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Abstract

This paper considers algebraic independence and hypertranscendence of functions satisfying Mahler-
type functional equations a f (zr) = f (z) + R(z), where a is a nonzero complex number, r an integer greater
than 1, and R(z) a rational function. Well-known results from the scope of Mahler’s method then imply
algebraic independence over the rationals of the values of these functions at algebraic points. As an
application, algebraic independence results on reciprocal sums of Fibonacci and Lucas numbers are
obtained.
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1. Introduction and main results

In the present paper, we are interested in the Mahler type functions

Fi(x, z) =

∞∑
k=0

xk Ai(zrk
)

Bi(zrk )
, i = 0, 1, . . . ,m, (1.1)

where r ≥ 2 is an integer, Ai(z), Bi(z) ∈ C[z]\{0}, Ai(0) = 0, B0(z) ≡ 1, and, for i ≥ 1,
Ai(z) and Bi(z) are coprime, and the Bi(z) are distinct, nonconstant, and monic. Clearly

Fi(x, z) = xFi(x, zr) +
Ai(z)
Bi(z)

, i = 0, 1, . . . ,m. (1.2)

Now let a ∈ C and define Fi(z) = Fi(a, z) for i = 0, 1, . . . ,m. Then these functions
satisfy the functional equations

aFi(zr) = Fi(z) −
Ai(z)
Bi(z)

, i = 0, 1, . . . ,m. (1.3)
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Further, for Fredholm series we define

F〈µ〉0 (x, z) =

∞∑
k=0

xkzµrk
, µ = 1, . . . , r − 1, (1.4)

and F〈µ〉0 (z) = F〈µ〉0 (a, z), µ = 1, . . . , r − 1. Clearly, all these series F〈µ〉0 (z) and Fi(z)
converge in some disc U around the origin since Bi(0) , 0.

Let Q denote the field of all complex algebraic numbers, and assume that a , 0 and
the coefficients of the polynomials Ai(z) and Bi(z), i = 0, 1, . . . ,m, belong to Q. Then
we may state the following theorems.

Theorem 1.1. Let the polynomials Bi(z), i = 1, . . . ,m, satisfy the following conditions:

(i) if α ∈ C satisfies |α| , 1, then not all roots of zr = α belong to Nm = {z :∏m
i=1 Bi(z) = 0};

(ii) if α ∈ C satisfies |α| = 1, then at most r − 2 of the r roots of zr = α belong to Nm;
(iii) for each i = 1, . . . ,m, there exists γi such that

Bi(γi) = 0 and B j(γi) , 0 for any j , i.

If ζ ∈ U\{0} is an algebraic number such that ζrν < Nm for ν = 0, 1, . . . , then the
numbers

F〈1〉0 (ζ), . . . , F〈r−1〉
0 (ζ), F1(ζ), . . . , Fm(ζ)

are algebraically independent over Q.

For example, if B1(z) = z − 1 and B2(z) = z + 1, then N2 = {1,−1}. If r ≥ 3, then
Theorem 1.1 gives the algebraic independence of F〈1〉0 (ζ), . . . , F〈r−1〉

0 (ζ), F1(ζ) and
F2(ζ) for all algebraic ζ with 0 < |ζ | < 1.

Theorem 1.2. If the degrees of A1(z) and B1(z) are less than or equal to r − 1, and
ζ ∈ U\{0} is an algebraic number such that ζrν < N1 for ν = 0, 1, . . . , then the numbers

F〈1〉0 (ζ), . . . , F〈r−1〉
0 (ζ), F1(ζ)

are algebraically independent over Q except in the case

a = r, B1(z) =
zr − α

z − α
with αr−1 = 1, A1(z) = czB′1(z) with c ∈ Q\{0},

where, for all ζ with |ζ | < 1,

∞∑
k=0

rk ζ
rk

B′1(ζrk
)

B1(ζrk )
=

ζ

α − ζ
.
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We note that this special rational F1(z) is given in [4, Theorem 8]. By using
Theorem 1.2, we may also consider the case r = 2 of the example after Theorem 1.1.
For this, let

f0(z) = f0(a, z) =

∞∑
k=0

akz2k
, f1(z) = f1(a, z) =

∞∑
k=0

ak z2k

z2k
− 1

,

f2(z) = f2(a, z) =

∞∑
k=0

ak z2k

z2k
+ 1

.

