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Automatic taxonomic identification based on the Fossil Image
Dataset (>415,000 images) and deep convolutional neural networks

Xiaokang Liu, Shouyi Jiang, Rui Wu, Wenchao Shu, Jie Hou, Yongfang Sun, Jiarui Sun,
Daoliang Chu, Yuyang Wu, and Haijun Song*

Abstract.—The rapid and accurate taxonomic identification of fossils is of great significance in paleon-
tology, biostratigraphy, and other fields. However, taxonomic identification is often labor-intensive and
tedious, and the requisition of extensive prior knowledge about a taxonomic group also requires long-
term training. Moreover, identification results are often inconsistent across researchers and communities.
Accordingly, in this study, we used deep learning to support taxonomic identification. We used web
crawlers to collect the Fossil Image Dataset (FID) via the Internet, obtaining 415,339 images belonging
to 50 fossil clades. Then we trained three powerful convolutional neural networks on a high-performance
workstation. The Inception-ResNet-v2 architecture achieved an average accuracy of 0.90 in the test dataset
when transfer learning was applied. The clades of microfossils and vertebrate fossils exhibited the highest
identification accuracies of 0.95 and 0.90, respectively. In contrast, clades of sponges, bryozoans, and trace
fossils with various morphologies or with few samples in the dataset exhibited a performance below 0.80.
Visual explanation methods further highlighted the discrepancies among different fossil clades and sug-
gested similarities between the identifications made by machine classifiers and taxonomists. Collecting
large paleontological datasets from various sources, such as the literature, digitization of dark data, citi-
zen-science data, and public data from the Internet may further enhance deep learning methods and
their adoption. Such developments will also possibly lead to image-based systematic taxonomy to be
replaced by machine-aided classification in the future. Pioneering studies can include microfossils and
some invertebrate fossils. To contribute to this development, we deployed ourmodel on a server for public
access at www.ai-fossil.com.
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Introduction

Systematic paleontology is essential work in
paleontology and biostratigraphy, because it
helps reveal biological evolution in deep time.
Despite the accurate taxonomic identification
of fossils being essential for research, traditional
methods rely only on individual identification,
which is time-consuming, labor-intensive, and
subjective. Alternatively, machine learning can
help experts identify biological specimens and
significantly increase efficiency (MacLeod et al.
2010), as was intended since it was first pro-
posed 50 years ago (Pankhurst 1974). Traditional

machine learning methods rely on a set of char-
acteristics (e.g., geometric features) selected or
designedmanually by experts. Analytical meth-
ods can benefit from the use of machine learning
methods, such as shallow artificial neural net-
works, support vector machines, decision trees,
clustering, and naive Bayes classifiers, to handle
nonlinear complex tasks (MacLeod 2007),
achieving a suitable efficiency on small datasets.
Owing to the development of computer science
and the advent of big data, deep learning has
advanced substantially over the past decade
(LeCun et al. 2015), enabling the analysis of
massive, high-dimensional, and complex data
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(Hinton and Salakhutdinov 2006). Remarkably,
in the field of computer vision, deep convolu-
tional neural networks (DCNNs) (Krizhevsky
et al. 2012; Szegedy et al. 2015) can learn and
automatically extract features from images. In
the past few years, convolutional neural net-
works (CNNs) have been increasingly applied
in geoscience and its multidisciplinary fields,
as reported in theWeb of Science (Fig. 1). Mean-
while, previous studies have proven the feasibil-
ity of using deep learning methods for the
automatic identification of biotics or fossils
(MacLeod et al. 2010; Romero et al. 2020).
Recent automatic identification methods in

taxonomic research using deep learning have
mainly focused on modern organisms, with
only a few considering fossils (mainlymicrofos-
sils), including foraminifera (Zhong et al. 2017;
Hsiang et al. 2019; Mitra et al. 2019; Carvalho
et al. 2020; Marchant et al. 2020; Pires de Lima
et al. 2020), radiolarians (Keçeli et al. 2017,
2018; Tetard et al. 2020), planktonic life forms
(Al-Barazanchi et al. 2015, 2018; Li and Cui
2016), coccoliths (Beaufort and Dollfus 2004),
diatoms (Urbankova et al. 2016; Bueno et al.
2017; Pedraza et al. 2017; Kloster et al. 2020;
Lambert and Green 2020), pollen grains (Mar-
cos et al. 2015; Kong et al. 2016; Sevillano and
Aznarte 2018; Bourel et al. 2020; Romero et al.
2020), plants (Liu et al. 2018a; Kaya et al.
2019; Too et al. 2019; Ngugi et al. 2021), wild
mammals (Villa et al. 2017; Norouzzadeh
et al. 2018; Tabak et al. 2019), insects (Rodner
et al. 2015; Martineau et al. 2017; Valan et al.
2019), and bones and teeth (Domínguez-
Rodrigo and Baquedano 2018; Byeon et al.
2019; Hou et al. 2020; MacLeod and Kolska
Horwitz 2020). However, various drawbacks
remain to be addressed. First, most existing
studies have focused on species-level automatic
identification, but such a method can only be
applied to a few common taxa in a specific
clade. Hsiang et al. (2019) collected the largest
planktonic foraminifera dataset, containing
34,000 images from 35 species (comprising
most living planktonic foraminifera). They
combined the efforts of more than 20 taxo-
nomic experts to generate a rich and accurate
dataset for deep learning. However, other fossil
clades, such as benthic foraminifera, usually
contain thousands of species, but recent studies

only analyzed a limited number of taxa (Pires
de Lima et al. 2020). Consequently, few experts
can truly benefit from such studies. Second,
although previous research provides publicly
available codes and models, taxonomists may
face usage difficulties owing to software limita-
tions. Thus, providing an end-to-end frame-
work is necessary and critical for the adoption
of deep learning models. Third, experiments
were conducted based on a dataset collected
from personal collections (Mitra et al. 2019),
research institution collections (Hsiang et al.
2019), public literature, and multiple sources
(Liu and Song 2020; Pires de Lima et al. 2020).
Although collecting data from various sources
can partially compensate for data scarcity,
tens of thousands or even millions of samples
are usually needed to develop successful deep
learning applications (Deng et al. 2009). Trad-
itional data collection is unsuitable for con-
structing massive datasets unless geologists
can standardize or digitize unstructured data
scattered in paper records and personal hard
disks (Wang et al. 2021).
To improve data collection, we used web

crawlers to collect the largest Fossil Image
Dataset (FID) currently available from the
Internet, obtaining more than 415,000 images.
We then leveraged the high performance of
DCNNs to perform the automatic taxonomic
identification of fossils. Rather than focusing
on a particular fossil group, we first aimed to
identify fossil clades. This approach can support
research in the geosciences and help disseminate
paleontological knowledge to the public. We

FIGURE 1. Statistics of publications and citations of the
topics of machine learning (ML) and convolutional neural
networks (CNNs) in geoscience and its multidisciplinary
fields from Web of Science (to 13 August 2021).
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also deployed the resultingmodel on a server for
public access at www.ai-fossil.com.

