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Abstract

Let λ denote the Liouville function. The Chowla conjecture, in the two-point correlation case,
asserts that ∑

n6x

λ(a1n + b1)λ(a2n + b2) = o(x)

as x→∞, for any fixed natural numbers a1, a2 and nonnegative integer b1, b2 with a1b2−a2b1 6= 0.
In this paper we establish the logarithmically averaged version∑

x/ω(x)<n6x

λ(a1n + b1)λ(a2n + b2)

n
= o(logω(x))

of the Chowla conjecture as x → ∞, where 1 6 ω(x) 6 x is an arbitrary function of x that
goes to infinity as x → ∞, thus breaking the ‘parity barrier’ for this problem. Our main tools
are the multiplicativity of the Liouville function at small primes, a recent result of Matomäki,
Radziwiłł, and the author on the averages of modulated multiplicative functions in short intervals,
concentration of measure inequalities, the Hardy–Littlewood circle method combined with a
restriction theorem for the primes, and a novel ‘entropy decrement argument’. Most of these
ingredients are also available (in principle, at least) for the higher order correlations, with the main
missing ingredient being the need to control short sums of multiplicative functions modulated by
local nilsequences. Our arguments also extend to more general bounded multiplicative functions
than the Liouville function λ, leading to a logarithmically averaged version of the Elliott conjecture
in the two-point case. In a subsequent paper we will use this version of the Elliott conjecture to
affirmatively settle the Erdős discrepancy problem.
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1. Introduction

Let λ denote the Liouville function, thus λ is the completely multiplicative
function such that λ(p) = −1 for all primes p. We have the following well-
known conjecture of Chowla [3]:

CONJECTURE 1 (Chowla conjecture). Let k > 1, let a1, . . . , ak be natural
numbers and let b1, . . . , bk be distinct nonnegative integers such that ai b j −
a j bi 6= 0 for 1 6 i < j 6 k. Then∑

n6x

λ(a1n + b1) · · · λ(akn + bk) = o(x)

as x →∞.

Thus for instance the k = 2 case of the Chowla conjecture implies that∑
n6x

λ(n)λ(n + 1) = o(x) (1)

as x → ∞. This can be compared with the twin prime conjecture, which is
equivalent to the assertion that∑

n6x

θ(n)θ(n + 2)→∞ (2)

as x → ∞, where θ(n) := log p when n is equal to a prime p, and θ(n) := 0
otherwise.

The k = 1 case of the Chowla conjecture is equivalent to the prime number
theorem. The higher k cases are open, although there are a number of partial
results available if one allows for some averaging in the b1, . . . , bk parameters;
see [6, 8, 23] for some recent results in this direction. The bound (1) is equivalent
to the assertion that the pairs (λ(n), λ(n+1)) attain each of the four sign patterns
(+1,+1) (+1,−1), (−1,+1), (−1,−1) ( 1

4+o(1))x times. In [16] it was shown
that the (+1,+1) and (−1,−1) patterns occur at least ( 1

60 + o(1))x times, and
the (+1,−1) and (−1,+1) patterns occur� x log−7−ε x times for ε > 0. In the
recent paper [21] it was shown that in fact all four sign patterns occur� x times,
so in particular ∣∣∣∣∑

n6x

λ(n)λ(n + 1)
∣∣∣∣ 6 (1− δ)x

for some absolute constant δ > 0 and sufficiently large x . An analogous claim
for sign patterns (λ(n), λ(n + 1), λ(n + 2)) of length three was shown in [24],
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building upon the previous result in [17] that showed that all sign patterns of
length three occur infinitely often.

The first main result of this paper is to obtain a different averaged form of the
Chowla conjecture in the first nontrivial case k = 2, in which one averages in x
rather than in b1, . . . , bk . More precisely, we show

THEOREM 2 (Logarithmically averaged Chowla conjecture). Let a1, a2 be
natural numbers, and let b1, b2 be integers such that a1b2 − a2b1 6= 0. Let
1 6 ω(x) 6 x be a quantity depending on x that goes to infinity as x → ∞.
Then one has ∑

x/ω(x)<n6x

λ(a1n + b1)λ(a2n + b2)

n
= o(logω(x)) (3)

as n→∞.

Thus for instance this theorem implies (after setting ω(x) := x , a1 = a2 =
b2 = 1 and b1 = 0) that ∑

n6x

λ(n)λ(n + 1)
n

= o(log x) (4)

as x → ∞; this can be deduced from (1) by a routine summation by parts
argument, but is a strictly weaker estimate. From this and the elementary estimate∑

n6x (λ(n)/n) = o(log x) we see that for any sign pattern (ε1, ε2) ∈ {−1,+1}2,
the set {n : (λ(n), λ(n+1)) = (ε1, ε2)} occurs with logarithmic density 1/4, that
is to say

1
log x

∑
n6x :(λ(n),λ(n+1))=(ε1,ε2)

1
n
= 1

4
+ o(1)

as x →∞.
More generally, one can deduce Theorem 2 from the k = 2 case of

Conjecture 1 by summation by parts; we leave the details to the interested
reader. Conversely, the k = 2 case of Conjecture 1 is equivalent to the limiting
case of Theorem 2 in which ω is fixed rather than going to infinity. The
logarithmic averaging is unfortunately needed in our method in order to obtain
an approximate affine invariance in the n variable; we do not know how to
modify our argument to remove this averaging. However, the logarithmic
averaging can be tolerated in some applications (for instance to the Erdös
discrepancy problem, discussed below).

Estimates such as (1)–(4) are well known to be subject to the parity problem
obstruction (see for example [11, Chapter 16]), and thus cannot be resolved
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purely by existing sieve-theoretic (or circle method) techniques that rely solely
on ‘linear’ estimates for the Liouville function. We avoid the parity obstacle
here by using a new ‘bilinear’ estimate (bilinear estimates have been used to get
around the parity obstacle in previous works, most notably in the Friedlander–
Iwaniec result [10] on primes of the form a2 + b4) for the Liouville function,
which relates to bounds such as (3) through the multiplicativity property
λ(pn) = −λ(n) of the Liouville function at small primes p, and which is proved
using the (weak) expansion properties of a certain random graph, closely related
to one recently introduced in [24]. To describe this strategy in somewhat informal
terms, let us specialize to the case of establishing (4) for simplicity. Suppose for
contradiction that the left-hand side of (4) was large and (say) positive. Using
the multiplicativity λ(pn) = −λ(n), we conclude that∑

n6x

λ(n)λ(n + p)1p|n
n

is also large and positive for all primes p that are not too large; note here how
the logarithmic averaging allows us to leave the constraint n 6 x unchanged.
Summing in p, we conclude that∑

n6x

∑
p∈P λ(n)λ(n + p)1p|n

n

is large and positive for any given set P of medium-sized primes. By a standard
averaging argument, this implies that

1
H

H∑
j=1

∑
p∈P

λ(n + j)λ(n + p + j)1p|n+ j (5)

is large for many choices of n, where H is a medium-sized parameter at
our disposal to choose, and we take P to be some set of primes that are
somewhat smaller than H . To obtain the required contradiction, one thus wants
to demonstrate significant cancellation in the expression (5). As in [24], we
view n as a random variable, in which case (5) is essentially a bilinear sum of
the random sequence (λ(n + 1), . . . , λ(n + H)) along a random graph Gn,H

on {1, . . . , H}, in which two vertices j, j + p are connected if they differ
by a prime p in P that divides n + j . A key difficulty in controlling this
sum is that for randomly chosen n, the sequence (λ(n + 1), . . . , λ(n + H))
and the graph Gn,H need not be independent. To get around this obstacle we
introduce a new argument which we call the ‘entropy decrement argument’ (in
analogy with the ‘density increment argument’ and ‘energy increment argument’
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that appear in the literature surrounding Szemerédi’s theorem on arithmetic
progressions (see for example [29]), and also reminiscent of the ‘entropy
compression argument’ of Moser and Tardos [26]). This argument, which is
a simple consequence of the Shannon entropy inequalities, can be viewed as
a quantitative version of the standard subadditivity argument that establishes
the existence of Kolmogorov–Sinai entropy in topological dynamical systems;
it allows one to select a scale parameter H (in some suitable range [H−, H+])
for which the sequence (λ(n + 1), . . . , λ(n + H)) and the graph Gn,H exhibit
some weak independence properties (or more precisely, the mutual information
between the two random variables is small). With this additional property,
one can use standard concentration of measure results such as the Hoeffding
inequality [18] to approximate (5) by the significantly simpler expression

1
H

H∑
j=1

∑
p∈P

λ(n + j)λ(n + p + j)
p

.

