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Summary

A model of the balance between mutations and stabilizing selection affecting a quantitative
character is developed and analysed. This model is essentially a discretized version of the
continuum-of-alleles models analysed previously by Kimura, Lande, Turelli and others, and is
formally similar to the stepwise mutation models used to interpret electrophoretic data. The
complete model cannot be solved even for a haploid species, but there are useful approximations
for most parameter values of interest. The ‘house-of-cards’ approximation can be used when
selection is strong relative to mutation, and a normal approximation can be used when selection is
relatively weak. For intermediate levels of selection a new ‘five-allele’ approximation provides
accurate results over a wide range of parameter values. The house-of-cards and five-allele
approximations applied to recessive alleles in a diploid population show that, for a given mutation
rate, a somewhat larger genetic variance is maintained at equilibrium than in a comparable model
of additive alleles. Under directional selection, the increase in genetic variance is largest for alleles

of large effect and is much smaller for alleles of intermediate or small effect. At an equilibrium
under stabilizing selection, homozygotes would tend to have a higher average fitness than
heterozygotes when each mutation has a relatively large effect (the house-of-cards approximation),
with the reverse if each mutation has a small effect (the normal approximation). -

1. Introduction

The maintenance of heritable variation in a quantita-
tive character has proved to be a particularly difficult
problem to model in a simple way because of the
potentially large number of alleles to be accounted for.
Several models have been proposed that describe the
balance between stabilizing selection and mutations
of additive effect, with each model using different
simplifying assumptions. One class of models, intro-
duced by Latter (1960) and extended by Bulmer (1972,
1980), assumes that there are only two possible alleles
at each of n loci, with the allele frequencies being the
same at every locus. These assumptions reduce the
problem to one of finding the equilibrium allele
frequency. A different type of model was introduced
by Kimura (1965) and developed further by Lande
(1975), Fleming (1979) and Turelli (1984). This class
of models assumes a continuum of alleles that are
distinguished by their additive effect and predicts the
equilibrium distribution of additive effects under
different assumptions about mutation and selection.
The continuum-of-alleles models do not predict the
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heterozygosity or other properties of the loci-affecting
the character of interest, because their results are in
terms of the distribution of additive effects, not in
terms of the frequencies of alleles producing those
effects. Nor do they allow analysis of non-additive
mutations.

In this paper I shall introduce and analyse a model
of allelic effects that is closely related to the
continuum-of-alleles model. The present model is
similar to the ‘stepwise mutation model’ suggested by
Bulmer (1971) to account for patterns observed in
allozyme data. The complete model is not analytically
tractable, even assuming infinite population size, but
for most parameter values of biological interest there
are useful approximations possible. This model is
sufficiently simple for a number of analytic results to
be obtained, yet is sufficiently flexible that it can make
useful predictions about the heterozygosity and other
quantities of interest to population geneticists. This
model also provides a simple way to explore the effects
of varying degrees of dominance on a quantitative
character.
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2. Haploid species

We shall begin with a model of additive alleles at a
single locus in an infinite haploid population. Assume
that the locus has a large number of possible alleles,
A(i=0,11, £2,...) with allele 4, having additive
effect ic on a quantitative character, where ¢ is a
parameter of the model. The allele frequencies will be
denoted by p,(Xp; = 1, where throughout sums are
taken over all possible values of i). Mutation occurs
at a rate u per generation with 4; mutating to 4., or
A,;_, with equal probability. This is the ‘stepwise
mutation’ model, with ¢ representing the additive
effect of each mutational step. The contribution
of this locus to the mean of the character is cZ ip,
and the contribution to the variance is c?V;, where
V, = Xi*p;— (Zip;)? is the variance of i.

The relative fitness of an individual carrying 4, is
w,. We will be concerned initially with stabilizing
selection, which will be modelled by a ‘nor-
optimal’ selection function, w; = exp [—(ic)*/(2V})].
The optimal value of the character is at 0 and the
strength of selection indicated by the parameter V. If
a character were affected by only one locus, there
would be no reason to assume that the optimum is
exactly at 0 and coincides with one of the possible
allelic states. However, if a character was affected by
several loci, then the mean effect of a particular locus
is not strongly constrained (Lande, 1975) and it is
reasonable to assume that the maximum fitness at a
particular locus can be achieved. The methods used in
this paper could be applied to a model in which the
optimum is not at one of the possible allelic states, but
I will not do so here. Selection and mutation are
assumed to be relatively weak forces so their order in
a generation is not important, but to be specific we will
assume that mutation follows selection. Throughout,
we will ignore the environmental component of the
variance because it can be absorbed into ¥ (Lande,
1975; Turelli, 1984).