Data and Methods

Data.—We collected the FID from the public
Internet using web crawlers and then we
manually checked the images and their corre-
sponding labels. The uniform resource locators
(URLs) of the images highlighted in this study
are listed in Supplementary Table S1, and
those of all the images in the FID are available
at https://doi.org/10.5281/zenodo.6333970.
Some collected images showed a large area of
unnecessary backgrounds, which we manually

cropped to preserve the fossiliferous regions
only. Data on conodont, foraminifera, and
trace fossils were supplemented from the litera-
ture, using the method demonstrated in Liu
and Song (2020). We collected 415,339 images
belonging to 50 clades in the FID (Fig. 2). The
50 clades consist of five superclades: (1) inverte-
brates: ammonoids, belemnites, bivalves, blas-
toids, brachiopods, bryozoans, chelicerates,
corals, crinoids, crustaceans, echinoids, gastro-
pods, graptolites, insects, myriapods, nautiloids,
ophiuroids, sponges, starfish, stromatolites, and
trilobites; (2) vertebrates: agnatha, amphibians,
avialae, bone fragments, chondrichthyes, croco-
dylomorphs, mammals, mammalian teeth,

FIGURE 2. Example images of each class in our dataset, which contains 50 clades (Table 1). Specimens are not to scale. The
source URLs of the images are provided in Supplementary Table S1.
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marine reptiles, ornithischians, osteichthyes,
placoderms, pterosaurs, reptilian teeth, sauro-
podomorphs, shark teeth, snakes, theropods,
and turtles; (3) plants: angiosperms, gymnos-
perms, petrified wood, and pteridophytes; (4)
microfossils: conodonts, foraminifera, ostracods,
radiolarians, and spores or pollen; and (5) trace
fossils.

Web Crawlers.—Web crawlers have been
used to collect data from open web pages for
data mining (Helfenstein and Tammela 2017;
Lopez-Aparicio et al. 2018) and deep learning
(Xiao et al. 2015). A web crawler is a pro-
grammed script or software that browses
web pages systematically and automatically to
retrieve specific information (Kausar et al. 2013)
by sending requests for documents on servers
to resemble a normal request. The script exam-
ines the returned data perweb page to select use-
ful information, such as image URLs in this
study. We used search engines (e.g., Google
and Bing) to collect fossil images by searching
for keywords (e.g., “trilobite”) and then down-
loaded the images and their associated URLs to
a local storage site. We examined different key-
words to download fossil images from different
geological ages and regions. In addition, we
removed duplicate images by applying algo-
rithms such as AntiDupl.NET.

Computing Environments.—All analysis
codes were executed on a Dell Precision 7920
Workstation running Microsoft Windows 10
Professional. The workstation was equipped
with two Intel Xeon Silver 4216 processors,
128 GB of memory, and two NVIDIA GeForce
GTX 2080Ti graphics processors (11 GB of
memory per graphics processor). To implement

the deep learning framework, we used Tensor-
Flow v. 1.13.1 (Abadi et al. 2016) and Keras
v. 2.2.4 (with TensorFlow backend; Chollet
2015) in Python v. 3.6.5. The required prein-
stalled Python libraries, algorithms for ana-
lysis, and model weights are available at
https://github.com/XiaokangLiuCUG/Fossil_
Image_Dataset. All the images used and their
URLs are uploaded at https://doi.org/10.
5281/zenodo.6333970.

Convolutional Neural Network.—A CNN is a
supervised learning algorithm that requires
images to be input with their corresponding
labels for training. CNNs can handle image-
based tasks, including image recognition
(LeCun et al. 1998), object detection (Redmon
et al. 2016), facial detection (Li et al. 2015),
semantic segmentation (Long et al. 2015), and
image retrieval (Babenko et al. 2014). Fukush-
ima (1980) proposed a self-organized artificial
neural network called the neocognitron, a pre-
decessor of CNNs, that tolerates image shifting
and deformation based on the work by Hubel
and Wiesel (1962). LeCun et al. (1998) first
used a backpropagation method in LeNet-5 to
learn the convolution kernel coefficients dir-
ectly from MNIST (Mixed National Institute
of Standards and Technology database, which
contains 60,000 grayscale images of handwrit-
ten digits) images. Subsequently, DCNNs
were created, which usually contain dozens or
even hundreds of hidden layers, such as
VGG-16 (Simonyan and Zisserman 2014), Goo-
gLeNet (Szegedy et al. 2015), ResNet (He et al.
2016), Inception-ResNet (Szegedy et al. 2017),
and PNASNet (Liu et al. 2018b), and DCNNs
are widely used in many domains.

FIGURE 3. Schematic of a convolutional neural network, modified from Krizhevsky et al. (2012). FC layer, fully connected
layer.
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Inputs are the pixel matrix of an image,
which is usually represented by a grayscale
channel or red-green-blue channels for 2D
images (e.g., trilobite image in Fig. 3), and its
corresponding label. In general, a conventional
CNN mainly consists of convolutional layers,
pooling layers, a fully connected layer, and an
output layer (Krizhevsky et al. 2012). An

input image is successively convolved with
learned filters in each layer, where each activa-
tion map can also be interpreted as a feature
map. Then a nonlinear activation function per-
forms a transformation to learn complex deci-
sion boundaries across images. The pooling
layers are used for downsampling, considering
that adjacent pixels contain similar

TABLE 1. Number of samples for the three subsets and each class.

Order Clade Training set (0.80) Validation set (0.15) Test set (0.05) Total

0 Agnatha 1543 289 96 1928
1 Ammonoid 12,879 2414 804 16,097
2 Amphibian 2058 385 128 2571
3 Angiosperm 4060 761 253 5074
4 Avialae 8097 1518 506 10,121
5 Belemnite 3932 737 245 4914
6 Bivalve 6311 1183 394 7888
7 Blastoid 1734 324 108 2166
8 Bone fragment 14,982 2809 936 18,727
9 Brachiopod 5817 1090 363 7270
10 Bryozoan 2280 427 142 2849
11 Chelicerate 4561 855 285 5701
12 Chondrichthyes 2949 552 184 3685
13 Conodont 13,624 2554 851 17,029
14 Coral 12,298 2305 768 15,371
15 Crinoid 7213 1352 450 9015
16 Crocodylomorph 2743 514 171 3428
17 Crustacean 5458 1023 341 6822
18 Echinoid 8961 1679 559 11,199
19 Foraminifera 7262 1361 453 9076
20 Gastropod 6637 1244 414 8295
21 Graptolite 1849 346 115 2310
22 Gymnosperm 4721 884 294 5899
23 Insect 7725 1448 482 9655
24 Mammal 12,176 2282 760 15,218
25 Mammalian teeth 7082 1327 442 8851
26 Marine reptile 3514 658 219 4391
27 Myriapod 1238 232 77 1547
28 Nautiloid 3896 730 243 4869
29 Ophiuroid 2725 510 170 3405
30 Ornithischian 11,053 2072 690 13,815
31 Osteichthyes 11,267 2112 704 14,083
32 Ostracod 4507 844 281 5632
33 Petrified wood 13,798 2586 862 17,246
34 Placoderms 1624 304 101 2029
35 Pteridophyte 10,782 2021 673 13,476
36 Pterosaurs 3674 688 229 4591
37 Radiolarian 5174 970 323 6467
38 Reptilian teeth 10,771 2019 673 13,463
39 Sauropodomorph 4568 856 285 5709
40 Shark teeth 16,585 3109 1036 20,730
41 Snake 488 91 30 609
42 Sponge 2665 499 166 3330
43 Spore or pollen 7312 1370 456 9138
44 Starfish 2384 446 148 2978
45 Stromatolite 3559 667 222 4448
46 Theropod 16,504 3094 1031 20,629
47 Trace fossil 8048 1509 503 10,060
48 Trilobite 14,981 2808 936 18,725
49 Turtle 2249 421 140 2810