This latter expression can then be controlled in turn by an application of the
Hardy–Littlewood circle method and an estimate for short sums of a modulated
Liouville function established recently by Matomäki et al. [23], which is based
in turn on the results of Matomäki and Radziwiłł in [21].

The arguments in this paper extend to other bounded multiplicative functions
than the Liouville function, though as they rely in an essential fashion on
multiplicativity at small primes, they unfortunately do not appear to have any
bearing as yet on twin prime-type sums such as (2). More precisely, we have
the following logarithmically averaged and nonasymptotic version of the Elliott
conjecture [4] (in the ‘corrected’ form introduced in [23]):

THEOREM 3 (Logarithmically averaged nonasymptotic Elliott conjecture). Let
a1, a2 be natural numbers, and let b1, b2 be integers such that a1b2 − a2b1 6= 0.
Let ε > 0, and suppose that A is sufficiently large depending on ε, a1, a2, b1,

b2. Let x > ω > A, and let g1, g2 : N → C be multiplicative functions with
|g1(n)|, |g2(n)| 6 1 for all n, with g1 ‘nonpretentious’ in the sense that∑

p6x

1− Re g1(p)χ(p)p−i t

p
> A (6)

for all Dirichlet characters χ of period at most A, and all real numbers t with
|t | 6 Ax. Then ∣∣∣∣ ∑

x/ω<n6x

g1(a1n + b1)g2(a2n + b2)

n

∣∣∣∣ 6 ε logω. (7)
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REMARK 4. Our arguments are in principle effective, and would yield an
explicit value of A as a function of ε, a1, a2, b1, b2 if one went through all the
arguments carefully; however, we did not do so here as we expect (for instance,
a back of the envelope calculation suggests that the decay rate in the right-
hand side of (4) provided by optimizing all the parameters in the arguments
in this paper is something like O(log x/(log log log x)c) for some small absolute
constant c > 0; similarly, the dependence of A on 1/ε provided by the arguments
in this paper appears to be roughly triple-exponential in nature, at least in the
model case where g1, g2 are completely multiplicative and take values on the
unit circle) the bounds to be rather poor.

Theorem 3 clearly implies the following asymptotic version:

COROLLARY 5 (Logarithmically averaged Elliott conjecture). Let a1, a2 be
natural numbers, and let b1, b2 be integers such that a1b2 − a2b1 6= 0. Let g1,

g2 : N → C be multiplicative functions bounded in magnitude by one, with g1

‘nonpretentious’ in the sense that

inf
|t |6Ax

∑
p6x

1− Re g1(p)χ(p)p−i t

p
→∞ (8)

as x → ∞ for all Dirichlet characters χ and all A > 1. Then for any 1 6
ω(x) 6 x which goes to infinity as x →∞, one has∑

x/ω(x)<n6x

g1(a1n + b1)g2(a2n + b2)

n
= o(logω(x)) (9)

as x →∞.

REMARK 6. If one replaced the conclusion (9) with the stronger,
nonlogarithmically averaged estimate∑

n6x

g1(a1n + b1)g2(a2n + b2) = o(x), (10)

(say with b1, b2 > 0 to avoid the linear forms a1n + b1, a2n + b2 leaving the
domain of g1, g2) then this is the k = 2 version of the corrected Elliott conjecture
introduced in [23]. The original Elliott conjecture in [4] replaced the condition
(8) with the weaker condition∑

p

1− Re g1(p)χ(p)p−i t

p
= +∞
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for all real numbers t ∈ R, but it was shown in [23] that this hypothesis was
insufficient to establish (10) (and it is not difficult to adapt the counterexample
to also show that (9) fails under this hypothesis). On the other hand, it was shown
in [23] that the corrected Elliott conjecture held if one averaged in the b1, . . . , bk

parameters (rather than in the x parameter as is done here).

Using Vinogradov–Korobov error term zero-free region for L-functions
(see [25, Section 9.5]), it is not difficult to establish (8) when g is the Liouville
function; see [22, Lemma 2] for a closely related calculation. Thus Corollary 5
implies Theorem 2. Some condition of the form (8) must be needed in order
to derive the conclusion (9), as one can see by considering examples such
as g1(n) := χ(n)ni t and g2(n) := g1(n), where χ is a Dirichlet character of
bounded conductor, t is a real number of size t = o(x), and w is set equal to (for
instance) (x/|t |)1/2. More precise asymptotics of sums such as those in (9) in the
‘pretentious’ case when g1 and g2 both behave like twisted Dirichlet characters
n 7→ χ(n)ni t were computed in the recent preprint of Klurman [20].

Corollary 5 also implies the asymptotic∑
n6x

g1(n)g2(n + 1)
n

= o(log x)

as x → ∞ when g1, g2 are multiplicative functions bounded by 1, and at least
one of g1, g2 is equal to the Möbius function µ. Thus, for instance, one has∑

n6x

µ(n)µ(n + 1)
n

,
∑
n6x

µ2(n)µ(n + 1)
n

,

∑
n6x

µ(n)µ2(n + 1)
n

= o(log x).

The latter two estimates can be easily deduced from the prime number theorem
in arithmetic progressions, but the first estimate is new. Combining this with the
computations in [24, Section 2] (using logarithmic density in place of asymptotic
probability), we conclude

COROLLARY 7 (Sign patterns of the Möbius function). Let

c :=
∏

p

(
1− 2

p2

)
= 0.3226 . . .

and let (ε1, ε2) ∈ {−1, 0,+1}2. Then the set {n : (µ(n), µ(n + 1)) = (ε1, ε2)}
has logarithmic density
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• 1− 2/ζ(2)+ c = 0.1067 . . . when (ε1, ε2) = (0, 0);

• 1
2 ((1/ζ(2)) − c) = 0.1426 . . . when (ε1, ε2) = (+1, 0), (−1, 0), (0,+1),
(0,−1); and

• c/4 = 0.0806 . . . when (ε1, ε2) = (+1,+1), (+1,−1), (−1,+1), (−1,−1).

Again, the first two cases here could already be treated using the prime number
theorem in arithmetic progressions, but the last case is new. One can also use
similar arguments to give an alternate proof of [24, Theorem 1.9] (that is to
say, that all nine of the above sign patterns for the Möbius function occur with
positive lower density); we leave the details to the interested reader.

In a subsequent paper [30], we will combine Theorem 3 with some arguments
arising from the Polymath5 project [27] to obtain an affirmative answer to the
Erdős discrepancy problem [5]:

THEOREM 8. Let f : N→ {−1,+1} be a function. Then

sup
d,n∈N

∣∣∣∣∑
j6n

f ( jd)
∣∣∣∣ = +∞.

1.1. Notation. We adopt the usual asymptotic notation of X � Y , Y � X ,
or X = O(Y ) to denote the assertion that |X | 6 CY for some constant C . If we
need C to depend on an additional parameter we will denote this by subscripts,
for example X = Oε(Y ) denotes the bound |X | 6 CεY for some Cε depending
on Y . Similarly, we use X = oA→∞(Y ) to denote the bound |X | 6 c(A)Y where
c(A) depends only on A and goes to zero as A→∞.

If E is a statement, we use 1E to denote the indicator, thus 1E = 1 when E is
true and 1E = 0 when E is false.

Given a finite set S, we use |S| to denote its cardinality.
For any real number α, we write e(α) := e2π iα; this quantity lies in the unit

circle S1 := {z ∈ C : |z| = 1}. By abuse of notation, we can also define e(α)
when α lies in the additive unit circle R/Z.

All sums and products will be over the natural numbers N = {1, 2, . . . } unless
otherwise specified, with the exception of sums and products over p which is
always understood to be prime.

We use d|n to denote the assertion that d divides n, and n (d) to denote the
residue class of n modulo d. We use (a, b) to denote the greatest common divisor
of a and b.

We will frequently use probabilistic notation such as the expectation EX of
a random variable X or a probability P(E) of an event E ; later we will also
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need the Shannon entropy H(X) of a discrete random variable, as well as related
quantities such as conditional entropy H(X|Y) or mutual information I(X,Y),
the definitions of which we review in Section 3. We will use boldface symbols
such as X, Y, or n to refer to random variables.

