The Australia Telescope 20 GHz (AT20G) Survey

Elizabeth Mahony¹,², Ron Ekers², Marcella Massardi³, Tara Murphy¹, and Elaine Sadler¹, on behalf of the AT20G Team
¹SIfA, School of Physics, University of Sydney, N.S.W. 2006, Australia
Email: emahony@physics.usyd.edu.au
²Australia Telescope National Facility, P.O. Box 76, Epping NSW 1710, Australia
³INAF, Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova, Italy

Keywords. galaxies: active, radio continuum: galaxies

The recently completed AT20G survey provides the largest and most complete sample of high-frequency selected radio sources yet obtained, and offers new insights into the nature of the high-frequency active galaxy population. Here we focus on the optical properties of this survey which highlights the difference of the AT20G source population compared to other radio-selected AGN samples.

The AT20G survey is a blind survey of the southern sky at 20 GHz and consists of 5890 sources above a flux limit of 40 mJy (Murphy et al. 2009). At high radio frequencies, the AGN core is the dominant source of emission and hence a survey at 20 GHz provides a clean signature of the most recent activity of the central black hole and is an efficient way of selecting the most active radio-loud AGN. Sixty percent of AT20G sources have optical identifications in the SuperCOSMOS database† (Hambly et al. 2001), a much higher fraction than seen in lower-frequency radio surveys (typically of order 25–30%). The optical ID rate increases with flux density due to the increasing fraction of QSOs/blazars at higher flux densities (see Figure 1). At lower 20 GHz flux densities, we begin to see lower-luminosity AGNs residing in optically fainter galaxies. The full AT20G catalogue is available online at http://www.atnf.csiro.au/research/AT20G/.

Figure 1. The optical identification rate as a function of 20 GHz flux density. The separation of point-like (generally QSOs) and extended sources (galaxies) is based on the optical morphology using SuperCOSMOS classifications. The horizontal error bars represent the bin size while the vertical errors are the √n counting errors.

References

† excluding the Galactic plane |b| < 10°