At the beginning of a generation the allele
frequencies are p;, and after selection they will change
to p;:
pi=pwi/W 1)
where W = Xp,w; is the mean fitness. Mutation then
changes the allele frequencies to p,”,

p =0 =pp/ +upivy +pi-,)/2. )
At equilibrium p; = p;, and Equations (1) and (2)
predict the equilibrium values. Without more assump-
tions, this infinite system of coupled, nonlinear
equations seems intractable. For different ranges of
the parameter values, however, we can obtain useful
approximate solutions.

(i) The house-of-cards approximation for strong
selection

If selection is much stronger than mutation, we can
obtain an accurate approximation by assuming that at
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equilibrium the frequencies of only three alleles, A4,,
and A, need be accounted for. This approximation
isthenequivalent to Turelli’s (1984, pp. 153-154) three-
allele model because the other alleles in the present
model are ignored. Turelli called this the ‘house-
of-cards’ approximation after Kingman’s (1978)
house-of-cards model of mutation. Kingman assumed
that the mutational state of each new mutant is
independent of the allele that mutated. The name of
the model comes from the idea that each allele is so
complicated that a mutation causes it to collapse ‘like
a house of cards’ and then be restructured according
to general properties of the locus. Although this
metaphor may not describe real mutations, it does lead
to models with desirable mathematical properties.
Turelli found that by making this assumption, he
could find an approximate solution to the continuum-
of-alleles model, and his three-allele model is based on
the same approximation. Barton (1986) discusses
other aspects of the house-of-cards approximation.

Following Turelli’s derivation, the symmetry of the
selection and mutation processes makes it reasonable
to assume that p, = p_, at equilibrium. The relative
fitness of A,, is approximately 1—s where
s = ¢*/(2V,). If we assume that p,; =0 for i > 2 and
that both 4 and s are much less than one, (1) and (2)
can be combined to form a single approximate
equation for p, at equilibrium:

pi=(=s=p)p,+u/2 3)

because p, = 1 —2p,. Equation (3) depends on the
assumption that x4 and s are both small and that p, is
small. As Turelli pointed out, this equation is similar
to the equations obtained when considering a model
of a balance between selection and mutation at a
diallelic locus.

Wecan see in Equation (3) where the house-of-cards
assumption enters. The second term on the right-hand
side is the increase in p, due to mutation and does not
depend on the frequencies of the three alleles. In this
model that result was derived as an approximation to
the complete model.

Equation (3) implies

by = u/[2(u+3)]. @

This result is a solution to (3) for any x and s if they
are both small, but it is an approximate solution to the
complete model only if p, < 1 because only then is it
reasonable to assume that the frequencies of alleles
other than A4, and 4., are negligible. Therefore, (4)
is a valid approximation to the complete model only
if pu<s. In that case p, = u/(2s), the genetic
variance of the character attributable to this locus is
c*V; =2p,ct = 2uV,, and the ‘heterozygosity’, H,, is
1—-pi—2pt ~ p/s.

(ii) Normal approximation for weak selection

In the other extreme, we can assume that selection is
much weaker than mutation. Turelli (1984) showed
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that this assumption is necessary for the continuum-
of-alleles model to have a normal distribution of allelic
effects at equilibrium. We will take advantage of the
result to show that the distribution of p; in this case
is approximated by a discretized normal distribution.
For values of i such that V>, w;,x 1—~si* and
W = Zp,w; ~ 1 —sV;. Equations (1) and (2) can then
be approximated by

HPis—2pi+pi-)/2+5(V, =) p; = 0. &)

The first term is nearly (u/2)dp;/di?, so (5) is
approximated by a differential equation whose
solution is a normal distribution, p, = [1/+/(2nV})]
exp[—i%/(2V;)], where the value of V, has to be
determined by substituting this expression into (5).
This derivation follows those of Kimura (1965) and
Turelli (1984) for the continuum-of-alleles model.
Using a scaling argument similar to Turelli’s (1984,
pp.- 143-144), this approximation is seen to be valid
when u > s, 1.e. when mutation is a much stronger
force than selection. The equilibrium value of V; is
approximately /(u/2s) = +/(uV,/c?) which implies
that the equilibrium genetic variance, V, = c?V;,
is +/(c*uV,). The equilibrium heterozygosity,
H,=1-Zp?, is approximately 1—1/+/(4nV)) which
is, under these assumptions, nearly one.

(iii) Five-allele approximation for intermediate
selection

For selection intensities that are intermediate between
those for which the two preceding approximations are
valid we can obtain another approximation by keeping
track of five alleles. The analysis is in the same spirit
as the house-of-cards approximation, but the extra
flexibility provided by an additional allelic class yields
accurate results for a larger range of parameter values.

We will keep track of the frequencies of only five
alleles, Ay, A,,, and 4,,, and use the symmetry to
assume p_, = p,, = p, and p,, = p,. We will assume
for now that selection and mutation are balanced in
such a way that p, < 1 at equilibrium and later will
find the range of parameter values for which that is
true. When p,, < 1, we are justified in ignoring the
presence of alleles with larger additive effects.

