters (floods, cyclones), technical breakdown (power outages,
chemical contaminations), or economic turbulence (collapse of banks, huge losses in
the stock markets). Their appearance in nature, society, and the economy now
appears to be standard. It is a challenge for future research to find causal explanations
of these scale-free systems. From a methodological point of view, we have signif-
icant hope that relationships between power laws, causal networks, phase transitions,
criticality and the self-organization of complex systems can be exploited further.

As nonlinear models are applied in different fields of research, we gain general
insights into the predictable horizons of oscillatory chemical reactions, fluctuations
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of species, populations, fluid turbulence, economic processes, and information
dynamics. Obviously, nonlinear modelling explains the difficulties of the modern
Pythias and Sibyls. The reason is that human societies are not complex systems of
molecules or ants, but the result of highly intentional acting beings with a greater
or lesser degree of free will. A particular kind of self-fulfilling prophecy is the
Oedipus effect, in which people, like the legendary Greek king, try – in vain – to
change their future as forecasted to them. From a macroscopic point of view we
may observe single individuals contributing with their activities to the collective
macrostate of society, representing cultural, political, and economic order (order
parameters). Yet, macrostates of a society, of course, do not simply average over its
parts. Its order parameters strongly influence the individuals of the society by
orientating their activities and by activating or deactivating their attitudes and
capabilities. This kind of feedback is typical for complex dynamical systems. lf
the control parameters of the environmental conditions attain certain critical values
due to internal or external interactions, the macrovariables may move into an
unstable domain out of which highly divergent alternative paths are possible. Tiny
unpredictable microfluctuations (e.g. the actions of very few influential people,
scientific discoveries, new technologies) may decide which of the diverging paths
in an unstable state of bifurcation society will follow.

Therefore, the paradigm of a centralized control must be abandoned with respect
to the insights in the self-organizing dynamics of highly dimensional systems. We
act and decide under the conditions of bounded rationality and not with the
Laplacian spirit of a totally informed homo oeconomicus. However, self-organi-
zation also leads to undesired effects. Cancer is a self-organizing process of
growth. Turbulent financial markets are also out of control. Thus, we need a
balance between self-organization and an appropriate degree of control. We need
global order parameters to realize global governance. Global crises – such as, for
example, the banking financial crisis – need global response strategies and inter-
national cooperation between nations. Complexity management accepts the
uncertainty that exists in the real world rather than ignoring it. Complexity man-
agement is a structured process that reduces the costs of individual experience
while increasing opportunities for social, technological, and scientific learning for
global cooperation. During a long evolution, cellular self-organization of organ-
isms was embedded in a hierarchy of control processors, emerging in a learning
process of evolution. In engineering science, we should aim at self-organizing
systems with controlled emergence of new appropriate features. By detecting
global trends and order parameters of complex dynamics, we have the chance of
implementing favourite tendencies. By cooperation in complex systems we can
make much more progress in choosing our next steps. Cooperation in complex
systems supports deciding and acting for the sustainable future of a complex
world.7,13
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