Total 332,318 62,279 20,742 415,339
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information. Convolutional and pooling layers
are usually combined and reused multiple
times for feature extraction (Fig. 3). Then, the
fully connected layer combines thousands of
feature maps for the final classification. The
output layer uses the softmax function in Ten-
sorFlow to generate a probability vector to
represent the classification result. Cross-
entropy is usually used as the objective func-
tion for measuring errors from predicted and
true labels (Botev et al. 2013). The backpropaga-
tion of the gradient method was conducted to
minimize the cross-entropy value and maxi-
mize the classification performance of the
architecture (Rumelhart et al. 1986).
DCNNs contain massive parameters, and

they should be trained on large datasets such
as ImageNet (https://image-net.org; Deng
et al. 2009), which contains more than 1.2 mil-
lion labeled images from 1000 classes. Alterna-
tively, transfer learning can be used for small
training datasets (Tan et al. 2018; Brodzicki
et al. 2020; Koeshidayatullah et al. 2020). In
transfer learning, instead of training a CNN
architecture from randomly initialized para-
meters, the parameters are obtained from pre-
training on other recognition tasks with a
large dataset for initialization. Thus, transfer
learning can reduce computing costs, improve
feature extraction, and accelerate the training
convergence of the model. Transfer learning
methods mainly include feature extraction
and fine-tuning. For feature extraction, convo-
lutional layers are frozen so that the parameters
are not updated during training. In this study,
we froze the shallow layers (half the network
layers) to only train the deep layers. We also
evaluated fine-tuning, in which pretrained
parameters are used as initialization, and train-
ing was applied to all the network parameters
with a small learning rate.
To increase the model’s performance and the

generalization ability of the evaluated DCNNs,
we used data augmentation (Wang and Perez
2017), randomly adding noise to enhance the
robustness of the algorithm against the contrast
ratio, color space, and brightness, which are not
the main identification characteristics of classes
in fossil images (Shorten and Khoshgoftaar
2019). In addition, we applied random crop-
ping, rotating, and resizing of the images

using preprocessing packages in TensorFlow
(Abadi et al. 2016) and Keras (Chollet 2015).
Data augmentation allows expansion of
the training set and partially mitigates overfit-
ting (Wang and Perez 2017). In this study, we
examined different combinations of data aug-
mentation operations.We used the downscaled
image for inference to reduce the image prepro-
cessing time. The width and height of all the
images were limited to 512 and then used to
create TFRecord files.

Training.—We randomly split the collected
FID into three subsets, as detailed in Table 1.
The training set was used for determining the
model parameters, while the validation set
was used to adjust the hyperparameters
(untrainable parameters) of the model and ver-
ify the performance during training, and the
test set was used to evaluate the generalization
ability of the final model. To test the influence
of data volume on individual class accuracy,
we also trained on a reduced FID, in which
each class contained 1200 training images,
and tested the final performance on the same
test set. We used the top-1 accuracy (the true
class matches the predicted label with the big-
gest possibility) and top-3 accuracy (the true
class matches the predicted label for any of
the three most probable classes) to measure
the performance of the DCNN architectures.
We evaluated three conventional DCNNs,
namely Inception-v4 (Szegedy et al. 2017),
Inception-ResNet-v2 (Szegedy et al. 2017),
and PNASNet-5-large (Liu et al. 2018b),
which have achieved excellent results on
ImageNet. We ran 14 trials to optimize the per-
formance of the models with different hyper-
parameter sets. In addition, we considered
transfer learning and training from randomly
initialized parameters. For transfer learning,
we fine-tuned all trainable layers and froze
the shallow layers (half of the DCNN layers)
to only train the remaining layers, as detailed
in Table 2. During training, the algorithm ran-
domly fed a batch of images per iteration
(step). An epoch was complete when all train-
ing images were fed to the architecture once,
noting that dozens of epochs are usually
required for the model convergence. The out-
put logs can facilitate optimization. The test
set was used to determine the ultimate
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TABLE 2. Experiments for the three deep convolutional neural network (DCNN) architectures. For the “Load weights” column, pre-trained parameters were used for variable initialization
(i.e., transfer learning). In the “Train layers” column, the settings of training/froze layers for Inception-v4 and Inception-ResNet-v2 follow themethods of Liu and Song (2020). For PNASNet-
5-large, the trainable layers include cell_6, cell_7, cell_8, cell_9, cell_10, cell_11, aux_7, and final_layer in Liu et al. (2018b). “DAwith RC” shows data augmentation with the random crop, the
random cropped image covers 0.4–1 range of the original image (except experiment 7, which used a range of 0.65–1). Other data augmentation methods follow the methods of Szegedy et al.
(2017) and Liu et al. (2018b). All experiments used batch normalization, dropout (with 0.8), and Adam optimizer. The input size of Inception-v4 and Inception-ResNet-v2 is 299 × 299, and
that of PNASNet-5-large is 331 × 331. The decay rate for experiment 6 is 0.96 when training epochs <15 and 0.9 when training epochs ≥15. Experiment 13 was trained on the reduced Fossil
Image Dataset (FID). During the training processing, we printed the output (including train/validation loss and accuracy) for each 1000 iterations and tried themodel’s performance for each
two epochs. Themaximum training/validation accuracy andminimum training/validation loss have the best results among all outputs. Similarly, themaximum top-1/top-3 test accuracies
have the best performance of the whole training process.

Order Architecture
Batch
size

Load
weights

Froze
layers

Train
layers

Start
learning
rate

Decay
step

Decay
rate

DA
with
RC

Epochs
run

Max.
train

accuracy

Min.
training
loss

Max.
validation
accuracy

Min.
validation

loss

Max. top-1
test

accuracy

Max. top-3
test

accuracy

1 Inception-v4 55 Yes Yes Half layers 0.00001 3000 0.96 No 24 100.00% 0.3666 100.00% 0.3810 88.71% 96.18%
2 Inception-v4 64 Yes Yes Half layers 0.0001 epoch/2 0.96 Yes 40 100.00% 0.3637 100.00% 0.4055 88.96% 96.15%
3 Inception-v4 64 Yes Yes Half layers 0.0001 epoch/2 0.96 No 40 100.00% 0.3095 98.44% 0.3598 88.87% 96.03%
4 Inception-v4 64 Yes Yes Half layers 0.0001 epoch 0.95 Yes 40 100.00% 0.3661 96.88% 0.4538 88.47% 96.00%
5 Inception-v4 64 Yes Yes Half layers 0.0001 epoch 0.95 No 40 100.00% 0.3036 96.88% 0.5181 88.15% 95.83%
6 Inception-v4 64 Yes Yes Half layers 0.00001 epoch 0.9(6) Yes 40 100.00% 0.4111 95.31% 0.5264 87.99% 95.90%
7 Inception-v4 64 Yes Yes Half layers 0.00001 epoch*2 0.96 Yes 28 100.00% 0.3775 95.31% 0.5421 87.46% 95.86%
8 Inception-v4 64 Yes Yes Half layers 0.00001 epoch*3 0.96 No 40 100.00% 0.3572 96.88% 0.5964 86.91% 95.17%
9 Inception-v4 32 No No All layers 0.0005 epoch/2 0.96 Yes 40 100.00% 0.3653 96.88% 0.3659 82.85% 93.04%
10 Inception-