2. Preliminary reductions

In this section we make a number of basic reductions, in particular reducing
matters to a probabilistic problem involving a random graph, somewhat similar
to one considered in [24]. Readers who are interested just in the case of the
Liouville function (Theorem 2) can skip the initial reductions and move directly
(for the application to the Erdős discrepancy problem in [30], one only needs the
special case when g2 = g1 and g1 is completely multiplicative and takes values
in S1. In that case one can also move directly to Theorem 11, skipping the initial
reductions) to Theorem 11 below.

As mentioned in the introduction, Theorem 2 is a special case of Corollary 5,
which is in turn a corollary of Theorem 3. Thus it will suffice to establish
Theorem 3.

We first reduce to the case when g1 takes values on the unit circle S1:

PROPOSITION 9. In order to establish Theorem 3, it suffices to do so in the
special case where |g1(n)| = 1 for all n.

Proof. Suppose that g1 takes values in the unit disk. Then we may factorize
g1 = g′1g′′1 where g′1, g′′1 are multiplicative, with g′1 := |g1| taking values in [0, 1]
and g′′1 taking values in the unit circle S1.

Let A0 be a large quantity (depending on a1, a2, b1, b2, ε) to be chosen later;
we assume that A is sufficiently large depending on a1, a2, b1, b2, ε, A0. Suppose
first that ∑

p6x

1− g′1(p)
p

> A0.

By Mertens’ theorem and the largeness of A0 and x , this implies that∑
p6y

1− g′1(p)
p

>
A0

2

for every x1/A0 6 y 6 x (say). Applying the Halasz inequality (see for
example [32] or [12, Corollary 1]) we conclude that

1
y

∑
n6y

g′1(n)� A0 exp(−A0/2)
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for all x1/A0 6 y 6 x (assuming x > A and A is sufficiently large depending
on A0). From this and the nonnegativity and boundedness of g′1(n) it is easy to
see that ∑

x/ω6n6x

g′1(a1n + b1)

n
= oA0→∞(logω)

since x > ω > A and A is large compared to A0, and A0 is large compared to
a1, b1. Since g1(a1n+b1)g2(a2n+b2) is bounded in magnitude by g′1(a1n1+b1),
the claim (7) now follows from the triangle inequality (taking A0 large enough).

It remains to treat the case when∑
p6x

1− g′1(p)
p

< A0.

We now use the probabilistic method to model g′1 by a multiplicative function
of unit magnitude. Since g′1(p

j) takes values in the convex hull of {−1,+1}
for every prime power p j , we can construct a random multiplicative function
g′1 taking values in {−1,+1}, such that the values g′1(p j) at prime powers are
jointly independent and have mean Eg′1(p j) = g′1(p

j). By multiplicativity and
joint independence, we thus have Eg′1(n) = g′1(n) for arbitrary n. By linearity of
expectation we have

E
∑
p6x

1− g′1(p)
p

< A0.

So by Markov’s inequality we see with probability 1− O(1/A0) that∑
p6x

1− g′1(p)
p

< A2
0.

Let us restrict to this event, and set g1 := g′1g′′1 , thus g1 is a random multiplicative
function taking values in S1 whose mean is g1. By the triangle inequality we have

g1(p) = g1(p)+ O(1− g′1(p))+ O(1− g′1(p))

and hence by (6) and the triangle inequality again we have

∑
p6x

1− Re g1(p)χ(p)p−i t

p
> A/2

for all Dirichlet characters χ of period at most A and all t with |t | 6 Ax , if A
is large enough. Using the hypothesis that Theorem 3 holds when g1 has unit
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magnitude, we conclude (again taking A large enough) that∣∣∣∣ ∑
x/ω<n6x

g1(a1n + b1)g2(a2n + b2)

n

∣∣∣∣ 6 ε

2
logω (11)

with probability 1−O(1/A0). In the exceptional event that this fails, we can still
bound the left-hand side of (11) by O(logω). Taking expectations, we obtain (7)
as desired (for A0 large enough).

A similar argument allows one to also reduce to the case where |g2(n)| = 1
for all n (indeed, the argument is slightly simpler as (6) is unaffected by changes
in g2).

Next, we upgrade the functions g1, g2 from being multiplicative to being
completely multiplicative.

PROPOSITION 10. In order to establish Theorem 3, it suffices to do so in the
special case where |g1(n)| = |g2(n)| = 1 for all n, and g1 is completely
multiplicative.

Proof. By the previous reductions we may already assume that |g1(n)| =
|g2(n)| = 1 for all n. If g1 is not completely multiplicative, we can introduce
the completely multiplicative function g̃1 with g̃1(p) = g1(p) for all p. Clearly,
g̃1 takes values in S1. From Möbius inversion (twisted by g̃1) we can factor g1 as
a Dirichlet convolution g1 = g̃1 ∗h for a multiplicative function h with h(p) = 0
and |h(p j)| 6 2 for all j > 2; indeed we have h(p j) = g(p j) − g(p)g(p j−1)

for all j > 1. The left-hand side of (7) can then be rewritten as∣∣∣∣∣∣
∑

d

h(d)
∑

x/ω<n6x :d|a1n+b1

g̃1
( a1n+b1

d

)
g2(a2n + b2)

n

∣∣∣∣∣∣ .
As in the previous proposition, we choose a quantity A0 that is sufficiently large
depending on a1, a2, b1, b2, ε, and assume A is sufficiently large depending on
A0, a1, a2, b1, b2, ε. We consider first the contribution to the above sum of a
single value of d with d 6 A0. We crudely bound |h(d)| by (say) A0. The
constraint d|a1n + b1 constrains n to some set of residue classes modulo d; the
number of such classes is trivially bounded by d and hence by A0. Making an
appropriate change of variables and using the hypothesis that Theorem 3 holds
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for completely multiplicative g1 (replacing ε by ε/2A3
0, and assuming A large

enough), we thus have∣∣∣∣∣∣
∑

x/ω<n6x :d|a1n+b1

g̃1
( a1n+b1

d

)
g2(a2n + b2)

n

∣∣∣∣∣∣ 6 ε

2A2
0

logω

for each d 6 A0. Thus the total contribution of those d with d 6 A0 is at most
(ε/2) logω.

Now we turn to the contribution where d > A0. Here, we can use the triangle
inequality to bound ∑

x/ω<n6x :d|a1n+b1

g̃1
( a1n+b1

d

)
g2(a2n + b2)

n

by O((logω)/d), so the net contribution of this case is O(logω
∑

d>A0

(|h(d)|/d)). However, from taking Euler products one sees that∑
d

|h(d)|
d2/3

= O(1)

(say), and thus ∑
d>A0

|h(d)|
d
= O(A−1/3

0 ).

Taking A0 large enough, we obtain the claim.

A similar argument allows one to also reduce to the case where g2 is
completely multiplicative. As g1, g2 are now multiplicative and take values in
S1, we have

g1(a1n + b1)g2(a2n + b2) = g1(a2)g2(a1)g1(a1a2n + a2b1)g2(a1a2n + a1b2)

so by replacing a1, a2, b1, b2 with a1a2, a1a2, b1a2, b2a1 respectively, we may
assume that a1 = a2 = a, b1 = b, and b2 = b + h for some natural number
a, integer b, and nonzero integer h.

Finally, we observe that we can strengthen the condition ω 6 x slightly to
ω 6 x/(log x), since for x/(log x) < ω 6 x , the contribution of those n for
which n 6 log x can be seen to be negligible. (Indeed, we could reduce to the
case where ω grew slower than any fixed function of x going to infinity, but the
restriction ω 6 x/(log x) will suffice for us, as it prevents the n parameter from
being extremely small.)

Putting all these reductions together, we see that Theorem 3 will be a
consequence of the following theorem.
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THEOREM 11 (Logarithmically averaged nonasymptotic Elliott conjecture). Let
a be a natural number, and let b, h be integers with h 6= 0. Let ε > 0, and suppose
that A is sufficiently large depending on ε, a, b, h. Let x > x/(log x) > ω > A,
and let g1, g2 : N→ S1 be completely multiplicative functions such that (6) holds
for all Dirichlet characters χ of period at most A, and all real numbers t with
|t | 6 Ax. Then ∣∣∣∣ ∑

x/ω<n6x

g1(an + b)g2(an + b + h)
n

∣∣∣∣ 6 ε logω.