If ζ with 0 < |ζ | < 1 is an algebraic number, then Theorem 1.2 gives the algebraic
independence of f0(ζ) and f1(ζ); the same holds for f0(ζ) and f2(ζ) if a , 2, but
f2(2, ζ) = ζ/(1 − ζ). Furthermore, f1(1, ζ) − f2(1, ζ) = 2ζ/(1 − ζ), but if a , 1, we have
no information on such relations.

Theorem 1.3. If deg A1(z) ≤ r, deg B1(z) = r, and ζ ∈ U\{0} is an algebraic number
such that ζrν < N1 for ν = 0, 1, . . . , then the numbers

F〈1〉0 (ζ), . . . , F〈r−1〉
0 (ζ), F1(ζ)

are algebraically independent over Q except in the following five cases:

(1) a , r and

B1(z) = zr − α with αr−1 = 1, A1(z) = cα
( r∑

j=1

(α−1z) j − a(α−1z)r
)

with c ∈ Q\{0};
(2) r = 2, a = 2 and

B1(z) = 1 + z2, A1(z) = cz2 with c ∈ Q\{0};

(3) r = 2, a = 4 and

B1(z) = (1 + z)2, A1(z) = cz with c ∈ Q\{0};

(4) r = 2, a = −2 and

B1(z) = 1 − z + z2, A1(z) = cz with c ∈ Q\{0};

(5) r = 2, a = 2 and

B1(z) = 1 − z + z2, A1(z) = cz(1 − 2z) with c ∈ Q\{0}.

Moreover, the following equations hold for any ζ with |ζ | < 1:
∞∑

k=0

∑r
j=1(α−1ζ) jrk

− a(α−1ζ)rk+1

ζrk+1
− α

=
ζ

α−1ζ − 1
,

∞∑
k=0

2k ζ2k+1

ζ2k+1
+ 1

=
ζ2

1 − ζ2 ,

∞∑
k=0

4kζ2k

(1 + ζ2k )2
=

ζ

(1 − ζ)2 ,

∞∑
k=0

(−2)kζ2k

1 − ζ2k
+ ζ2k+1 =

ζ

1 + ζ + ζ2 ,

∞∑
k=0

2kζ2k
(1 − 2ζ2k

)
1 − ζ2k

+ ζ2k+1 =
ζ(1 + 2ζ)
1 + ζ + ζ2 .
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Remark 1.4. The above cases of rational F1(z) are not all new; for the special case
a = 1 of (1), see [4, Theorem 9], and for (3) and (4), see [3, Theorem 1.1].

Theorem 1.5. Assume that t and u are positive integers. Let α1, . . . , αm, α ∈ Q
satisfy |αi| , 1, |αi| , |α j| for all i , j, |α| = 1, and let Bi(z) = zt − αi, i = 1, . . . ,m,
and Bm+1(z) = zu − α. If ζ ∈ U\{0} is an algebraic number such that ζrν < Nm for
ν = 0, 1, . . . , then the numbers

F〈1〉0 (ζ), . . . , F〈r−1〉
0 (ζ), F1(ζ), . . . , Fm(ζ)

are algebraically independent over Q. Further, if r ≥ 3 and u is not divisible by r, then
these numbers together with Fm+1(ζ) are algebraically independent over Q.

Assume now that deg A0(z) ≤ r − 1, and denote by gm(z) the typical linear form

c0F0(z) + c1F1(z) + · · · + cmFm(z) (1.5)

in the functions F0(z),F1(z), . . . ,Fm(z) with (c0, c1, . . . , cm) ∈ Cm+1\{0}. We shall prove
in Section 3 below that, under the assumptions of Theorem 1.1, the function gm(z) is
hypertranscendental, that is, gm(z), g′m(z), g′′m(z), . . . are algebraically independent over
C(z). The same holds for g1(z), if the assumptions of Theorem 1.2 or Theorem 1.3 are
satisfied and we leave aside the exceptional cases of these theorems. Furthermore, if
the assumptions of Theorem 1.5 are valid, then gm(z) is hypertranscendental as gm+1(z),
if r ≥ 3 and u is not divisible by r. For all these hypertranscendental functions, we can
state the following result generalizing earlier ones (see [8–10]).

Theorem 1.6. If (c0, c1, . . . , cm) ∈ Q
m+1
\{0}, gm(z) is hypertranscendental, and ζ ∈

U\{0} is an algebraic number such that ζrν < Nm for ν = 0, 1, . . . , then the numbers
gm(ζ), g′m(ζ), g′′m(ζ), . . . are algebraically independent over Q.