ResNet-v2
64 Yes Yes Half layers 0.0001 epoch/2 0.96 Yes 60 100.00% 0.3926 96.88% 0.5083 90.12% 96.50%

11 Inception-
ResNet-v2

32 No No All layers 0.0005 epoch/2 0.98 Yes 40 100.00% 0.3529 100.00% 0.4117 79.10% 91.32%

12 Inception-
ResNet-v2

32 Yes Yes All layers 0.001 epoch/2 0.98 Yes 60 100.00% 0.2736 96.88% 0.3947 83.33% 93.70%

13 Inception-
ResNet-v2

64 Yes Yes Half layers 0.0001 epoch/2 0.96 Yes 60 100.00% 0.5054 90.62% 0.9189 82.97% 92.57%

14 PNASNet-5-
large

32 Yes Yes Half layers 0.0004 epoch/2 0.96 Yes 40 100.00% 0.5164 100.00% 0.5602 88.03% 95.80%
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performance of each DCNN. The main experi-
ments were performed using Inception-v4 to
optimize the hyperparameters, and then we
trained on the other two architectures. We did
not try all possible experiments to optimize
the hyperparameters, because we evaluated
the identification of biotic and abiotic grains
in thin sections in the experiment by Liu and
Song (2020). Instead, we used the main settings
and tried to optimize several critical hyperpara-
meters, such as those for transfer learning, fine-
tuning, learning rate, and data augmentation
operations.

Evaluation Metrics.—Several metrics were
calculated to evaluate the performance of each
experiment on the test set. Among them, recall
measures the ratio of correctly predicted posi-
tive labels against all observations in the actual
class, that is, true position/(true positive + false
negative); precision measures the ratio of cor-
rectly predicted positive labels to the total pre-
dicted positive observations, that is, true
positive/(true positive + false positive); and
the F1 score is a comprehensive index that is
the harmonic mean, which is calculated as 2 ×
precision × recall/(precision + recall) (Fawcett
2006). The receiver operating characteristic
(ROC) curve measures the sensitivity of the
models to the relative distribution of positive
and negative samples within a class based on
the analysis of the output probabilities of all
samples. The area under the ROC curve
(AUC) represents the probability that a ran-
domly chosen positive sample is ranked higher
than a randomly chosen negative example
(Fawcett 2006). Macro-averaged AUC calcu-
lates metrics for all classes and finds their
unweighted mean. This metric does not take
label imbalance into account. Micro-averaged
AUC calculatesmetrics globally by considering
each element of the label indicator matrix as a
label, which is a weighted value based on the
relative frequencies of each class (Sokolova
and Lapalme 2009).

Visualization of Feature Maps.—Although
CNN architectures have demonstrated high
efficiency in solving complex vision-based
tasks, they are regarded as black boxes that hin-
der explanation of their internal workings.
Accordingly, methods to explain the workings
of CNNs have been developed (Selvaraju

et al. 2017; Fukui et al. 2019). In this study, we
aim to visualize the characteristics that
DCNNs learn to perform identification on
images from the collected FID. Selvaraju et al.
(2017) proposed a method called gradient-
weighted class activation mapping (Grad-
CAM) to visualize class discrimination and
locate image regions that are relevant for classi-
fication. Feature visualization uses the output
of the final convolutional layer (spatially
pooled by global average pooling) because
that layer contains spatial information (high-
level visual constructs) lost in the last fully con-
nected layer (Fig. 3). Accordingly, we used a 3D
(1536 × 8 × 8) matrix obtained from the
Inception-ResNet-v2 architecture (see the sche-
matic of Inception-ResNet-v2 in Supplemen-
tary Fig. S1). Grad-CAM uses the gradients of
any target label flowing into the final convolu-
tional layer to produce a coarse localization
map highlighting the important regions in the
image for predicting the maximum probability
label. Nevertheless, Grad-CAM cannot high-
light fine-grained details such as pixel-space
gradient visualization methods (Selvaraju
et al. 2017). To overcome this limitation, we
also applied guided Grad-CAM by pointwise
multiplication of the heat map using guided
backpropagation to obtain the high-resolution
and concept-specific images of the most repre-
sentative features (Selvaraju et al. 2017).
Guided Grad-CAM may only capture the
most discriminative part of an object (pixels
or regions with large gradients), and its thresh-
old may not highlight a complete object, unlike
saliency maps (Simonyan et al. 2013). Grad-
CAM and guided Grad-CAM are based on gra-
dient backpropagation (Selvaraju et al. 2017). In
this study, we utilized Grad-CAM, guided
Grad-CAM, and the extracted feature maps to
perform visual explanation. These visualiza-
tion maps show which areas and features are
important for DCNN architectures to identify
different fossils.
To unveil interactions in different specimens

and groups, we applied t-distributed stochastic
neighbor embedding (t-SNE) to visualize the
feature maps extracted by the Inception-
ResNet-v2 architecture. This type of embed-
ding allows visualizing high-dimensional
data through the dimensionality reduction of
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each data point to two or three dimensions,
which was presented by Maaten and Hinton
(2008). It starts by converting high-dimensional
Euclidean distances between data points into
conditional probabilities that represent similar-
ities. Then, the Kullback-Leibler divergence
between the joint probabilities of the low-
dimensional embedding and high-dimensional
data is minimized (Maaten and Hinton 2008).
We randomly selected 40 specimens for
each clade and visualized the global average
pooling layer (a vector with the shape of
1536) from layer conv_7b (3D matrix with a
dimension of 1536 × 8 × 8). We also applied
another dimensionality reduction method
called uniform manifold approximation and
projection (UMAP) (McInnes et al. 2018) to
verify our results. UMAP is also used for non-
linear dimension reduction and preserves
more of the global structure with superior
run-time performance. Furthermore, UMAP
has no computational restrictions on embed-
ding dimensions.

Results

Three DCNN architectures were performed
similarly on FID, but the hyperparameter set-
tings influenced the performance. Among
them, Inception-v4 achieved 0.89 top-1 accur-
acy and 0.96 top-3 accuracy on the test set, cor-
responding to a minimum training loss of 0.36
and aminimumvalidation loss of 0.41 (analysis
2 in Table 2). The highest top-1 and top-3 accur-
acies are 0.90 and 0.97, respectively, on the
test set obtained by the Inception-ResNet-v2
architecture (analysis 10 in Table 2). For
PNASNet-5-large architecture, we conducted
one fine-tuning experiment, obtaining 0.88
top-1 accuracy and 0.96 top-3 test accuracy,
representing a slightly inferior performance
compared with the other two architectures.
The minimum training/validation measures
the behavior of the model on training and val-
idation sets during the training process. They
are also affected by other hyperparameters,
such as batch size and the number of training
layers. In Table 2, training all layers with a
batch size of 32 is more likely to result in min-
imal validation loss (analyses 9, 11, and 12).
Overall, transfer learning outperforms random

parameter initialization, and fine-tuning of
deep layers of the DCNN is more effective by
approximately 7% than fine-tuning the entire
DCNN. The transfer learning method acceler-
ates model convergence and provides a stable
loss during training (Fig. 4). In addition, a
frequent learning rate decay improves the iden-
tification performance. Among the data aug-
mentation operations, applying random
cropping to the training images promotes the
learning of local characteristics of fossils and
improves the generalization performance
(Table 2).
The results of analysis 10 (Table 2) indicate an