Let a, b, h, ε be as in the above theorem (the reader may initially wish to
restrict to the model case a = 1, b = 0, h = 1 (and also g1 = g2 = λ) in what
follows to simplify the notation and arguments slightly). Suppose for sake of
contradiction that Theorem 11 fails for this set of parameters. By shrinking ε, we
may assume that ε is sufficiently small depending on a, b, h. Thus for instance
any quantity of the form Oa,b,h(ε) can be assumed to be much smaller than 1,
any quantity of the form Oa,b,h(ε

2) can be assumed to be much smaller than
ε, and so forth. We will also need a number of large quantities, chosen in the
following order (for the purposes of optimizing the quantitative bounds, it seems
that one should take H− = exp(ε−C1), H+ = exp(exp(exp(ε−C2))), and A =
exp(exp(exp(ε−C3))) for some large absolute constants C1 < C2 < C3, at least
in the regime where a, b, h are bounded and ε is small, and after adjusting some
of the estimates below to fully optimize the bounds):

• We choose a natural number H− that is sufficiently large depending on a, b,
h, ε.

• Then, we choose a natural number H+ that is sufficiently large depending on
H−, a, b, h, ε.

• Finally, we choose a quantity A > 0 that is sufficiently large depending on
H+, H−, a, b, h, ε.

The quantity A is of course the one we will use in Theorem 11. The intermediate
parameters H−, H+ will be the lower and upper ranges for a certain medium-
sized scale H ∈ [H−, H+] which we will later select using a pigeonholing
argument which we call the ‘entropy decrement argument’.

We will implicitly take repeated advantage of the above relative size
assumptions between the parameters A, H+, H−, a, b, h, ε in the sequel to
simplify the estimates; in particular, we will repeatedly absorb lower order error
terms into higher order error terms when the latter would dominate the former
under the above assumptions. Thus for instance OH+,H−,a,b,h,ε(1) × oA→∞(1)
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can be simplified to just oA→∞(1) by the assumption that A is sufficiently large
depending on all previous parameters, and oA→∞(1) + oH−→∞(1) can similarly
be simplified to oH−→∞(1). The reader may wish to keep the hierarchy

a, b, h � 1
ε
� H− � p � H � H+ � A 6 ω 6

x
log x

6 x

and also
x > n > x/ω > log x > log A � H+

in mind in the arguments that follow.
As we are assuming that Theorem 11 fails for the indicated choice of

parameters, there exist real numbers

x > ω > A (12)

and completely multiplicative functions g1, g2 : N→ S1 such that∑
p6x

1− Re g1(p)χ(p)p−i t

p
> A (13)

for all Dirichlet characters χ of period at most A, and all real numbers t with
|t | 6 Ax , but such that∣∣∣∣ ∑

x/ω<n6x

g1(an + b)g2(an + b + h)
n

∣∣∣∣ > ε logω. (14)

To use the hypothesis (13), we apply the results in [23] to control short sums
of g1 modulated by Fourier characters.

PROPOSITION 12. Let the notation and assumptions be as above. For all H− 6
H 6 H+, one has

sup
α

∑
x/ω<n6x

1
Hn

∣∣∣∣∣
H∑

j=1

g1(n + j)e( jα)

∣∣∣∣∣� log log H
log H

logω. (15)

In particular, one has

sup
α

∑
x/ω<n6x

1
Hn

∣∣∣∣∣
H∑

j=1

g1(n + j)e( jα)

∣∣∣∣∣ = oH−→∞(logω). (16)

We remark that Proposition 12 is the only way in which we will take advantage
of the hypothesis (13), which may now be discarded in the arguments that follow.
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Proof. Let α ∈ R. Applying [23, Lemma 2.2, Theorem 2.3] (with W := log5 H ),
we see that

1
X

∑
X6n62X

∣∣∣∣∣ 1
H

H∑
j=1

g1(n + j)e(α j)

∣∣∣∣∣� log log H
log H

for all x/2ω 6 X 6 2x ; for the purposes of verifying the hypotheses in [23], we
note that

X >
x

2ω
>

log x
2

>
log A

2
,

and hence W = log5 H will be much less than A or (log X)1/125. Averaging this
estimate from X between x/2ω and 2x , we obtain (15) and hence (16).

It will be convenient to interpret these estimates in probabilistic language
(particularly when we start using the concept of Shannon entropy in the next
section). We introduce a (discrete) random variable n in the interval {n ∈ N :
x/ω < n 6 x} by setting

P(n = n) = 1/n∑
n∈N:x/ω<n6x

1
n

whenever n lies in this interval.
From (12) and our hypothesis ω 6 x/ log x , we see that∑

n∈N:x/ω<n6x

1
n
= (1+ oA→∞(1)) logω.

We conclude from (14) that

|Eg1(an+ b)g2(an+ b + h)| � ε (17)

while from (16) we conclude that

sup
α

E

∣∣∣∣∣
H∑

j=1

g1(n+ j)e(α j)

∣∣∣∣∣ = oH−→∞(H) (18)

uniformly for all H− 6 H 6 H+.
The logarithmic averaging in the n variable gives an approximate affine

invariance to these probabilities and expectations (see [24, Lemma 2.3]), which
is of fundamental importance to our approach:
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LEMMA 13 (Approximate affine invariance). Let q be a natural number
bounded by H+, and let r be a fixed integer with |r | 6 H+. Then for any event
P(n) depending on n, one has

P(P(n) and n = r(q)) = 1
q
P(P(qn+ r))+ oA→∞(1).

More generally, for any complex-valued random variable X (n) depending on n
and bounded in magnitude by O(1), one has

E(X (n)1n=r(q)) = 1
q
E(X (qn+ r))+ oA→∞(1).

Note in particular that this lemma implies the approximate translation
invariance

P(P(n+r)) = P(P(n))+oA→∞(1) and E(X (n+r)) = E(X (n))+oA→∞(1)

for any r = O(H+). If we did not perform a logarithmic averaging, then we
would still have approximate translation invariance, but we would not necessarily
have the more general approximate affine invariance, which causes the remainder
of our arguments to break down.

Proof. It suffices to prove the latter claim. The left-hand side can be written as

1+ oA→∞(1)
logω

∑
x/ω<n6x :n=r(q)

X (n)
n

.

Making the change of variables n = qn′ + r , noting that 1/n is equal to
(1/q)(1/n′)+oA→∞(1/n′) uniformly in n′, we can write the previous expression
as

1+ oA→∞(1)
logω

∑
x/ω<qn′+r6x

(
1
q

X (qn′ + r)
n′

+ oA→∞

(
1
n′

))
.

The net contribution of the oA→∞(1/n′) term can be seen to be oA→∞(1) (recall
that A is assumed large compared to H+ and hence with q). The constraint x/ω <
qn′ + r 6 x can be replaced with x/ω < n′ 6 x while incurring an error of

O
(

1+ oA→∞(1)
logω

O(log q)
)
= oA→∞(1).

The claim follows.
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We now give a simple application of the above lemma. By Fourier expansion
(or by positivity) we may insert the constraint 1a|n in the left-hand side of (18)
(recalling that H− is assumed sufficiently large depending on a), and thus by
Lemma 13 we also have

sup
α

E

∣∣∣∣∣
H∑

j=1

g1(an+ j)e(α j)

∣∣∣∣∣ = oH−→∞(H). (19)

This estimate will be useful later in the argument.
From Lemma 13 and (17) we have

|E1n=b (a)g1(n)g2(n+ h)| � ε. (20)

Crucially, we can exploit the multiplicativity of g1, g2 at medium-sized primes
to average this lower bound by further application of Lemma 13:

PROPOSITION 14. Assume that the bound (20) holds. Let H− 6 H 6 H+. Let
PH denote the set of primes between (ε2/2)H and ε2 H. For each prime p, let
cp ∈ S1 denote the coefficient cp := g1(p)g2(p). Then one has∣∣∣∣E ∑

p∈PH

∑
j : j, j+ph∈[1,H ]

cp1an+ j=pb (ap)g1(an+ j)g2(an+ j+ ph)
∣∣∣∣� ε

H
log H

. (21)

We remark that in the Liouville case g1 = g2 = λ (and also in the case g2 = g1

required in the Erdős discrepancy problem application in [30]), we have cp = 1
for all p. This leads to some minor simplification in the arguments (in particular,
we only need to apply Proposition 12 for ‘major arc’ values of α, allowing one
to replace [23, Lemma 2.2, Theorem 2.3] by the simpler [23, Theorem A.1]);
however, it turns out that existing results in the literature (in particular, the
restriction theorem for the primes in [13]) allow us to handle the extension to
more general cp without much additional difficulty.