The equilibrium can be found from the two
approximate equations

pr=1=)(1=5)p,/W+(py+ps)/2 (6a)
pe=(1—p)(1—4s)p,/ W+up,/2, (6b)
where W=1-2s(p,+4p,). Because p, <1,

W=~ 1-2sp, and (6b) can be solved for p, in
terms of p,:

P2~ up,/[2(u+4s—2sp,]. (Ta)

Equation (7a) can be combined with (6a) to provide
a single quadratic equation for p,,

25pi—Qu+s)p,+u/2=0
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which has the solution

py = [14+2u/s— /(1 +Q2u/s)"))/4. (7b)

This solution is unique because the other root of the
quadratic would imply p, > 1/2. Both p, and p, depend
on the ratio u/s, as expected in a model of a
mutation—selection balance.

We can now ask for what values of u/s is (7) an
accurate approximation to the complete model, by
using the criterion that p, must be sufficiently small.
As /s increases from very small values, for which the
house-of-cards approximation is valid, to very large
values, for which the normal approximation is valid,
Equation (7b) predicts that p, increases from a small
value to 1/4. If u/s is small, then (7b6) implies
P, ~ u/(2s), which is the value in the house-of-cards
approximation, and, for x/s in that range, p, is much
smaller, ensuring that this approximation is valid. The
question is how large u/s can be with p, still being
sufficiently small that the five-allele approximation is
valid. We can find this value by putting an upper
bound on p,, B, and say the approximation is
consistent if p, < B. Equation (7a) implies that if
p: < B,

P <2B(u/s+4)/(u/s+4B). (8)

Inequality (8) combined with (7b) implies that this
approximation is valid if approximately

/s <[9B—+/(4B+49B%)]/[2(2B—1/4)] )]

when B < 1. For example, if B = 0-05, (9) implies that
/s < 0-39. Therefore, this approximation to the
complete model is still valid when u/s becomes
relatively large but still less than one, and it reduces
to the house-of-cards approximation when u/s is very
small.

(iv) Comparison of loci with different additive effects

If there is no or effectively no linkage disequilibrium
among loci affecting a particular character, the
additive genetic variance of a character is obtained by
adding the genetic variances over all loci affecting the
character. The assumption of linkage equilibrium is
supported by both analytic and numerical results
(Turelli, 1984). In effect, weak selection on a
quantitative character acts almost independently on
different loci with alleles of additive effect. That
property combined with the independence of muta-
tions at different loci ensures that there will be no
correlation of allele frequencies among the loci.

We can interpret the above results by imagining that
in a particular species there are different classes of loci
with additive effects that vary from relatively small to
relatively large. If ¥, is much greater than the
phenotypic variance of the character, then V; is the
intensity of stabilizing selection experienced at each
locus, and the above results can be used to predict the
relative contributions of these different classes of loci
to the additive genetic variance.
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Fig. 1. A comparison of the exact and approximate
predictions for the equilibrium genetic variance
maintained under a balance between stabilizing selection
and mutation in haploids. The exact results were
obtained by numerically iterating Equations (1) and (2) as
described in the text.
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Fig. 2. A comparison of the exact and approximate
predictions for the computed heterozygosity, defined as
Yp;%, maintained under a balance between stabilizing
selection and mutation in haploids. That quantity is the
heterozygosity that would be observed in a comparable
randomly mating diploid population.

If we consider all loci with the same mutation rate,
U, the contributions of the different types of loci to the
additive genetic variance can be plotted as a function
of ¢, the additive effect. The results are shown in Fig.
1, which shows the values of ¥ obtained from each of
the three approximations described above and the
exact values obtained by iterating Equations (1) and
(2). The iteration was carried out by choosing a large
enough number of allelic classes for the equilibrium
frequency in the outermost classes to be less than 10~-7.
Fig. 1 shows that loci with small additive effects
contribute far less than loci with larger additive
effects. It also shows that the five-allele model provides
an accurate approximation to the complete model over
a wide range of values of ¢. That model becomes less
accurate for smaller values of ¢ and always underesti-
mates ¥, but because V decreases with ¢, the absolute
error is never very large.

We can also use these results to examine the
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heterozygosity. Fig. 2 shows the exact results and the
results obtained using the five-allele approximation.
Under the house-of-cards approximation the heter-
ozygosity is almost zero, and under the normal
approximation it is almost one. The five-allele model
provides an excellent approximation throughout the
range of parameter values.

3. Diploid species

We can now model a diploid species in a similar way,
with the principal difference being that we can now
allow for different degrees of dominance. As in the
haploid model, there is an unlimited number of alleles,
A;, i =0, +1, +2... Each allele mutates at a rate u per
generation, with the allele A; having probability x4 of
mutating to A4;,, and A4;_,. The relative fitness of an
individual with genotype A4,4; is w;, which is
determined both by the selection and by the
dominance relationships of the alleles. Equations (1)
and (2) describe the model if w; is interpreted now as
the marginal fitness of 4,: w; = Zpw;;. The mean
fitness is W = Zp;w; = Zp;p;w,;.