overall accuracy of 0.90 for the validation and
test images, corresponding to an unweighted
average recall of 0.88 ± 0.08, unweighted aver-
age precision of 0.89 ± 0.07, and unweighted
average F1 score of 0.88 ± 0.08. For recall, the
images of conodonts, radiolarians, shark
teeth, trilobites, and spores or pollen achieved
the highest values of 0.99, 0.97, 0.96, 0.96, and
0.96, respectively, whereas bone fragments
(0.80), trace fossils (0.78), agnathans (0.77),
bryozoans (0.63), and sponges (0.52) showed
the lowest recall. The precision and F1 score
showed similar trends for recall within the
classes (Table 3). The identification achieved a
higher accuracy for microfossils than for the
other clades. In addition, we trained the
Inception-ResNet-v2 on a reduced FID and
used the same hyperparameters in analysis
10, demonstrating a top-1 accuracy of 0.83 and
an unweighted average recall of 0.83 ± 0.09.
For the individual class accuracy, most of the
clades benefited from the larger training
images, such as bone fragments (0.20 higher
comparedwith that of reduced FID; Fig. 5), cor-
als (0.15), pteridophytes (0.15), and trace fossils
(0.16), while fossil clades with fewer
training images in the FID exhibit higher
accuracy in reduced FID, such as bryozoans
(0.04 higher compared with the FID),
myriapods (0.06), and sponges (0.06;
Supplementary Table S2). We used random
oversampling to expand the training images
of the snake fossils to 1200, which improved
the performance by 0.03 compared with the
FID, whereas its performance was reduced
after training from 40 epochs to 60 epochs in
the reduced FID.
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Given the false positives in the main categor-
ies of microfossils, plants, invertebrates, and
vertebrates, the DCNN tends to learn the main
morphological features of fossils. Specifically,
the misidentified images usually occurred in a
class with a higher morphological disparity, or
it was difficult to learn the unique characteristics
of a class due to the image quality, data volume,
and some other adverse aspects, especially for
sponges, bryozoans, bone fragments, and trace
fossils. Sponges were frequently misidentified
as corals (rate of 0.14), bone fragments (0.06),
and trace fossils (0.04). Bryozoans were mostly
misidentified as corals (0.12), trace fossils
(0.05), and sponges (0.05). Mammalian tooth
specimensweremisidentified as bone fragments
(0.08), reptilian teeth (0.04), andmammals (0.02)

(Table 3). The confusion matrix of 50 clades is
provided in Supplementary Table S2. Several
groups with low identification performance
were often confused with one another, such as
sponges, bryozoans, trace fossils, and corals. In
addition, fossil fragments can undermine the
identification of other clades, such as bone frag-
ments, teeth, and petrified wood.
Figure 6 demonstrates the average values of

50 clades and the five highest- and lowest-
performing clades based on the ROC curve
from the validation and test sets. The AUC
result shows that although some of the samples
were predicted incorrectly, they have a much
higher sensitivity than negative samples, such
as samples from sponges and bryozoans. The
positive rates rapidly increased when the false-

FIGURE 4. Curves demonstrate the (A) training loss, (B) training accuracy, (C) validation loss, and (D) validation accuracy
of three deep convolutional neural network architectures during the training process. Experiments 8, 10, 11, and 14 are from
Table 2. The fluctuations of the validation loss/accuracy may result in a higher learning rate. With a lower learning rate,
more training epochs could smooth the curves and improve the accuracy, but it would also take longer to train the
model, considering it currently takes 40–100 hours to train 40 epochs (depending on whether deep half layers or all layers
were fine-tuned).
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TABLE 3. Optimum performance from experiment 10 of Inception-ResNet-v2, which analyzed validation and test datasets to reduce occasional fluctuations in data.

Order Clade Total Precision F1 score Recall
Top-1
error Label

Top-2
error Label

Top-3
error Label

13 Conodont 3406 99.32% 99.22% 99.12% 0.18% Bone fragment 0.15% Radiolarian 0.12% Foraminifer
37 Radiolarian 1294 97.00% 97.15% 97.30% 0.54% Foraminifer 0.54% Sponge 0.46% Spore or pollen
40 Shark teeth 4144 96.48% 96.48% 96.48% 1.04% Reptilian teeth 0.89% Bone fragment 0.34% Mammalian teeth, Chondrichthyes
48 Trilobite 3743 95.17% 95.79% 96.42% 0.48% Stromatolite 0.40% Trace fossil 0.27% Crinoid
43 Spore or pollen 1827 98.32% 97.32% 96.33% 1.48% Foraminifer 0.60% Radiolarian 0.22% Ostracod
18 Echinoid 2238 95.21% 95.55% 95.89% 0.54% Mammal 0.54% Mammal 0.40% Gastropod
1 Ammonoid 3219 94.64% 95.08% 95.53% 1.06% Gastropod 0.50% Bivalve 0.43% Nautiloid
31 Osteichthyes 2810 94.04% 94.77% 95.52% 0.68% Chondrichthyes 0.46% Bone fragment 0.43% Crustacean
32 Ostracod 1125 97.72% 96.40% 95.11% 0.98% Foraminifer 0.62% Spore or pollen 0.44% Trilobite, Conodont, Bivalve
19 Foraminifer 1816 94.03% 94.26% 94.49% 0.61% Radiolarian 0.50% Trace fossil 0.44% Sponge, Gastropod
24 Mammal 3045 91.35% 92.51% 93.69% 2.17% Bone fragment 0.76% Avialae 0.72% Ornithischian
30 Ornithischian 2757 92.55% 92.90% 93.25% 3.08% Theropod 0.83% Sauropodomorph 0.62% Mammal
23 Insect 1930 94.39% 93.80% 93.21% 2.44% Chelicerate 0.88% Myriapod 0.62% Angiosperm
39 Sauropodomorph 1140 93.39% 93.14% 92.89% 3.95% Theropod 2.02% Ornithischian 0.61% Mammal
5 Belemnite 978 94.78% 93.75% 92.74% 1.23% Reptilian teeth 1.02% Bone fragment 0.92% Nautiloid
33 Petrified wood 3438 91.62% 92.10% 92.58% 1.34% Bone fragment 0.93% Coral 0.81% Gymnosperm, Stromatolite
46 Theropod 4121 90.71% 91.58% 92.45% 2.86% Avialae 2.01% Ornithischian 0.66% Sauropodomorph
29 Ophiuroid 681 90.49% 91.35% 92.22% 2.79% Starfish 1.62% Crinoid 1.03% Trace fossil
17 Crustacean 1363 92.87% 92.28% 91.71% 1.17% Chelicerate 0.88% Osteichthyes 0.59% Coral
36 Pterosaurs 917 90.69% 91.04% 91.38% 2.73% Avialae 1.64% Theropod 1.09% Bone fragment
38 Reptilian teeth 2690 90.49% 90.54% 90.59% 3.87% Bone fragment 1.86% Mammalian teeth 1.26% Shark teeth
11 Chelicerate 1141 89.52% 89.68% 89.83% 4.73% Insect 0.70% Trilobite 0.61% Crustacean
14 Coral 3071 87.20% 88.28% 89.38% 1.89% Sponge 1.24% Bryozoan 1.07% Bone fragment
35 Pteridophyte 2693 88.48% 88.74% 89.01% 2.90% Gymnosperm 1.49% Trace fossil 0.89% Angiosperm
28 Nautiloid 973 93.22% 91.06% 89.00% 4.42% Ammonoid 1.54% Crinoid 1.03% Belemnite
4 Avialae 2022 86.66% 87.48% 88.33% 6.33% Theropod 1.29% Pterosaurs 1.19% Mammal
20 Gastropod 1659 87.62% 87.75% 87.88% 2.71% Bivalve 1.21% Ammonoid 0.96% Coral
27 Myriapod 310 90.37% 89.03% 87.74% 2.90% Insect 1.94% Chelicerate 0.97% Pteridophyte, Crinoid
15 Crinoid 1802 85.00% 85.72% 86.46% 1.94% Coral 1.50% Trace fossil 0.83% Bone fragment, Sponge
2 Amphibian 514 87.38% 86.78% 86.19% 3.31% Osteichthyes 1.95% Bone fragment 1.17% Avialae
12 Chondrichthyes 738 88.19% 87.11% 86.04% 3.25% Osteichthyes 2.85% Bone fragment 0.81% Shark teeth
9 Brachiopod 1454 84.75% 85.35% 85.97% 6.12% Bivalve 1.03% Trilobite 0.76% Crinoid
49 Turtle 563 89.96% 87.92% 85.97% 2.84% Bone fragment 1.60% Trace fossil 0.89% Mammal, Ornithischian, Marine