A key point here is that Proposition 14 applies for all scales H in the range
[H−, H+]. This is because we will not be able to compute the left-hand side of
(21) for any specified H ; however, the ‘entropy decrement argument’ we will
use in the next section will locate (basically thanks to the pigeonhole principle)
a single scale H in the range [H−, H+] for which the left-hand side of (21) can
be evaluated, at which point we can apply the above proposition. The inability
to specify the scale H in advance is a key reason why we were unable to remove
the logarithmic averaging from our final result in Theorem 3.

Proof. Write
X := E1n=b (a)g1(n)g2(n+ h),
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thus (20) tells us that |X | � ε. From complete multiplicativity and the definition
of cp we see that

1n=b (a)g1(n)g2(n+ h) = cp1pn=pb (ap)g1(pn)g2(pn+ ph)

and thus
Ecp1pn=pb (ap)g1(pn)g2(pn+ ph) = X (22)

for any p ∈ PH . We now claim that

Ecp1n+ j=pb (ap)g1(n+ j)g2(n+ j + ph) = 1
p

X + oA→∞(1) (23)

for any 1 6 j 6 H and any p ∈ PH . To see this, we split 1n+ j=pb (ap) as
1n=− j (p)1n+ j=pb (a) and apply Lemma 13 to write the left-hand side of (23) as

1
p
Ecp1pn=pb (a)g1(pn)g2(pn+ ph)+ oA→∞(1);

since 1pn=pb (a) = 1pn=pb (ap), the claim now follows from (22).
Summing (23) over j = 1, . . . , H , we have

Ecp

H∑
j=1

1n+ j=pb (ap)g1(n+ j)g2(n+ j + ph) = 1
p

H X + oA→∞(1). (24)

Now let us introduce the quantities

Q(s) := Ecp

H∑
j=1

1n+ j=pb (ap)g1(n+ j)g2(n+ j + ph)1n=s (a) (25)

for s ∈ Z/aZ. From (24) we have∑
s∈Z/aZ

Q(s) = 1
p

H X + oA→∞(1). (26)

Now let us compare Q(s) with Q(s + 1). Using Lemma 13 to replace n with
n+ 1, we see that

Q(s + 1) = Ecp

H∑
j=1

1n+1+ j=pb (ap)g1(n+ 1+ j)g2(n+ 1+ j + ph)1n+1=s+1 (a)

+ oA→∞(1)

= Ecp

H+1∑
j=2

1n+ j=pb (ap)g1(n+ j)g2(n+ j + ph)1n=s (a) + oA→∞(1).
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Note that the difference between
∑H+1

j=2 1n+ j=pb (ap)g1(n+ j)g2(n+ j + ph) and∑H
j=1 1n+ j=pb (ap)g1(n+ j)g2(n+ j + ph) is zero with probability 1− O(1/p),

and is O(1) in the remaining event. Absorbing the oA→∞(1) error in the O(1/p)
error, we conclude that

Q(s + 1) = Q(s)+ O(1/p)

for all s ∈ Z/aZ. Thus Q fluctuates by at most O(a/p), and in particular

Q(0) = 1
a

∑
s∈Z/aZ

Q(s)+ O(a/p).

Combining this with (26), we conclude that

Ecp

H∑
j=1

1n+ j=pb (ap)g1(n+ j)g2(n+ j + ph)1n=0 (a) = H X
ap
+ O

(
a
p

)
.

Summing over PH , we conclude that

E
H∑

j=1

∑
p∈PH

cp1n+ j=pb (ap)g1(n+ j)g2(n+ j + ph)1n=0 (a)

=
(

H X
a
+ O(a)

) ∑
p∈PH

1
p

and hence by the prime number theorem and the lower bound |X | � ε, one has∣∣∣∣∣∣E
H∑

j=1

∑
p∈PH

cp1n+ j=pb (ap)g1(n+ j)g2(n+ j + ph)1n=0 (a)

∣∣∣∣∣∣� ε
H

a log H
.

Applying Lemma 13, we obtain∣∣∣∣∣∣E
H∑

j=1

∑
p∈PH

cp1an+ j=pb (ap)g1(an+ j)g2(an+ j + ph)

∣∣∣∣∣∣� ε
H

log H
.

If j + ph lies outside of the interval [1, H ], then j lies in either [1, |h|ε2 H ] or
[(1− |h|ε2)H, H ]. The contribution of these values of j can be easily estimated
to be

O

∑
p∈PH

|h|ε2 H
p

 = Oh

(
ε2 H

log H

)
,

so from the smallness of ε we may discard these intervals and conclude the
claim.
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We will shortly need to deploy the theory of Shannon entropy, at which
point we encounter the inconvenient fact that g could potentially take an infinite
number of values and thus have unbounded Shannon entropy. To get around this,
we perform a standard discretization. Namely, define gi,ε2(n) for i = 1, 2 to be
gi(n) rounded to the nearest element of the lattice ε2Z[i], where Z[i] denotes
the Gaussian integers. (We break ties arbitrarily.) This function is no longer
multiplicative, but it takes at most Oε(1) values, it is bounded in magnitude
by O(1), and we have gi,ε2 = gi + O(ε2) for i = 1, 2. Thus from the above
proposition and the triangle inequality, we have∣∣∣∣E ∑

p∈PH

cp

∑
j : j, j+ph∈[1,H ]

1an+ j=pb (ap)g1,ε2(an+ j)g2,ε2(an+ j + ph)
∣∣∣∣� ε

H
log H

since the error incurred by replacing gi with gi,ε2 can be computed to be

Oa

ε2
∑
p∈PH

H
p

 = Oa

(
ε2 H

log H

)
.

We rewrite this inequality as

|EF(XH ,YH )| � ε
H

log H
(27)

where XH is the discrete random variable

XH := (gi,ε2(an+ j))i=1,2; j=1,...,H

(taking values in (ε2Z[i])2H ), YH is the random variable

YH := n (PH )

(taking values in Z/PHZ) where PH :=
∏

p∈PH
p, and

F : (ε2Z[i])2H × Z/PHZ→ C

is the function

F((xi, j)i=1,2; j=1,...,H , y (PH )) :=
∑
p∈PH

cp

∑
j : j, j+ph∈[1,H ]

1ay+ j=pb (ap)x1, j x2, j+ph.

(28)
(Note that the residue class ay (ap) is well defined for p ∈ Z/PHZ and p ∈ PH ,
noting that PH is coprime to a.)
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It is thus of interest to try to calculate the typical value of F(XH ,YH ). One can
interpret F(XH ,YH ) as a ‘bilinear’ expression of the components of XH along a
certain random graph determined by YH . A key difficulty is that the random
variables XH and YH are not independent, and could potentially be coupled
together in an adversarial fashion. In this worst case, this would require one
to establish a suitable ‘expander’ property for the random graph associated to
YH that would ensure cancellation in the sum regardless of what values that XH

will take. It may well be that such an expansion property (actually, to be able
to plausibly expect expansion, one should enlarge PH to be something like the
primes between H δ and ε2 H for some small δ, so that the average degree of the
random graph associated to YH is significantly larger than one) holds (with high
probability, of course). However, we can avoid having to establish such a strong
expansion property by taking advantage of an ‘entropy decrement argument’ to
give some weak independence between XH and YH for at least one choice of
H between H− and H+. Once one obtains such a weak independence, it turns
out that one only needs to show that for a typical choice of XH , that F(XH ,

YH ) is small for most choices of YH , where we allow a (nearly) exponentially
small failure set for the YH . This turns out to be much easier to establish than
the expander graph property, being obtainable from standard concentration of
measure inequalities (such as Hoeffding’s inequality), and an application of the
Hardy–Littlewood circle method.

REMARK 15. The entropy decrement argument we give below can be viewed
as a quantitative variant of the construction of the Kolmogorov–Sinai entropy of
a topological dynamical system (see for example [2]), but we will not explicitly
use the language of topological dynamics here. See however [1] for a discussion
of the Chowla conjecture and its relation to a conjecture of Sarnak [28] from a
topological dynamics point of view. It may well be that the arguments here could
also benefit from a more explicit use of topological dynamics machinery.

3. The entropy decrement argument

We continue the proof of Theorem 3. We begin by briefly reviewing the basic
Shannon inequalities from information theory.