Remark 1.7. It will turn out in Section 2 that our function gm(z) introduced in (1.5)
satisfies a functional equation of type g(zr) = a1(z)g(z) + a0(z) with a0, a1 ∈ C(z). For
nonrational solutions of such equations, Nishioka [11] established conditions that
guarantee the hypertranscendence of these solutions (and which we will use). It would
be of great interest to have a similar hypertranscendence criterion for more general
classes of Mahler-type functions, for example, for solutions of

g(zr) = an(z)g(z)n + · · · + a0(z) (1.6)

with integer n ≥ 2 and a0, . . . , an ∈ C(z). Note that here we know from [12] that all
nonrational solutions are transcendental such that it is natural to ask the following
open question.

Open Question. Are nonrational solutions of (1.6) always hypertranscendental?

The analogous problem could be posed for solutions of even more general Mahler-
type functional equations as P(z, f (z), f (zr)) = 0, P a polynomial in three variables.
These questions are very much related to one asked by Hilbert [5] in his famous
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collection of 23 problems. There, in the text inserted between Problems 18 and 19,
he suggests that we ‘consider . . . the class of functions characterized by . . . algebraic
differential equations’. And he continues: ‘It should be observed that this class does
not contain the functions that arise in number theory and whose investigation is of
greatest importance. For example, the [Riemann zeta] function satisfies no algebraic
differential equation’.

Our next result studies partial derivatives of (1.1) and (1.4), so let

Fi, j(x, z) =

(
∂

∂x

) j
Fi(x, z), F〈µ〉0, j (x, z) =

(
∂

∂x

) j
F〈µ〉0 (x, z).

For distinct a1, . . . , as ∈ Q\{0}, we define

Fi, j,k(z) = Fi, j(ak, z), F〈µ〉0, j,k(z) = F〈µ〉0, j (ak, z). (1.7)

Then we get the following generalization of Theorem 1.1.

Theorem 1.8. Assume that conditions (i)–(iii) of Theorem 1.1 are satisfied. If ζ ∈ U\{0}
is an algebraic number such that ζrν < Nm for ν = 0, 1, . . . , then the numbers

F〈1〉0, j,k(ζ), . . . , F〈r−1〉
0, j,k (ζ), F1, j,k(ζ), . . . , Fm, j,k(ζ) ( j = 0, . . . , `; k = 1, . . . , s)

are algebraically independent over Q.

As our final results of this section, we give some applications to the (ordinary)
Fibonacci and Lucas sequences (Fn) and (Ln) defined by F0 = 0, F1 = 1, Fn = Fn−1 +

Fn−2 for n ≥ 2, and L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2 for n ≥ 2.

Theorem 1.9. Let d ≥ 1 be an integer, and assume that r ≥ 3. If a1, . . . , as are distinct
nonzero algebraic numbers and ρ1 = (1 +

√
5)/2, then the numbers

F〈1〉0, j (ak, ρ
−d
1 ), . . . , F〈r−1〉

0, j (ak, ρ
−d
1 ), ϕv, j,k =

∞∑
h=0

drh+v>0

h jah
k

Fdrh+v
,

λv, j,k =

∞∑
h=0

drh+v>0

h jah
k

Ldrh+v
( j = 0, . . . , `; k = 1, . . . , s; v ∈ Z)

are algebraically independent over Q. In particular, the numbers

∞∑
h=0

drh+v>0

1
Fdrh+v

,

∞∑
h=0

drh+v>0

1
Ldrh+v

, v ∈ Z,

are algebraically independent over Q.
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Theorem 1.10. Let the assumptions be as in Theorem 1.9, but now with r = 2. Further,
for each pair (v, k) with v , 0, let gv, j,k denote either ϕv, j,k or λv, j,k, j = 0, . . . , `. Then
the numbers

F〈1〉0, j (ak, ρ
−d
1 ), λ0, j,k, g1, j,k, g−1, j,k, g2, j,k, g−2, j,k, . . . ( j = 0, . . . , `; k = 1, . . . , s)

are algebraically independent over Q.

We briefly compare the statements of Theorems 1.9 and 1.10 concerning
algebraic independence of series of type

∑
h≥0 h jah

k/Rdrh+v,R the Fibonacci or Lucas
sequence, with previous literature, where seemingly numbers of type F〈i〉0 (ak, ρ

−d
1 ),

i = 1, . . . , r − 1, were never included. Most closely related to ours are, to the best of our
knowledge, [6, Theorem 1.2] and the results in [14]. We quote here [6, Theorem 1.2]
in a slightly abridged form as follows.