We assume that selection on the phenotypes is nor-
optimal, with the optimum at 0 and the strength V.
If alleles are additive in their effect, the phenotype
of an individual with genotype A4;4; is (i+))c, so
wy; = exp [—(i+/)?c?/(2V,)]. If we use the same three
ways of approximating the diploid model as we did for
the haploid model, we can show that the approximate
equilibrium allele frequencies are unchanged by the
assumption of diploidy as long as selection is weak. As
discussed by Turelli (1984), when selection is weak and
alleles are additive in their effects, selection acts on
each allele essentially independently.

The interesting questions for the model of a diploid
species are about the effects of dominance. The
analysis is made somewhat difficult by the large
number of possible dominance relationships among
alleles. I will explore one class of assumptions about
complete dominance to illustrate how this problem
can be approached.

(i) Recessive alleles

It is relatively easy to examine the effects of recessive
mutants under the assumption of strong and inter-
mediate selection if we assume that high-frequency
alleles are dominant to the lower-frequency alleles.
This assumption corresponds to the idea of “ wild type’
alleles being dominant. We will begin with the
house-of-cards approximation and then examine the
five-allele approximation, which allows for somewhat
weaker selection. There seems to be no easy way to
obtain an approximation comparable to the normal
one used above.

In the house-of-cards approximation, we keep track
of only 4, and A4.,. Under our assumptions about
dominance, 4, is dominant to 4., and 4_,. There
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seems no reason to assume a particular dominance
relationship for 4., and 4_, so we let the phenotypic
value of 4,,4_, be dc. The nine genotypic and three
marginal fitnesses are given in Table 1.

If 4 < s, then we can use Table 1 and equations (1)
and (2) to find the two approximate equations for p,
and p_, that must be satisfied at equilibrium:

(10a)
(104)

spi+disp_,py = p/2
sp2y+dsp_py & p/2,

where smaller terms have been dropped. These
equations imply

PPy =V /251 + ). )

Equation (11) is less accurate than the corresponding
approximation for additive alleles, Equation (4). For
additive alleles p ., is of order /s in magnitude, and
in deriving (4), terms of order (u/s)? were ignored. In
(11), p4, is of order /(u/s) and terms of order u/s
were ignored.

Equation (11) resembles the standard result for a
balance between mutation and selection against
recessive alleles. The dominance relationships are not
completely symmetric because the contribution of
A, A_, to the character is dc, which may be positive or
negative. Nevertheless, p, ~ p_, at equilibrium. A
non-zero value of d does increase the selection
affecting both alleles. The equilibrium genetic vari-
ance, V,, under this model is

Vo = pict+2p,p_,(dc)* +p2,c® = 2ul, (12)

which contains both additive and dominance compo-
nents. Using standard quantitative genetic methods,
V, = Vy+ V), where V, = 4c*(1 +d?) p} is the additive

Table 1. Genotypic and marginal fitnesses for the
house-of-cards approximation for completely
recessive alleles

Phenotypic values

A, A, An
A, -1 0 d
4, 0 0 0
A, d 0 1

Genotypic fitnesses

A, Ay Ay
A_, 1—s 1 1 —-d?s
A, 1 1 1
A, 1—d?s 1 1—s
Marginal fitnesses
w_,; Wo wy

l—sp_,—d?sp, | 1—dPsp_,—sp,
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component and Vj, x 2pp,2(1+d?)c? is the domin-
ance component. Because p, <1 at equilibrium, nearly
all the genetic variance is dominance variance.

For weaker selection, we can use the five-allele
approximation. This is easiest to do if the assumptions
about the dominance relationships ensure symmetry
of the solution. One such choice is given in Table 2,
in which A4, is dominant to the other four alleles, 4,
and A_, are dominant to 4,,and A_,,4,, and 4_, are
codominant, and 4., and 4_, are codominant. The
parameter k indicates the increase in phenotypic
value of the 4_,4_, and A, A ,, individuals. There are
other possible choices for the dominance relationships
and they can be analysed in the same way.

We assume p, =p_, and p, = p_, at equilibrium
and use Equations (1) and (2) and Table 2 to obtain
the two equations for p, and p,:

pr= =) (A =sp)p,/W+ u(py+p,)/2
pe= (1 —py(1—Kk%s) p,/ W+ up,/2,
where W =1-—2sp?—4sp,p,—2k3p:. These equa-
tions correspond to (6) for the additive haploid model.