Recall that if X is a discrete random variable (taking at most countably
many values), the Shannon entropy H(X) is defined (in the information theory
literature, the logarithm to base 2 is often used to define entropy, rather than the
natural logarithm, in which case H(X) can be interpreted as the number of bits
needed to describe X on the average. One could use this choice of base in the
arguments below if desired, but ultimately the choice of base is a normalization
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which has no impact on the final bounds) by the formula

H(X) :=
∑

x

P(X = x) log
1

P(X = x)

where x takes values in the essential range of X (that is to say, those x for which
P(X = x) is nonzero). A standard computation then gives the identity

H(X,Y) = H(X|Y)+H(Y) = H(X)+H(Y|X) (29)

for the joint entropy H(X,Y) of the random variable (X,Y), where the
conditional entropy H(X|Y) is defined by the formulae

H(X|Y) :=
∑

y

P(Y = y)H(X|Y = y) (30)

(with y ranging over the essential range of Y) and

H(X|Y = y) :=
∑

x

P(X = x |Y = y) log
1

P(X = x |Y = y)

with P(E |F) := P(E ∧ F)/P(F) being the conditional probability of E relative
to F , and the sum is over the essential range of X conditioned to Y = y. From
the concavity of the function x 7→ x log (1/x) and Jensen’s inequality we have

H(X|Y) 6 H(X) (31)

so we conclude the subadditivity of entropy

H(X,Y) 6 H(X)+H(Y). (32)

If we define the mutual information

I(X,Y) :=H(X)+H(Y)−H(X,Y)=H(X)−H(X|Y)=H(Y)−H(Y|X) (33)

between two discrete random variables X,Y, we thus see that

I(X,Y) = I(Y,X) > 0.

REMARK 16. One can view I(X,Y) as a measure of the extent to which the
random variables X,Y are not independent. For instance, one can show that
I(X,Y) = 0 if and only if X and Y are jointly independent. In a similar vein,
one can view the conditional entropy H(X|Y) as a measure of the amount of new
information carried by X, given that one already knows the value of Y.
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Conditioning the random variables X,Y to an auxiliary discrete random
variable Z, we conclude the relative subadditivity of entropy

H(X,Y|Z) 6 H(X|Z)+H(Y|Z). (34)

Finally, a further application of Jensen’s inequality gives the bound

H(X) 6 log N (35)

whenever X takes on at most N values.
Recall the discrete random variables XH ,YH defined previously. From (35),

(32), and the fact that each component of XH takes on only Oε(1) values, we
have the upper bound

0 6 H(XH )�ε H. (36)

Note that YH is within oA→∞(1) (in any reasonable metric) of being uniformly
distributed on Z/PHZ, thus

H(YH ) = log PH − oA→∞(1). (37)

In particular, from the prime number theorem we have the crude bound

H(YH )� H (38)

for all H− 6 H 6 H+.
Let us temporarily define the variant

XH1,H1+H2 := H((gi,ε2(n+ j))i=1,2; j=H1+1,...,H1+H2

of XH , where H1, H2 are natural numbers. From the approximate translation
invariance provided by Lemma 13, we see that

H(XH1,H1+H2) = H(XH2)+ oA→∞(1)

for any H1, H2 6 H+; applying (32), and noting that XH1+H2 is the concatenation
of XH1 and XH1,H1+H2 , we obtain the approximate subadditivity property

H(XH1+H2) 6 H(XH1)+H(XH2)+ oA→∞(1) (39)

for any natural numbers H1, H2 6 H+.
We can improve this inequality if XH shares some mutual information with

YH , as YH does not generate any entropy upon translation. Indeed, from
Lemma 13 again, we see for any natural numbers H, H1, H2 between H− and
H+ that

H(XH1,H1+H2 |n+ H1 (PH )) = H(XH2 |n (PH ))+ oA→∞(1).
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But n+ H1 (PH ) conveys exactly the same information as n (PH ) (they generate
exactly the same finite σ -algebra of events), so

H(XH1,H1+H2 |n+ H1 (PH )) = H(XH1,H1+H2 |n (PH )).

Inserting these identities into (34) and recalling that YH = n (PH ), we obtain the
relative approximate subadditivity property

H(XH1+H2 |YH ) 6 H(XH1 |YH )+H(XH2 |YH )+ oA→∞(1)

for any H, H1, H2 between H− and H+. Iterating this, we conclude in particular
that

H(Xk H |YH ) 6 kH(XH |YH )+ oA→∞(1)

for any natural numbers k, H with H− 6 H 6 k H 6 H+ (note that the number
of iterations here is at most H+, so that the oA→∞(1) error stays under control).
From this and (29), (33) we see that

H(Xk H ) = H(Xk H |YH )+H(YH )−H(YH |Xk H )

6 H(Xk H |YH )+H(YH )

6 kH(XH |YH )+H(YH )+ oA→∞(1)
= kH(XH )− kI(XH ,YH )+H(YH )+ oA→∞(1)

which on dividing by k H and using (38) gives

H(Xk H )

k H
6

H(XH )

H
− I(XH ,YH )

H
+ O

(
1
k

)
, (40)

whenever H− 6 H 6 k H 6 H+ (note that we can absorb the oA→∞(1) error in
the O(1/k) term since k 6 H+). This can be compared with the inequality

H(Xk H )

k H
6

H(XH )

H
+ oA→∞(1)

under the same hypotheses on H, k, coming from iterating (39). Thus we see that
the presence of mutual information between XH and YH causes a decrement in
the entropy rate of XH as one increases H .

We can iterate this inequality and use an ‘entropy decrement argument’ to get a
nontrivial upper bound on the mutual information I(XH ,YH ) for some large H :

LEMMA 17 (Entropy decrement argument). There exists a natural number H
between H− and H+, which is a multiple of a, and such that

I(XH ,YH ) 6
H

log H log log log H
.
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As we shall see later, the key point here is that this bound is not only better
than the trivial bound of O(H) coming from (38), but is (barely!) smaller than
H/ log H in the limit as H →∞; in particular, the mutual information between
XH and YH is smaller than the number |PH | of primes one is using to define
F(XH ,YH ). One may think of this lemma as providing a weak independence
between XH and YH for certain large H . For the purposes of optimizing the
bounds, it appears to be slightly more efficient to prove a variant of this lemma
in which the right-hand side is of the form ε10(H/ log H) (say); we leave the
details to the interested reader.

Proof. Suppose for sake of contradiction that one has

I(XH ,YH ) >
H

log H log log log H

for all H− 6 H 6 H+ that are multiples of a. Let C0 be a sufficiently large
natural number depending on H−, and let J be a sufficiently large natural number
depending on C0, H−, ε. We may assume that H+ is sufficiently large depending
on H−,C0, J . The idea is to now repeatedly use (40) to decrement the entropy
ratio (H(XH ))/H as H increases, until one arrives at the absurd situation of a
random variable with negative entropy.

Let us recursively define the natural numbers H− 6 H1 6 H2 6 · · · 6 HJ by
setting H1 := aH− and

H j+1 := H jbC0 log H j log log log H jc
for all 1 6 j < J . Note that if H+ is sufficiently large depending on H−,
C0, J , then all the H j will lie between H− and H+ and are multiples of
a. For C0 large enough, we see from (40) with H, k replaced by H j and
bC0 log H j log log log H jc respectively, followed by (35), that

H(XH j+1)

H j+1
6

H(XH j )

H j
− 1

2 log H j log log log H j

for all 1 6 j < J . (The oA→∞(1) error may be absorbed as we are assuming A
to be large.) On the other hand, an easy induction (alternatively, one can proceed
by noting that for any given T > H−, there are � log T/ log log T values of
H j between T and T 2 if J is large enough, which is sufficient to get some
divergence in

∑J
j=1 (1/(2 log H j log log log H j)) as J → ∞) shows that there

exists B > 1010 (depending on C0, H−) such that

H j 6 exp(B j log j)
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for all 2 6 j 6 J . Thus we have

H(XH j+1)

H j+1
6

H(XH j )

H j
− 1

2B j log j log log(B j log j)

for all 2 6 j 6 J , which on telescoping using (36) gives the bound

J∑
j=2

1
2B j log j log log(B j log j)

�ε 1.

But the sum on the left-hand side diverges (very slowly!) in the limit J → ∞,
and so we obtain a contradiction by choosing J (and then H+) large enough.

From the above lemma we can find an H between H− and H+ that is a multiple
of a, such that

I(XH ,YH ) = oH−→∞

(
H

log H

)
. (41)

Fix this value of H . From (33) and (41) we have∑
x

P(XH = x)(H(YH )−H(YH |XH = x)) = oH−→∞

(
H

log H

)
.