reptile
41 Snake 122 87.39% 86.31% 85.25% 4.10% Mammal 1.64% Trace fossil 1.64% Ornithischian, Marine reptile
34 Placoderms 403 85.54% 85.32% 85.11% 2.48% Chelicerate 2.48% Chelicerate 1.24% Osteichthyes
44 Starfish 594 89.70% 87.29% 85.02% 5.05% Ophiuroid 2.86% Trace fossil 1.52% Crinoid
7 Blastoid 431 87.95% 86.29% 84.69% 3.25% Crinoid 2.55% Brachiopod 1.39% Foraminifer
26 Marine reptile 878 87.12% 85.50% 83.94% 2.28% Theropod 2.05% Crocodylomorph 1.94% Bone fragment
6 Bivalve 1573 81.21% 81.95% 82.71% 6.55% Brachiopod 1.84% Gastropod 1.27% Trace fossil
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positive rates were still lower. The micro aver-
age ROC and macro average ROC were similar
considering the volume of the validation and
test sets and the moderate data imbalance. The
ROC curves of the 50 clades considered in this
study are shown in Supplementary Figure S2.

Discussion

Performance Analysis.—We used the models
that were first trained on the ImageNet (Deng
et al. 2009) for transfer learning on the FID,
and they exhibited outstanding results, which
indicates that pretraining has been effective
for applications in different recognition tasks
(Wang et al. 2017; Willi et al. 2019), despite
the fossil images being considerably different
from the ImageNet samples (Yosinski et al.
2014). Hence, feature extraction using a CNN
has a high generalization ability in different rec-
ognition tasks (Zeiler and Fergus 2014; Pires de
Lima et al. 2020). Our approach, which froze
half of the network layers as feature extractors
and trained the remaining layers, provides the
best performance. Transfer learning is also sus-
ceptible to overfitting, which may lead to
experiments in which fine-tuning of all layers
is inferior to fine-tuning of the deeper
half-layers. We explored data augmentation,
dropout, regularization, and early stopping
methods to prevent such a situation. The first
two methods are effective. We found that a fre-
quent learning rate decay and large training
batch contribute to faster convergence and
high accuracy. The optimization of hyperpara-
meters is usually empirical (Hinz et al. 2018)
and becomes less effective as training proceeds.
Compared with the model trained on reduced
FID, most of the individual class accuracies lin-
early increased with the volume of training
images, and the correlation coefficient was
0.73. Some of the clades with fewer than 3000
training images in the FID exhibited inferior
performance on the reduced FID, but all classes
with more than 3000 training images improved
their accuracy on the complete FID. Imbalanced
data caused the algorithm to pay more atten-
tion to categories withmore training data. Sam-
pling methods are typically used for
imbalanced learning (He and Garcia 2009). In
reduced FID, we used random undersampling
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to remove themajority clades and used random
oversampling to expand the minority clades
(oversampling method only used for snake fos-
sils). The results show that removing images
from the majority leads to missing important
content from the majority of clades, whereas

oversampling is effective to a certain extent.
Moreover, the dataset quality is important for
accurate identification. The microfossils per-
formed with high identification accuracy,
because most of the specimens were collected
from publication plates that provide images
with less background and noise. Some fossils
with poor preservation and few samples avail-
able performed poorly, such as bryozoans and
sponges. The large intraclass morphological
diversity of a clade (e.g., trace fossils and bone
fragments) also undermined the identification
accuracy, because it is difficult for the DCNN
architecture to extract discriminative character-
istics. For instance, trace fossils comprise copro-
lites, marine trace fossils, terrestrial footprints,
and reptilian egg fossils, thus involving fickle
morphologies and characteristics. Considering
the data imbalance between these classes and
with other groups, we did not further subdiv-
ide trace fossils into the four abovementioned
classes.

Visual Explanation of Fossil Clade Identifica-
tion.—Although irrelevant background noise
may pollute test images, the DCNN architec-
ture can extract representative areas. Neverthe-
less, the most discriminating areas are
generally local features in fossil images, as
shown in the Grad-CAM results in Figure 7.
The red (blue) regions correspond to a high
(low) score for predicting the label in Grad-
CAM considering the average activation of
the 1536 feature maps from Inception-ResNet-
v2. Normally, the attention area of each feature
map can be focused on the limited or unique
characteristics (Selvaraju et al. 2016). A similar
pattern is observed in the feature maps
(Fig. 8), and some of the feature maps highlight
the umbilicus, ribs, and inner whorl of the
ammonoid. In particular, Inception-ResNet-v2
identifies different structures for each feature
map in deep layers. (e.g., layers of mixed_7a
and mixed _7b). Some feature maps are highly
activated in a region limited to several pixels,
indicating feature maps focus on specific spa-
tial positions of the original image containing
representative high-level structures. This phe-
nomenon can be explained by the inherent
characteristic of DCNNs, which compress the
size (length and width) and increase the num-
ber (channels) of feature images through

FIGURE 5. Distribution of individual clade recall with the
volume of training images in the Fossil Image Dataset
(FID). Δrecall equals accuracy on the FID minus accuracy
on the reduced FID.

FIGURE 6. Receiver operating characteristic (ROC) curves
of an average of 50 clades (dashed curves), the five highest,
andfive lowest classes from the validation and test datasets.
AUC describes the area under the ROC curve. Ideally, an
area close to 1 is the best scenario. Black dashed line com-
prises 0.5 ROC space, indicating a random prediction.
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repeated convolutions. The feature maps from
different convolutional layers demonstrate
that shallow layers are sensitive to low-level
features, such as brightness, edges, curves,
and other conjunctions (layers conv2d_3 and
conv2d_5 in Fig. 8) (Zeiler et al. 2011; Zeiler
and Fergus 2014). Conversely, deeper layers

detect complex invariant characteristics within
classes or capture similar textures by combin-
ing some low-level features. The activation of
a single feature map focused on a small area
that should be class discriminative (Zeiler and
Fergus 2014; Selvaraju et al. 2017), such as fig-
ures H, I, and J from layer mixed_6a in Figure 8.