If p, < 1, then W=~ 1-2sp? and (13a) and (13b)
imply

(13a)
(13b)

P2 = pup,/[4s(1 —py)] (1449)
and
P =V (1/2). (14b)

Although (14b) is the same as (11) with d =0, the
derivation of (14 #) did not require the assumption that
4 < 5. This approximation is valid even when u and s
are of the same order of magnitude, as long as p, < 1.
Note that (14 a) implies that the equilibrium frequency
of 4, , does not depend on k, the phenotypic effect of
the homozygotes. It does depend on the assumption
about the dominance of A4,, to A,, Other
assumptions about those dominance relationships
would lead to different values of p,.

At the equilibrium given by (14), the genetic
variance is V, ~ 2uV; if p,is small, which is the same
as the value obtained from the house-of-cards model
of recessive alleles. This result predicts that V, is
approximately independent of ¢ although the heter-
ozygosity, H, = 1—uV,/c?, does depend on c¢. The
decrease of H, with increasing c is consistent with the
result for the house-of-cards approximation. Under
the five-allele approximation, V, =~ 4c?®p,®* and
Vp = 2p.p,2c?, which are the same expressions as
in the house-of-cards approximation (with d = 0).
Because p, < 1, the outer alleles do not contribute sig-
nificantly to the components of the variance. Now, p,
is not necessarily small, implying that there may be
a substantial additive component of the variance at
equilibrium due to completely recessive alleles.

Both the three-allele and five-allele approximations
for recessive alleles are less accurate than the
corresponding approximations for additive alleles.
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Table 2. Phenotypic values and the genotypic and marginal fitnesses for
the five-allele approximation for completely recessive alleles

Phenotypic values

A, A, A4, 4, A,
A_, —kc —c 0 c 0
A, —c —c 0 0 —c
A, 0 0 0 0 0
A, c 0 0 c c
A, 0 —c 0 ¢ ke
Genotypic fitnesses, wy,
A, A, 4, A, A,
A_, 1—ks 1—s 1 l—s 1
A_, l—s 1—s 1 1 l—s
A, 1 1 1 1 1
A, l1—s 1 1 l—s 1—s
A, 1 I—s 1 l—s 1—ks
Marginal fitnesses
we=1 wy=w_,=1-—s5p,—2sp, wy,=w_,=1-—2sp,—ksp,

For comparable parameter values, selection on
recessive alleles is weaker than selection on additive
alleles, which means that the allelic classes that are
ignored in the approximations will be more important.
Fig. 3 shows the predictions of the three-allele and
five-allele approximations for recessive alleles
(Vg = 2uV}), with the results from the iteration of the
exact equations for recessive alleles and for additive
alleles in a diploid. In the numerical iteration, the
selection function of the recessive alleles was the
obvious generalization of Table 2. The fitness of the
A;A; homozygotes was w;; = exp[—(ic)*/2V,]. The
selection function for the diploid model with additive
alleles was chosen to be w;; = exp[—c*(i+/)%/8V}), so
that the fitnesses of the homozygotes for a given value
of ¢ were the same for the recessives.

The numerical results show that the approximate
results are not very accurate, especially for smaller
values of ¢. The approximate results are qualitatively
correct, however, in predicting that recessive alleles of
a given effect will contribute more to the genetic
variance than will additive alleles of the same effect.

It does not seem possible to find a useful
approximation for a model of recessive alleles under
weak selection. By making explicit assumptions about
all the dominance relationships among alleles, it is
possible to obtain an equation with a form similar to
(5), but the resulting equation does not have a solution
that can be approximated by a normal distribution
and does not appear to be tractable.

Other assumptions about dominance relationships
among alleles will of course lead to different results,
and it is difficult to generalize about how other models
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Fig. 3. A comparison of the exact and approximate
predictions for the total genetic variance, ¥, maintained
under a balance between stabilizing selection and
mutation in diploids. The approximate results are the
same for the house-of-cards and five-allele
approximations. Selection on recessive and additive alieles
was defined to ensure that they would have the same
value of ¥, for large values of c.

would behave. If low-frequency alleles tended to be
dominant, the results would be similar to a comparable
model of additive alleles, because the low-frequency
alleles would only rarely occur as homozygotes.

4. Directional selection

We can also ask how the mean and variance of a trait
will change if a population that is at an equilibrium
under stabilizing section is suddenly subject to strong
directional selection. This situation models artificial
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selection applied to a population previously at a
genetic equilibrium under natural selection. It is of
particular interest to know how much the genetic
variance increases during the first few generations of
artificial selection under the assumptions of the model,
because a large body of experimental data show that
in general the genetic variance of traits subject to
relatively strong directional selection does not increase
substantially, even though the mean values change by
several standard deviations. The complete one-locus
model can be easily iterated numerically to give a
quantitative picture of the results. We shall see,
though, that the same class of approximations as used
above are useful to describe the first few generations
of response to directional selection, during which the
average contribution of a locus changes by only a few
multiples of the standard deviation of genetic effects
at that locus.