By (35), (37), the summands are bounded below by −oA→∞(1). Thus, if we call
a value x good if one has

H(YH )−H(YH |XH = x) = oH−→∞

(
H

log H

)
, (42)

we see from Markov’s inequality that the random variable XH will attain a good
value with probability 1− oH−→∞(1).

Informally, if x is good, then YH remains somewhat uniformly distributed
across Z/PHZ even after one conditions XH to equal x , in the sense that this
conditioned random variable cannot concentrate too much mass into a small
region. More precisely, we have

LEMMA 18 (Weak uniform distribution). Let x be a good value. Let Ex be a
subset of Z/PHZ (which can depend on x) of cardinality

|Ex | 6 exp
(
−ε7 H

log H

)
PH .

Then one has
P(YH ∈ Ex |XH = x) = oH−→∞(1).

https://doi.org/10.1017/fmp.2016.6 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2016.6


Chowla and Elliott conjectures 27

The quantity ε7 here could be replaced by any other function of ε, but we use
this particular choice to match with Lemma 20 below.

Proof. Applying (29) (conditioned to the event XH = x) we have

H(YH |XH = x, 1Ex (YH )) = H(YH |XH = x)+H(1Ex (YH )|YH ,XH = x)
−H(1Ex (YH )|XH = x)

> H(YH |XH = x)−H(1Ex (YH )|XH = x).

By (30) (again conditioned to the event XH = x), the left-hand side may be
expanded as

P(YH ∈ Ex |XH = x)H(YH |XH = x,YH ∈ Ex)

+P(YH 6∈ Ex |XH = x)H(YH |XH = x,YH 6∈ Ex)

and thus by (42)

P(YH ∈ Ex |XH = x)H(YH |XH = x,YH ∈ Ex)

+P(YH 6∈ Ex |XH = x)H(YH |XH = x,YH 6∈ Ex)

> H(YH )−H(1Ex (YH )|XH = x)− oH−→∞

(
H

log H

)
.

By (35), H(1Ex (YH )|XH = x) is bounded by log 2 and so this term can be
absorbed in the oH−→∞(H/ log H) error. From (31) we have

H(YH |XH = x,YH 6∈ Ex) 6 H(YH )

and hence

P(YH ∈ Ex |XH = x)(H(YH )−H(YH |XH = x,YH ∈ Ex))6 oH−→∞

(
H

log H

)
.

But from (35) one has

H(YH |XH = x,YH ∈ Ex) 6 log |Ex | 6 log PH − ε7 H
log H

and the claim then follows from (37) (recalling that H− is large depending
on ε).

REMARK 19. Lemma 18 may also be derived from the data processing
inequality

DK L(1Ex (Y
′
H )‖1Ex (YH )) 6 DK L(Y′H‖YH )
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where Y′H is the random variable YH conditioned to the event XH = x , and
where

DK L(X||Y) :=
∑

x

P(X = x) log
P(X = x)
P(Y = x)

denotes the Kullback–Leibler divergence; we leave the details of this alternate
derivation to the interested reader. (Thanks to Yihong Wu for this observation.)

We can use this weak uniform distribution to show that F(XH ,YH )

concentrates as a function of YH . We first observe

LEMMA 20 (Hoeffding inequality). Let x lie in the range of XH . Let Ex denote
the set of all y ∈ Z/PHZ such that∣∣∣∣F(x, y)− 1

PH

∑
y′∈Z/PHZ

F(x, y′)
∣∣∣∣ > ε2 H

log H
.

Then

|Ex | 6 exp
(
−ε7 H

log H

)
PH .

Proof. We interpret this inequality probabilistically. Let y be drawn uniformly
at random from Z/PHZ, then our task is to show that

P
(
|F(x, y)− EF(x, y)| > ε2 H

log H

)
6 exp

(
−ε7 H

log H

)
.

We can write
F(x, y) =

∑
p∈PH

Fp(x, y)

where
Fp(x, y) := cp

∑
j : j, j+ph∈[1,H ]

1ay+ j=pb (ap)x1, j x2, j+ph. (43)

Note that the only randomness in the quantity Fp(x, y) comes from the reduction
y (p) of y modulo p. Since y is uniformly distributed in Z/PHZ, we see from
the Chinese remainder theorem that the y (p) are uniformly distributed in Z/pZ
and are jointly independent in p. As each Fp(x, y) is a deterministic function
of y (p), we conclude that the Fp(x, y) are also jointly independent in p. On the
other hand, since all p ∈ PH lie in the interval (ε2/2)H 6 p 6 ε2 H , we have the
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deterministic bound |Fp(x, y)| 6 C/ε2 for some absolute constant C . Applying
the Hoeffding inequality [18], we conclude that

P
(
|F(x, y)− EF(x, y)| > ε2 H

log H

)
� exp

− 2
(
ε2 H

log H

)2

(2C/ε2)2|PH |

 .
From the prime number theorem we have |PH | � ε2(H/ log H), and the claim
follows (as ε is small and H is large).

Combining this lemma with Lemma 18, we conclude that for any good x , one
has

P

∣∣∣∣F(x,YH )− 1
PH

∑
y∈Z/PHZ

F(x, y)
∣∣∣∣ > ε2 H

log H

 = oH−→∞(1).

By Fubini’s theorem, and the fact that XH is good with probability 1−oH−→∞(1),
one thus has

F(XH ,YH ) = 1
PH

∑
y∈Z/PHZ

F(XH , y)+ O
(
ε2 H

log H

)
with probability 1 − oH−→∞(1). On the other hand, from the triangle inequality,
(28), and the prime number theorem we have

F(x, y)� H
log H

.

We can thus take expectations and conclude that

EF(XH ,YH ) = E
1

PH

∑
y∈Z/PHZ

F(XH , y)+ O
(
ε2 H

log H

)
,

and hence by (27) we have∣∣∣∣E 1
PH

∑
y∈Z/PHZ

F(XH , y)
∣∣∣∣� ε

H
log H

. (44)

The advantage here is that we have decoupled the x and y variables, and the y
average is now easy to compute. Indeed, from the Chinese remainder theorem
and (43) we see that

1
PH

∑
y∈Z/PHZ

Fp(x, y) = cp

p

∑
j : j, j+ph∈[1,H ]

1 j=pb (a)x1, j x2, j+ph
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for any x and any p ∈ P , and on summing in P and inserting into (44), we
conclude that∣∣∣∣E ∑

p∈PH

cp

p

∑
j : j, j+ph∈[1,H ]

1 j=pb (a)g1,ε2(an+ j)g2,ε2(an+ j + ph)
∣∣∣∣� ε

H
log H

.

Since gi = gi,ε2 + O(ε2) and gi , gi,ε2 = O(1) for i = 1, 2, we can replace gi,ε2

by gi on the left-hand side at the cost of an error of

O

ε2
∑
p∈PH

H
p

 = O
(
ε2 H

log H

)
.

We thus have∣∣∣∣E ∑
p∈PH

cp

p

∑
j : j, j+ph∈[1,H ]

1 j=pb (a)g1(an+ j)g2(an+ j + ph)
∣∣∣∣� ε

H
log H

. (45)

On the other hand, by using the Hardy–Littlewood circle method, we can
obtain the following deterministic estimate for the expression inside the
expectation.

LEMMA 21 (Circle method estimate). Let a, H be as above (in particular, H is
a multiple of a). For any α ∈ R/Z, let SH (α) denote the exponential sum

SH (α) :=
∑
p∈PH

cp

p
e(αp) (46)

and let ΞH denote the elements ξ ∈ Z/HZ for which∣∣∣∣SH

(
− (b + h)η

a
− hξ

H

)∣∣∣∣ > ε2

log H

for some η ∈ Z/aZ. For j = 1, . . . , H, let x1, j , x2, j be complex numbers
bounded in magnitude by one. Then∑

p∈PH

cp

p

∑
j : j, j+ph∈[1,H ]

1 j=pb (a)x1, j x2, j+ph

�a,h
H

log H

(
ε2 +

∑
ξ∈ΞH

1
H

∣∣∣∣∣
H∑

j=1

x1, j e(− jξ/H)

∣∣∣∣∣
)
. (47)
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Proof. We extend x1, j , x2, j periodically with period H . If we remove the
constraint that j + ph ∈ [1, H ], we incur an error of

O

∑
p∈PH

1
p
|ph|

 = O
(
|h|ε2 H

log H

)
which is acceptable. Thus, viewing j now as an element of Z/HZ, we may
replace the left-hand side of (47) by∑

p∈PH

cp

p

∑
j∈Z/HZ

1 j=pb (a)x1, j x2, j+ph. (48)

We perform a Fourier expansion

xi, j =
∑

ξ∈Z/HZ

G i(ξ)e( jξ/H)

for i = 1, 2, where

G i(ξ) := 1
H

∑
j∈Z/HZ

xi, j e(− jξ/H).