FIGURE 7. Visual explanation of samples from the test set, including the original image, gradient-weighted class activation
mapping (Grad-CAM) fused with the original image, and guided Grad-CAM. The lower rectangle shows the predicted
label and its probability. U–Xwere predicted incorrectly, and their true labels are crinoid, sponge, trace fossil, and bivalve,
respectively. The red (blue) regions correspond to a high (low) score for predicting contribution in Grad-CAM. Specimens
are not to scale. The image URLs are provided in Supplementary Table S1.
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The activation patterns and feature maps
show that the DCNN architecture can capture
the fine-grained details of different fossils. For
instance, the discriminative features extracted
from ammonoids are mainly concentrated in
the circular features merging from the umbil-
icus, especially for shells decorated with strong
ribs (Fig. 7A). The spiral nautiloids highlight
the area that contains similar characteristics.
The feature maps demonstrate that the umbil-
ical area is highlighted even in the middle
layers (e.g., layers of mixed_5b and mixed_6a).
Gastropod spires and apices are usually high-
lighted in Grad-CAM, considering that they
contain curves and structures with large curva-
tures. For bivalves and brachiopods, the orna-
mented features of shells, such as growth
lines and radial ribs, were extracted as repre-
sentative features (Fig. 7B,E). Surprisingly, the
DCNN seems to pay more attention to the dor-
sal or beak area of the shells, especially for bra-
chiopods. These areas not only reflect

significant differences between bivalves and
brachiopods but also attract the attention of tax-
onomists. Therefore, DCNNs can capture the
characteristics of fossils that are of interest to
paleontologists. For arthropods, DCNN can
highlight two pincers in crayfish, whereas it
mainly concentrates on the body and tail of
prawns and the head and wings of insects.
The DCNN architecture provides outstanding
performance in identifying vertebrate fossils.
Grad-CAM emphasizes the skull and trunk of
the vertebrate fossils, where distinguishing
characteristics are located, especially for terres-
trial vertebrates. This result may partially be
attributed to some images in the FID showing
only skulls. Class discrimination may result
from a combination of several localized fea-
tures. For instance, images of osteichthyes fre-
quently show high activation on the skull,
fins, and caudal fin areas (Fig. 7N). This phe-
nomenon is also determined by Inception-v3
trained on ImageNet. Olah et al. (2018) built

FIGURE 8. Visualization of the feature maps of different layers from Inception-ResNet-v2. From convd2_3 to mixed _7b
(Supplementary Fig. S1), layers become deeper. First column of each layer is the averaged feature map (A), and the remain-
ing column feature maps are nine examples of this layer (B–J). The dimensions of convd2_3, convd2_5, mixed_5b, mix-
ed_6a, mixed_7a, and conv_7b are 147 × 147 × 64, 71 × 71 × 192, 35 × 35 × 320, 17 × 17 × 1088, 8 × 8 × 2080, and 8 × 8 ×
1536, respectively. A schematic of the Inception-ResNet-v2 architecture is provided in Supplementary Fig. S1. Yellow
(blue) pixels correspond to higher (lower) activations.
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blocks of interpretability for an image that con-
tains a Labrador retriever and tiger cat. The cor-
responding attributionmaps reflected semantic
features in deep layers, such as the dog’s floppy
ears, snout, and face and the cat’s head. Simi-
larly, the implemented DCNN can extract mul-
tiple targets from an image. Three areas are
highlighted, corresponding to three blastoid
specimens in Figure 7, despite some of the fos-
sils being fragments. This result was confirmed
in the images from bone fragments, ophiuroids,
and pteridophytes. For the misrecognized
images, we cannot fully interpret classification
based on the visualization maps, but Grad-
CAM and guided Grad-CAM provide activa-
tion areas with a higher morphological similar-
ity in the identified error labels for images such
as those of a crinoid stem and straight-shelled
nautiloid. The clump structure of coprolite
(trace fossil) is similar to that of modern globu-
lar stromatolites in Shark Bay. In summary, a
DCNN can effectively extract features from
images. Some complicated texture features
(e.g., complex curves and boundaries) and
clade-specific structures are paid more atten-
tion to and used for decision making. The
class activation and feature maps can help
humans partially understand how they work
on fossil images.
Selvaraju et al. (2017) demonstrated four

visualization maps, including Grad-CAM,
guided Grad-CAM, deconvolution visualiza-
tion, and guided backpropagation, and inter-
viewed mechanical workers on Amazon,
demonstrating the superior performance of
guided Grad-CAM, given its resemblance to
human perception. However, this type of inter-
pretability may be fragile. For example, we
cropped or covered (with white polygons) the
region with high activation in the original
images. Nevertheless, the model still correctly
recognizes most of the specimens, although
with a low probability. By contrast, the activa-
tion patterns of Grad-CAM and guided Grad-
CAM change and become difficult for humans
to interpret. Regions with low activation in nor-
mal images were activated for accurate identifi-
cation, indicating that class discrimination is not
unique or immutable. In another study, neurons
in CNNs have been confused by similar struc-
tures. In ImageNet, dog fur and wooden

spoons, which have similar texture and color,
have activated the same neurons (Olah et al.
2017). Similarly, the red stitches in baseballs
have been confused with the white teeth and
pink inner mouth of sharks (Carter et al.
2019). We found similar situations in images
from the collected FID, as discussed earlier.
The 50 clades of fossils or fragments were

successfully clustered (Fig. 9) using t-SNE. A
total of 2000 test images exhibited 0.88 accur-
acy. Among them, the cluster of fossils with
more affinity (or morphological) relationships
was closer. Several superclusters were
obtained, such as plants (classes 3, 22, and
35), vertebrates (classes 2, 4, 16, 26, 24, 30, 36,
39, 46, and 49), arthropods (classes 11, 23, and
27), fishes (classes 0, 12, 31, and 34), microfos-
sils (classes 13, 19, 32, 37, and 43), teeth and
bone fragments (classes 8, 25, 38, and 40),
bivalves and brachiopods (classes 6 and 9),
and the Asterozoa of starfish and ophiuroids
(classes 29 and 44).We found that even for sam-
ples that seem to be clustered incorrectly, the
predictions are not completely wrong. This
condition may be critical, because CNNs have
been used to quantitatively visualize the mor-
phological characteristics of fossils or organ-
isms (Esteva et al. 2017; Cuthill et al. 2019;
Esgario et al. 2020; Liu and Song 2020). This
case is not valid for a few specimens, such as
the Nautilus specimen (class of 28) shown in
Figure 9. The conical or cylindrical shell is simi-
lar to belemnite, but it is recognized correctly.
This result suggests that flattening 3D feature
maps into a 1D vector leads to the loss of spatial
information. Moreover, the fully connected
layer at the end of the DCNN architecture is
important for the final classification. We also
applied UMAP (McInnes et al. 2018) for dimen-
sionality reduction and obtained similar results
(Supplementary Fig. S3).
Considerable progress has been made in fea-

ture visualization over the past few years. The
visual explanation provides a new perspective
for understanding the workings of CNNs.
However, the corresponding methods provide
limited neuron interactions in CNNs (Olah
et al. 2017), especially regarding quantitative
visualization or morphological measurements.