We consider the population modelled above to be
initially at equilibrium under the balance between
mutation and stabilizing selection. Then directional
selection is imposed with selection modelled by
w; = 1+ aic, which means that directional selection is
sufficiently strong for stabilizing selection to be
ignored. A more complete analysis would include the
effects of both stabilizing and directional selection, a
problem that has recently been examined by Zeng &
Hill (1987). This way of modelling directional
selection is an approximation to the effect on a single
locus of truncation selection, which is the kind used in
studies of artificial selection, if the locus under con-
sideration contributes a small fraction of the total
phenotypic variance, with the remainder of the
variance due to other loci and to environmental
effects.

Using the house-of-cards approximation, we still
assume that both p, and p_, are small but now no
longer equal. Under the assumption that o is small,
w4, = | T ac. Equation (1) implies that in the first few
generations,

P ® (Wi)'pi(0) (15)

because W, the mean fitness, is approximately 1.
Assuming o > 0, i.e. directional selection favours
larger values of the character, p,(f) will increase and
p_,(t) will decrease exponentially with time. Initially
p_,(0) = p,(0) < 1. After several generations, the
contribution of this locus to the mean of the character
will be ¢[p,(!)—p_,(¢)] and the contribution to the
variance approximately ¢2[p,(9)+ p_,(?)].

One way to consider the effect of directional
selection is to find the change in the genetic variance
of the trait when the mean has changed by some
multiple of the equilibrium standard deviation. In this
way we need not be concerned with the particular
value of « as long as selection is weak enough for these
approximations to be valid. If we consider first a
character governed by a single haploid locus, the initial
value of ¥, is V,(0) = 2¢?p,(0) = 2uV,. The mean of
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the character will change by one standard deviation
when

oy () —p-, (D] = (1 +ac)t — (1 — xc)] p,(0)
or = V[2¢°p,(0)), (16)

sinh (act) & 1//[2p4(0)] a7n

Equation (17), which depends on the assumption that
oac € 1, can be solved for ¢ to find the number of
generations of selection of the specified intensity
needed to achieve this change in the mean. The
variance after that number of generations is
approximately

V() ~ c*[(1 +oc) + (1 — ac)] p4(0)
= 2¢? cosh (act) p,(0)
= 2¢%,(0)v/ [1+1/(2p,(0))]. (18)

Therefore, after the mean changes by one standard
deviation,

Vi(0/V(0) = v [1+1/2p,(0))] = v/ (/1) (19)

The house-of-cards approximation is valid only when
1/s < 1, so (19) tells us that under these assumptions
V,(¢) increases substantially.

Equation (17) shows that this approximation is
consistent, because after directional selection has
changed the mean by one standard deviation,
Pi(t) = v/[2p,(0)] and so is still small enough for 4.,
and the other alleles to be ignored.

In the five-allele approximation the three central
alleles, A, and A.,, contribute most of the genetic
variance. We can use that fact to approximate the
behaviour of the five-allele model in the first few
generations of directional selection. For the haploid
model,

pi(t+1) = p() (1 +ioc)/ W, (20)
where

W= 1+aclp(t) —p-.()] €2y
is the mean fitness. Assuming oc < 1, we obtain
pat+1) & py[1 + e —0e(p, —p_,)] 22)
and

p_t+ 1) = p_[1—ac—oac(p,—p_,)]. (23)

where, for notational convenience, ¢ is suppressed on
the right-hand sides. These difference equations can be
approximated by two first-order differential equations
for dp,(t)/dt and dp_,(t)/dt. A simpler pair of
equations can be obtained by adding and subtracting
these equations to obtain

du/dt = acv(1— u) (24)
and
dv/dt = ac(u—v?) (25)
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where u = p, +p_, and v = p, —p_,. Note that, except
for the contributions of 4, ,, v is proportional to the
contribution to the mean of the character and u is
proportional to the contribution to the variance. By
multiplying (24) by v, (25) by u, and subtracting, we
obtain

d(v/u)/dt = ac[1 —(v/u)] 6)
which implies

v(1)/u(r) = tanh act, 27N
because v(0) = 0. Substituting (27) into (24) we obtain
du/dt = ocu(l —u) tanh act (28)

which can then be integrated to yield
u(t) = K coshoct/(1 — K cosh act) (29)

where K = u,/(1 +u,), which is chosen to ensure that
u(0) = u,.

If we ignore the contributions of 4., to the mean
and variance, the mean of the character is cv(f) and the
variance is c?u(t). Therefore, the mean has increased
by one standard deviation when v(f) = v/u,, which,
according to (27), will occur when u(f) = 1/u, coth act.
Substituting that into (29) we can solve the resulting
equation for cosh act, the time at which »(¢) has
changed by the required amount. That equation is a
quadratic whose solution is

coshact = —[u,+ v/ (o + K2 — u, KD /[K(1 ~u,)]. (30)

From this expression, coth act can be found and from
that the value of u(f). The general expression is not
very informative. For a particular value of u,, finding
the increase in ¥ and hence V is easy. For example,
if u,=02@Ge p0)=0-1), coshoact=2-04 and
coth act = 1-15. Therefore, u(f) would increase from
u, to roughly 1-15 4/u, = 0-51 and the variance would
increase by a factor of roughly 2-5. If, instead,
u, = 0-6, the corresponding increase in the variance
would be by a factor of about 1-8. These values of u,
bracket the range of values of p,(0) for which the
five-allele approximation can be applied. Therefore we
can conclude that, in contrast to the results for the
house-of-cards approximation, the contribution of a
single locus to the variance in this case is increased by
approximately a factor of 2.