We can thus expand (48) as∑
ξ,ξ ′∈Z/HZ

G1(ξ)G2(−ξ ′)
∑
p∈PH

cp

p

∑
j∈Z/HZ

1 j=pb (a)e
(

jξ
H
− ( j + ph)ξ ′

H

)
.

The inner sum vanishes unless ξ ′ = ξ + (H/a)η for some η ∈ Z/aZ, in which
case one has∑

j∈Z/HZ

1 j=pb (a)e
(

jξ
H
− ( j + ph)ξ ′

H

)
= H

a
e
(
− p(b + h)η

a
− phξ

H

)
(recall that H was chosen to be a multiple of a), and thus by (46) we can write
(48) as

H
a

∑
η∈Z/aZ

∑
ξ∈Z/HZ

G1(ξ)G2

(
−ξ − H

a
η

)
SH

(
− (b + h)η

a
− hξ

H

)
.

From the Cauchy–Schwarz inequality followed by the Plancherel identity, one
has ∑

ξ∈Z/HZ

|G1(ξ)|
∣∣∣∣G2

(
−ξ − H

a
η

)∣∣∣∣� 1,
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so those ξ 6∈ ΞH give an acceptable contribution. For the remaining ξ , we
bound G2(−ξ − (H/a)η) crudely by O(1) and SH (−((b + h)η)/a − hξ/H)
by O(1/ log H) and use the triangle inequality to obtain the claim.

Combining this lemma with (45), we conclude that∑
ξ∈ΞH

E
1
H

∣∣∣∣∣
H∑

j=1

g1(an+ j)e(− jξ/H)

∣∣∣∣∣�a,h ε.

By (19) we thus have
ε �a,h oH−→∞(|ΞH |).

To conclude the desired contradiction, it thus suffices (by taking H− large
enough) to show

LEMMA 22 (Restriction theorem for the primes). We have |ΞH | �a,h,ε 1.

Proof. We invoke [13, Proposition 4.2] (with p = 4, F(n) := n, and N replaced
by aH ), which gives the bound ∑

b∈Z/aHZ

∣∣∣∣∣ 1
aH

H∑
n=1

anβR(n)e(−bn/aH)

∣∣∣∣∣
4
1/4

�
(

1
aH

H∑
n=1

|an|2βR(n)

)1/2

for any sequence an , where R := (aH)1/10 and βR is a certain nonnegative
weight constructed in [13, Proposition 3.1], whose only relevant properties here
are that βR(n) � log H when n is a prime in PH . Setting an set equal to
cp/(pβR(p)) when n is a prime in PH , and an = 0 otherwise, we conclude that
(as an alternative proof of this estimate, one can use standard Fourier-analytic
manipulations to rewrite the left-hand side of (49) as

aH
∑

p1,p2,p3,p4∈PH :p1+p2=p3+p4

cp1 cp2 cp3 cp4

p1 p2 p3 p4
,

which by the triangle inequality is bounded in magnitude by

Oa

 1
H 3

∑
p1,p2,p3,p4∈PH :p1+p2=p3+p4

1

 .
The sum may be upper bounded using a standard upper bound sieve for the
primes (for example the Selberg sieve) to be Oε(H 3/ log4 H), giving (49))∑

k∈Z/aHZ

∣∣∣∣SH

(
k

aH

)∣∣∣∣4 �ε,a
1

log4 H
(49)
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and thus by Markov’s inequality we have |SH (k/aH)| > ε2/(log H) for at most
Oε,a(1) values of k ∈ Z/aHZ. The claim follows.

REMARK 23. In the special case g1 = g2 = λ (or more generally when g2 is the
complex conjugate of g1), we have cp = 1, and the exponential sum SH (α) can
then be handled by the Vinogradov estimates for exponential sums over primes
(see for example [19, Section 13.5]). In that case, one can compute ΞH fairly
explicitly; it basically consists of those frequencies ξ which are ‘major arc’ in
the sense that ξ/H is close to a rational a/q of bounded denominator q . As
remarked previously, this allows for a slight simplification in the arguments in
that the exponential sum estimates in [23, Lemma 2.2, Theorem 2.3] can be
replaced with the simpler estimate in [23, Theorem A.1]; also, the quantitative
bounds in Theorem 2 should improve if one uses this approach. However, for
more general choices of g1, g2, the coefficients cp are essentially arbitrary unit
phases, and the frequency set ΞH need not be contained within major arcs.

4. Further remarks

It is natural to ask if the arguments can be extended to higher point correlations
than the k = 2 case, for instance to bound sums such as the three-point
correlation ∑

x/ω<n6x

λ(n)λ(n + 1)λ(n + 2)
n

. (50)

Most of the above arguments carry through to this case. However, the ‘bilinear’
left-hand side of (48) will be replaced by a ‘trilinear’ expression such as∣∣∣∣ ∑

p∈PH

1
p

∑
j∈Z/HZ

x1, j x2, j+px3, j+2p

∣∣∣∣.
These sorts of sums have been studied in the ergodic theory literature [9, 33].
Roughly speaking, the analysis there shows that these sums are small unless
one has a large Fourier coefficient G1(ξ) for some ξ ∈ Z/HZ. However, in
contrast to the previous argument in which ξ was restricted to a small set ΞH

(which, crucially, was independent of n), one now has no control whatsoever on
the location of ξ . As such, one would now need to control maximal averaged
exponential sums such as

1
X

∫ 2X

X
sup
α

∣∣∣∣ 1
H

∑
x6n6x+H

λ(n)e(αn)
∣∣∣∣ dx, (51)
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which (as pointed out in [23]) are not currently covered by the existing literature
(note carefully that the supremum in α is inside the integral over x). However,
this appears to be the only significant obstacle to extending the results of this
paper to the k = 3 case, and so it would certainly be of interest to obtain
nontrivial estimates on (51). Note however that if one replaces λ(n) with ni t ,
then the expression (51) exhibits essentially no cancellation for t almost as large
as X 2 (as opposed to the condition t = O(X) that naturally appears in the k = 2
analysis). Similarly for the variant

∑
x/ω<n6x

ni t(n + 1)−2i t(n + 2)i t

n

of (50). This suggests that in order to establish cancellation in (50) and (51), one
must somehow go beyond the techniques in [21, 23], as these techniques do not
exclude the problematic multiplicative functions n 7→ ni t for t between x and x2.

For even higher values of k, one has to now control quartilinear and higher
expressions in place of (48). Using the literature from higher order Fourier
analysis (in particular the inverse theorem in [15], together with transference
arguments from [9, 14], or [33]), one is now faced with the task of controlling
sums even more complicated than (51), in which the linear phases n 7→ e(αn)
are now replaced by more general nilsequences of higher step (which one then
has to take the supremum over, before performing the integral); this task can be
viewed as a local version of the machinery in [7, 8], and will be carried out in
detail in [31]. Of course, since satisfactory control on (51) is not yet available
(even if one inserts logarithmic averaging), it is not feasible at present to control
higher step analogues of (51) either. However, one can hope that if a technique
is found to give good bounds on (51), it could also extend (in principle at least)
to higher step sums.

It is of course of interest to remove the logarithmic averaging from Theorem 2
or Theorem 3. It appears difficult to do this while utilizing the entropy decrement
argument, because this argument involves a scale H which cannot be specified
in advance, but is produced through a variant of the pigeonhole principle.
However, it may be possible to estimate expressions such as (5) for a specified
H without resorting to the entropy decrement argument, by establishing some
sort of expander graph property for the random graph Gn,H (or some closely
related graph) from the introduction, and then there would be some chance of
removing the logarithmic averaging. Unfortunately we were unable to establish
such an expansion property, as the edges in the graph Gn,H do not seem to be
either random enough or structured enough for standard methods of establishing
expansion to work.
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[22] K. Matomäki and M. Radziwiłł, ‘A note on the Liouville function in short intervals’. Preprint,
2015, arXiv:1502.02374.
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