Let (Rn)n=0,1,... be a binary linear recurrence defined by Rn = ARn−1 + BRn−2 (n ≥ 2)
with integers A, B,R0,R1 satisfying A2 + 4B > 0 and (R0,R1) , (0, 0). Let r ≥ 2 be an
integer, assume a1, . . . , as ∈ Q\{0} to be distinct, and let b ∈ Q. Then the numbers

∞∑
h=0

′ ah
k

Rrh + b
(k = 1, . . . , s)

are algebraically independent except in eight precisely described cases (not to be
quoted here).

The dash at
∑

indicates that those h producing a vanishing denominator have to be
omitted. The authors claim that their proof still can be applied to similar series, where
the subscript rh of R in the denominator is replaced by drh + v for fixed integers d > 0
and v. In [14], it is proved that if (Rn) is not a geometric progression, then the numbers

∞∑
h=0

′ h jah
k

Rdrh+v
(k = 1, . . . , s; v ∈ Z; j = 0, 1, . . .)

are algebraically independent except in two precisely described cases having r = 2.
It should be pointed out that our proofs of Theorems 1.9 and 1.10 would also allow

inclusion of a fixed algebraic summand b in the denominator of each term of the series
ϕv, j,k, λv, j,k. Moreover, our method could handle more general binary linear recurrences
as well.

To conclude these remarks, we mention that the papers [15–17] contain more results
on the algebraic independence of certain types of reciprocal sums of linear recurrences.
Concerning ‘only’ transcendence of such sums, we refer the reader to [3, 4], [6,
Theorem 1.1], and, in particular, to Kurosawa’s paper [7] containing an extensive list
of references.

2. Linear independence

Our subsequent proofs of Theorems 1.1–1.3, 1.5, 1.6 and 1.8 will be applications of
[13, Theorem 4.2.1]. For these applications we need the algebraic independence over
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C(z) of the corresponding functions. This will be obtained in Section 3 by using [13,
Theorems 3.2.1 and 3.2.2], which reduce the problem of algebraic independence to
the problem of rationality of linear combinations of these functions. This last problem
will be studied in the present section. Finally, in Section 4, we will prove some general
results implying Theorems 1.9 and 1.10 as special cases.

Here we shall study functional equations of the form

ag(zr) = g(z) −
A(z)
B(z)

, (2.1)

where A(z) and B(z) are coprime polynomials satisfying A(0) = 0. Obviously

g(z) =

∞∑
k=0

ak A(zrk
)

B(zrk )

is an analytic solution of (2.1) in some neighbourhood of the origin. On the other hand,
if

f (z) =

∞∑
k=0

fkzk

is a solution of (2.1), analytic in some neighbourhood of the origin, then

a
∞∑

k=0

fkzkr =

∞∑
k=0

fkzk −

∞∑
k=1

ckzk with
A(z)
B(z)

=

∞∑
k=1

ckzk,

and therefore a f0 = f0, and all fk with k ≥ 1 are uniquely determined by the above
equality. If a , 1, then f0 = 0 and f (z) = g(z). If a = 1, then we may choose f0
arbitrarily and f (z) − f0 = g(z). Therefore, in considering the existence of rational
solutions w(z) of (2.1) it is enough to study solutions with w(0) = 0, and if such a
solution exists, then g(z) = w(z).

We first consider rationality of our typical linear combination (1.5),

gm(z) = c0F0(z) + c1F1(z) + · · · + cmFm(z),

where (c0, c1, . . . , cm) ∈ Cm+1\{0}, and where deg A0(z) is not generally bounded. We
begin by proving the following result.

Lemma 2.1. Let the polynomials Bi(z), i = 1, . . . ,m, satisfy conditions (i)–(iii). Then
gm(z) is rational if and only if c1 = · · · = cm = 0 and A0(z) is of the form C(z) − aC(zr)
with C(z) ∈ C[z].