For a locus approximated by a normal distribution
of allelic effects, an argument analogous to that in
Lande (1975) will show that the variance does not
change under weak directional selection. That prop-
erty of the normal approximation has played an
important role in the development of evolutionary
theories based on Lande’s results.

The increase in the total genetic variance under
directional selection decreases as the number of loci
affecting a character increases. That is true regardless
of the relative importance of selection and mutation
at each locus. To see this, assume that there are »n loci
with the same additive effect, ¢, and the same mutation
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rate, p. If directional selection is weak, each locus
experiences directional selection of the same intensity,
so the relative fitnesses at each locus are the same as
in the one-locus model. The difference is in the amount
of change at each locus that is needed to change the
mean of the character by one standard deviation. If
the equilibrium variance at each locus is ¥, the
variance of the character is nV. If directional selection
changes the mean effect at each locus from 0 to x, the
mean of the characteris nx. The mean of the character
will then change by one initial standard deviation
when nx = /(nV,) or x =+/(V,/n). The amount of
change in the mean effect of each locus needed to
achieve a specified net change decreases with the
square root of the number of loci.

Using the house-of-cards approximation, we found
that at a single locus the variance increases by roughly
a factor of 4/(s/u), so the above argument shows that
with » loci of equal effect

Vo0 /V4(0) = +/(s/np). E2))

Therefore, u/s might be small enough that the
house-of-cards approximation is valid at each locus
yet n might be large enough that only a small increase
in the genetic variance is expected under sustained
directional selection. This result is consistent with that
of Barton & Turelli (1987). Under the five-allele
approximation, the variance increased by roughly a
factor of two, so even with relatively few loci of that
type, only a small increase in the variance would be
expected.

5. Apparent overdominance

There is a growing literature showing a positive
correlation between heterozygosity of electrophoreti-
cally detectable alleles and physiological traits such as
growth rates that are presumed to be correlated with
fitness (Mitton & Grant, 1984). The two most common
explanations for this phenomenon are inbreeding
depression due to population subdivision and over-
dominance (Smouse, 1986). We can use the present
model to ask whether loci with additive effects on a
quantitative character and at equilibrium under a
balance between mutation and stabilizing selection
would appear to be over- or underdominant. To
answer this question, we use the present model of a
single locus in a diploid population to compute the
average fitness of an individual that is heterozygous or
homozygous at that locus:

u/hom = zip’?wii/zxpg!
Whet = ZixPPiWis/ Zix iPiD;- (32)

Assuming weak stabilizing selection of strength V;,
wy & 1—c2(i+))*/(2V)).

Under the house-of-cards approximation W, ~ |
and W = 1 —c2/(2V,) < Wyom- When selection is
strong, 4, and 4_, are sufficiently rare that nearly all
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the homozygotes are 4,4,, which have fitness I, and
nearly all the heterozygotes are 4,4, , which have
fitness 1 —c%/(2V,). Therefore, under the assumptions
of this model, strongly selected loci would exhibit the
opposite pattern from what is usually observed, with
homozygotes on the average having a higher fitness
than heterozygotes.

Using the five-allele approximation and ignoring

Wiet & 1 —4spop,/(4pp, +2p3) (33)
and
Whom = 1 —8sp}/(p§+2p}), (34)

where s =c2/(2V;). Because p, = 1 —2p,, Whet < Waom
if roughly p, < 0-21 and p, > 0-58. As A, became
more frequent, more of the heterozygotes are A,4_,
and more of the homozygotes are 4,4, and A_,4_,,
making the average fitness of the two groups more
equal. For most parameter values for which the
five-allele approximation is valid, heterozygotes will
on the average be less fit than homozygotes, but the
difference between them will be much less than for a
strongly selected locus. If selection is weak, using the
normal approximation for p; and approximating the
sums in (32) by integrals, we find that W}, ~ 1 —sV;/2
and Wy, = 1—sV,. Therefore, W, > Wioms
because the variance of the trait in heterozygotes is
necessarily smaller than the variance of the trait in
homozygotes.

These results suggest that under the assumptions of
this model weakly selected loci would appear to be
overdominant and more strongly selected loci would
appear to be underdominant, with the transition
occurring for parameters for which the five-allele
approximation is valid. Of course, this model does not
allow for more than one allele with the same additive
effect on the character. A model that did not allow for
that possibility could be analysed using the same
approximations, because within an allelic class alleles
would be effectively neutral.