Automatic Identification in Taxonomy.—
Recent studies on deep learning for genus- or
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species-level identification have mainly
focused onmodern organisms and a fewmicro-
fossils, giving generally scarce data. Hence,
existing studies have covered dozens of com-
mon species in a particular geological period
(Keçeli et al. 2017; Pires de Lima et al. 2020).
We expanded this type of research and identi-
fied 50 fossil (fragment) clades, rather than

focusing on the identification of several species,
and the identification performance seems com-
parable to that of human experts. We believe
that under data scarcity, automatic taxonomic
identification can be gradually enhanced from
high-level identification toward genus-/
species-level identification of specific groups.
For example, if the FID is further labeled at

FIGURE 9. Feature visualization of the feature maps extracted from the final global average pooling layer of the
Inception-ResNet-v2 architecture with 2000 random images (each class contains 40 images with 0.88 accuracy) in the
test set using t-distributed stochastic neighbor embedding (t-SNE). The class order in alphabetical order is shown in Table 1.
Some of the samples of clustering into other groups are shown in the rectanglewith input images and their predicted labels.
Specimens are not to scale. The image URLs are provided in Supplementary Table S1.
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the order, family, or genus level, then super-
vised taxonomic identification can be more
detailed. However, image-based identification
of fossil specimens has inherent limitations for
some fossil groups. In fact, systematic taxono-
mists identify fossils not only by visual charac-
teristics but also by considering additional
structures, wall structures, and shell composi-
tions of foraminifera, sutures in cephalopods,
internal structures of brachiopods, and vein
structures of leaves. Color images generally
fail to reflect these features, making it difficult
for DCNNs to detect them too. In our FID,
images of sponges, bryozoans, trace fossils,
and other clades showing various morpholo-
gies or with fewer training samples available
led to inferior performance, indicating the diffi-
culty of learning characteristics for these fossils
comparedwith other clades. Pires de Lima et al.
(2020) also demonstrated that machine classi-
fiers consistently misidentify some of the fusu-
linid specimens, because the wall structure is
neglected. Piazza et al. (2021) demonstrated a
solution that used scanning electron micros-
copy images paired with a morphological
matrix to recognize marine coralline algae.
The matrix is connected with the flattened
final feature maps and uses a fully connected
layer for classification (Fig. 3). Thus, the chosen
matrix is human intervention, which can add
biotic or even abiotic information, but it loses
the convenience of fully automatic implemen-
tation. In addition, to achieve species-level
identification for certain fossil groups, other
aspects should be considered, such as damaged
specimens (Bourel et al. 2020) and the direc-
tions of thin-section specimens (Pires de Lima
et al. 2020). Furthermore, secondary revision
of the data collected from the literature is essen-
tial for the accurate supervision of deep learn-
ing (Hsiang et al. 2019). The taxonomic
positions of some taxa may be modified in sub-
sequent studies, it being necessary to coordinate
classification criteria among scholars and
research communities (Al-Sabouni et al. 2018;
Fenton et al. 2018) for consistency. Even internal
variations of taxa in different regions and peri-
ods should be considered, and DCNNs can
also be used to verify these problems (Pires de
Lima et al. 2020), given their highly accurate,
reproducible, and unbiased classification

(Renaudie et al. 2018; Hsiang et al. 2019; March-
ant et al. 2020).
Deep learning may bring systematic paleon-

tology to a new stage, and morphology-based
manual taxonomic identification, including
identification of microfossils and some inverte-
brate fossils, may soon be replaced by deep
learning (Valan et al. 2019). Experiments on
invertebrate specimens demonstrate that the
performance of deep learning is comparable
to that of taxonomists (Hsiang et al. 2019;
Mitra et al. 2019). With the continuous digitiza-
tion of geological data, more fossil clades
will be included and performance will
improve. Although DCNNs cannot identify
new species (supervised learning can only
identify existing fossils, whereas unsupervised
learning may detect anomalies or new
species), they can accurately solve routine and
labor-intensive tasks without the prior
knowledge that taxonomists can only acquire
after several years of training.Machine learning
classifiers can help experts devote their time
to the most challenging and ambiguous identi-
fication cases (Romero et al. 2020). Recently,
a single model was developed to identify
thousands of common living plant species
(Joly et al. 2016), which indicates that deep
learning also has great potential in automatic
taxonomy identifications. For our DCNN
model to be publicly available, we deployed
it on a web server, an uncommon practice in
paleontology to date. Users can visit and use
it at www.ai-fossil.com. The application of
deep learning in paleontology benefits not
only the academic community but also
paleontological fieldwork, education, and
museum collection management, spreading
knowledge to the public. Furthermore, these
applications can also provide more data for
deep learning, and lead to more robust and
accurate models.

Solutions to Data Scarcity.—To our knowl-
edge, this is the first time that web crawlers
have been used or reported as being used in
paleontology to collect image data for applica-
tions to automatic fossil identification based
on DCNNs. This data-collection approach pro-
vides a new opportunity for disciplines in
which massive training sets are difficult to
obtain for developing deep learning. The
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hardware bottleneck of deep learning has
mostly been overcome due to the dramatic
increase in computing power of the graphics
processor units, tensor processing units, and
other artificial intelligence chips. However,
the lack of large datasets poses a major obstacle
for the application of deep learning in fields
such as paleontology. We shared the FID,
which can be reused in the future to train
more powerful models and provide training
data for genus/species identifications. Mean-
while, the trained model can be used for the
rough identification of newly collected raw
data, considering that data clearing/labeling
is usually time-consuming.
With the increasing digitization and sharing

of huge quantities of samples that have been
housed in universities, research institutes, and
museums and collected over the last three cen-
turies, deep learning seems to be a promising
research direction, and related efforts are
underway, such as the Endless Forams (Hsiang
et al. 2019) andGB3D Fossil Types Online Data-
base (http://www.3d-fossils.ac.uk). Further-
more, the information age allows the use of
diverse data sources through approaches such
as citizen science data (Catlin-Groves 2012),
which have been widely applied in biology
through developments such as iNaturalist
(Nugent 2018), e-Bird (Sullivan et al. 2009),
eButterfly (Prudic et al. 2017), and Zooniverse
(Simpson et al. 2014). In addition, public data
from the Internet could be considered. Alterna-
tively, various algorithms reduce the need for
massive sets of labeled data by adopting
approaches such as unsupervised learning
(Caron et al. 2018), semi-supervised learning
(Kipf and Welling 2017), and exploring deep
learning on small datasets (Liu and Deng
2015), likely accelerating the application of
deep learning in paleontology.

Conclusions

In this study, we used web crawlers to collect
the FID from the Internet to alleviate the data
deficiency for fossil clade identification. The
FID contains 415,339 images belonging to 50
fossil clades that can be used to train and evalu-
ate three DCNN architectures. The Inception-
ResNet-v2 architecture achieved 0.90 top-1

accuracy and 0.97 top-3 accuracy in the test
set. We also demonstrated that transfer learn-
ing is not only applicable to small datasets
but is also very powerful and efficient when
applied to large data volumes (∼106 samples).
We conducted visual explanation methods to
reveal discriminative features and regions for
taxonomic identification using deep learning.
The results revealed similarities between taxo-
nomists and algorithms in learning and per-
forming fossil image identification. Data
scarcity has become a major obstacle to the
application of deep learning in paleontology.
With the digitization of dark data (i.e., unstruc-
tured data) and the collection of data from mul-
tiple sources, image-based systematic taxonomy
may soon be replaced by deep learning solu-
tions. Furthermore, we contributed a website
for the entire community to access the models.
We deployed the DCNN on a server for
end-to-end fossil clade identification at www.
ai-fossil.com.
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