DNA-PK(cs) Regulates Stability of Egr1 During T Cell Activation
Zachary Waldrip, David Harrison, Marie Burdine and Lyle Burdine
University of Arkansas for Medical Sciences, Arkansas Children’s Research Institute

ABSTRACT IMPACT: This work provides supporting evidence for the development of a novel immunosuppression therapy for transplant patients. OBJECTIVES/GOALS: Our laboratory reported that inhibition of the kinase DNA-PK(cs) in mice delays allogeneic graft rejection in part by mitigating the induction of certain cytokines. We hypothesized that this was due to an inhibition of intra-cellular signaling programs in T cells and designed studies to identify the mechanism(s) by which this occurs. METHODS/STUDY POPULATION: The immortalized Jurkat T cell line was used to evaluate the effect of the DNA-PK(cs) inhibitor NU7441 on T cell activation by PMA/Ionomycin or PMA/PHA. Mouse primary splenocytes also were used to demonstrate the universality and reproducibility of our observations. Initially, protein mass spectrometry of lysates from untreated and NU7441-treated Jurkat cells identified proteins of interest regulated by DNA-PK(cs) that play a role in T cell activation and cytokine production. CRISPR genome editing was used to validate a potential downstream target of DNA-PK(cs). Western blot, ELISA, and flow cytometry were used to document changes in protein levels with respect to treatments. RESULTS/ANTICIPATED RESULTS: We observed that expression of the transcription factor Egr1 was highly induced after activation but attenuated after treatment with NU7441 in both Jurkat T cells and mouse splenocytes. Phosphorylated serine 301 of Egr1 was identified by mass spectrometry in stimulated cells and fits the kinase consensus sequence for DNA-PK(cs). Both an endogenous CRISPR-generated serine 301 to alanine mutant and expression of a plasmid-based S301A mutant resulted in an unstable form of Egr1 that was barely detectable. In contrast, expression of either a S301 to D or E phospho-mimetic mutant resulted in a stable form of the protein detectable by Western blot. Further evaluation of these mutants and Egr1 phosphorylation is underway to determine the mechanism by which DNA-PK(cs) kinase regulates protein stability. DISCUSSION/SIGNIFICANCE OF FINDINGS: We previously reported a role for DNA-PK(cs) in immunomodulation. We now have evidence that this occurs in part through stabilization of Egr1. We believe this novel finding will lead to uncovering a broader role for DNA-PK(cs) as a mediator of protein stability in T cells and provide support for targeting DNA-PK(cs) in immunosuppression therapy.

Circadian Disruption in Pancreatic Cancer Carcinogenesis
Patrick B. Schwartz1, MD, Morgan T. Walcheck2, BS, Kristina A. Matkowskyj2, MD, PhD, Christopher A. Bradfield3, PhD and Sean M. Ronneklev-Kelly4, MD
1Department of Surgery, University of Wisconsin School of Medicine and Public Health, 2Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 3Department of Oncology, University of Wisconsin School of Medicine and Public Health and 4Department of Surgery, Division of Surgical Oncology, University of Wisconsin School of Medicine and Public Health

ABSTRACT IMPACT: Circadian disruption is known to cause significant human pathology but has not been evaluated in pancreas cancer carcinogenesis; through understanding how disruption of circadian rhythms can lead to pancreas cancer development and spread, preventive and therapeutic strategies can be devised. OBJECTIVES/GOALS: Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer due to early spread and poor response to therapy. Identifying factors driving PDAC growth could lead to new therapeutic strategies. Thus, we evaluated the extent to which circadian rhythm disruption, a factor strongly associated with cancer formation, contributes to PDAC pathogenesis. METHODS/STUDY POPULATION: We hypothesized that circadian disruption plays a key role in PDAC development, and we designed a study to investigate this hypothesis. RESULTS/ANTICIPATED RESULTS: We observed that expression of the transcription factor Egr1 was highly induced after activation but attenuated after treatment with NU7441 in both Jurkat T cells and mouse splenocytes. Phosphorylated serine 301 of Egr1 was identified by mass spectrometry in stimulated cells and fits the kinase consensus sequence for DNA-PK(cs). Both an endogenous CRISPR-generated serine 301 to alanine mutant and expression of a plasmid-based S301A mutant resulted in an unstable form of Egr1 that was barely detectable. In contrast, expression of either a S301 to D or E phospho-mimetic mutant resulted in a stable form of the protein detectable by Western blot. Further evaluation of these mutants and Egr1 phosphorylation is underway to determine the mechanism by which DNA-PK(cs) kinase regulates protein stability. DISCUSSION/SIGNIFICANCE OF FINDINGS: We previously reported a role for DNA-PK(cs) in immunomodulation. We now have evidence that this occurs in part through stabilization of Egr1. We believe this novel finding will lead to uncovering a broader role for DNA-PK(cs) as a mediator of protein stability in T cells and provide support for targeting DNA-PK(cs) in immunosuppression therapy.