These results are not presented as an explanation for
observed patterns of heterosis and apparent overdom-
inance of electrophoretic loci. It seems most unlikely
that allozymes chosen for their convenient biochemical
properties would fortuitously have significant effects
on a quantitive character subject to stabilizing
selection. These results do show, however, that there
are other explanations possible for heterosis besides
inbreeding depression and overdominance. Recurrent
mutation balanced by selection can also result in
different average fitnesses of heterozygotes and
homozygotes.

6. Discussion and conclusions

Models of the balance between mutation and selection
on a quantitative character generally assume either
two alleles per locus or effectively an infinite number.
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Neither type of model leads to an understanding of the
relationship between the phenotypic character and the
frequencies of alleles at loci affecting that character.
The model developed in this paper is intended to be
intermediate between those two extremes. It makes
relatively simple assumptions, and shows that for a
wide range of parameter values useful approximate
solutions can be found. It also allows the analysis of
recessive alleles and predicts the increase in genetic
variance due to directional selection.

A question of current interest to evolutionary
biologists is the extent to which explicit genetic models
of a quantitative character are necessary for evolu-
tionary theories. There is a growing literature on
quantitative genetic models of evolutionary pro-
cesses, and most of the models are motivated by
Lande’s (1975) analysis of the balance between
mutations and natural selection and on the generali-
zation to two or more characters (Lande, 1980). This
approach has been especially fruitful because it
predicts that the genetic and phenotypic variances of
a character approach their equilibrium values even
though the mean values may still evolve. As a
consequence, many evolutionary models become

_essentially phenotypic models in which the phenotypic

variances and heritabilities are constants. The con-
stancy of phenotypic variances and heritabilities,
which is generally observed in short-term studies of
directional selection, does not imply that the under-
lying distribution of allelic effects at each locus is
normal. Turelli (1984) has argued that the assumptions
needed for Lande’s analysis are unrealistic, and that
in general a normal or approximately normal
distribution of allelic effects at each locus is not to be
expected. But Turelli (1984) did not address the
question of whether Lande’s approach to predicting
phenotypic evolution remains valid even though the
underlying assumptions are not.

The above results show that the wvariance of a
quantitative character can increase under directional
selection, but that both the additive effect of alleles
and the number of loci affecting the character
determine the extent of the increase. If the house-
of-cards approximation is an accurate description of
most loci controlling quantitative characters, there
must be a large number of such loci affecting each
character in order for the genetic variances not to
increase significantly under directional selection. If
additive effects of mutations are smaller, implying that
the five-allele or normal approximations are more
accurate, there is relatively little increase in the
variance. In many selection experiments the genetic
variances remain relatively constant under several
generations of directional selection (Falconer, 1981).

The present results call attention to a potentially
important difference between Turelli’s and Lande’s
assumptions about the maintenance of genetic
variability by a balance between mutation and
stabilizing selection. If loci affecting a character differ
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substantially in their additive effects and if mutation
rates at different loci are of the same order of
magnitude, Turelli’s assumptions pertain to loci with
relatively large additive effects and Lande’s assump-
tions pertain to loci with relatively small additive
effects. However, Fig. 1 shows that each locus with a
relatively large additive effect will contribute far more
to the equilibrium genetic variance of a character than
will each locus with a relatively small mutational
effect. For the two types of loci to contribute equally
to the genetic variance of a character, either there
would have to be many more loci with small additive
effects or mutation rates at loci with small additive
effects would have to be much larger.

The approach taken in this paper is complementary
to that of Barton & Turelli (1987), who also analyse
the response to directional selection. They derive
equations for the moments of allele frequencies and
then close the system of equations under assumptions
that are equivalent to the house-of-cards and normal
approximations used here. Their approach is more
general because it does not assume a particular model
of mutational change of each allele and does not
require any assumption about symmetry. It does
require some assumption about the relationship
among the moments of the allele frequency distribu-
tion, and consequently does not allow analysis of
intermediate parameter values that correspond to the
five-allele approximation used here. The results from
the two models are consistent where they can be
compared.

The present model is of only a single phenotypic
character. An extension to two characters, using a
generalization of Turelli’s (1985) five-allele model, will
be difficult but necessary. Without such an analysis,
evolutionary biologists will be left in the lurch.

I thank J. Felsenstein, M. Kirkpatrick, R. K. Koehn,
R. Lande and M. Turelli for helpful discussions of this
topic. N. H. Barton, J. J. Bull, M. G. Bulmer, W. G. Hill,
R. Lande, R. G. Shaw, M. Turelli, J. B. Walsh, and
Z. -B. Zeng made numerous useful comments on earlier
drafts of this paper. This research has been supported in part
by NSF Grant BSR-8500258.
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