Proof. The ‘if’ part being trivial, we immediately suppose that

gm(z) =
P(z)
Q(z)

(2.2)

with coprime P(z),Q(z) ∈ C[z] and monic Q(z). Since gm(0) = 0, we have P(0) = 0.
The definition of gm(z) with (1.3) implies

agm(zr) = gm(z) − c0A0(z) − c1
A1(z)
B1(z)

− · · · − cm
Am(z)
Bm(z)

. (2.3)
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Thus, condition (iii) implies P(z) , 0. Further, by (2.2), Equation (2.3) is equivalent to

aP(zr)Q(z)
m∏

i=1

Bi(z) = P(z)Q(zr)
m∏

i=1

Bi(z) − c0A0(z)Q(zr)Q(z)
m∏

i=1

Bi(z)

−

m∑
i=1

ciAi(z)Q(zr)Q(z)
∏
j,i

B j(z), (2.4)

implying the divisibility relations

Q(zr) | Q(z)
m∏

i=1

Bi(z), Q(z) | Q(zr)
m∏

i=1

Bi(z). (2.5)

Assume that Q(α) = 0 with |α| > 1, and choose such an α with minimal |α|. Then
none of the zeros of Q(zr) with zr = α is a zero of Q(z). Therefore, by (2.5), all these r
zeros must belong to Nm, contrary to condition (i). A similar contradiction is obtained
if Q(α) = 0 with some |α| < 1.

By the above consideration, |α| = 1 holds for all α satisfying Q(α) = 0. Let
α1, . . . , αt be all such distinct α arranged in such a way that 0 ≤ φ1 < · · · < φt < 2π, φi =

argαi. Then the distinct roots of Q(zr) belong to T1 ∪ · · · ∪ Tt with Ti = {z : zr = αi}. It
is easily seen that the sets Ti are disjoint, and therefore there exists a set Ti containing
at most one of α1, . . . , αt. Then at least r − 1 of the roots of zr = αi belong to Nm which
contradicts (ii). This implies Q(z) = 1, and so (2.4) gives

aP(zr)
m∏

i=1

Bi(z) = P(z)
m∏

i=1

Bi(z) − c0A0(z)
m∏

i=1

Bi(z) −
m∑

i=1

ciAi(z)
∏
j,i

B j(z). (2.6)

By condition (iii) and (2.6), we get ciAi(γi) = 0 for all i = 1, . . . ,m, implying ci = 0
for all i = 1, . . . ,m, since Ai(γi) , 0 by the coprimality of Ai(z), Bi(z). Thus c0 , 0 and
(2.6) reduces to

aP(zr) = P(z) − c0A0(z).

This proves our lemma. �

From the above proof we get the following corollary.

Corollary 2.2. If the assumptions of Lemma 2.1 hold, then the function c1F1(z) +

· · · + cmFm(z) with (c1, . . . , cm) ∈ Cm\{0} is not rational.

Further, in the special case m = 1, we obtain the following corollaries.

Corollary 2.3. Assume that B1(z) is a nonconstant polynomial satisfying conditions
(i) and (ii) with m = 1. Then g1(z) = c0F0(z) + c1F1(z) is a rational function for
(c0, c1) ∈ C2\{0} if and only if c1 = 0 and A0(z) is of the form C(z) − aC(zr),C(z) ∈
C[z]. In particular, conditions (i) and (ii) with m = 1 are satisfied if r ≥ 3 and
deg B1(z) ≤ r − 2.
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Corollary 2.4. The function F0(z) is rational if and only if A0(z) = C(z) −
aC(zr), C(z) ∈ C[z]. Further, F1(z) is not a rational function if conditions (i) and
(ii) are valid with m = 1.

If deg B1(z) ≥ r − 1, then Corollary 2.3 cannot be applied directly but, in some cases,
it can be used to determine explicitly all rational possibilities for g1(z). We study such
cases in Lemmas 2.7 and 2.10 after the following examples.

Example 2.5. The choice B1(z) = z − 1, B2(z) = z + 1 satisfies conditions (i)–(iii) for
all r ≥ 3, and therefore Lemma 2.1 implies that the function

c0F0(z) + c1F1(z) + c2F2(z)

is rational if and only if c1 = c2 = 0 and A0(z) = C(z) − aC(zr) for some C(z) ∈ C[z]. If
r = 2, then condition (ii) is not satisfied, but see Example 2.9 for this case.

Example 2.6. Assume that the positive integers t and u are not divisible by r. Let
α1, . . . , αm, α ∈ C\{0} satisfy |αi| , 1, |αi| , |α j| for all i , j, |α| = 1. If A0(z) is not of the
form C(z) − aC(zr) with some C(z) ∈ C[z], and if Bi(z) = zt − αi and Bm+1(z) = zu − α,
then

c0F0(z) + c1F1(z) + · · · + cmFm(z)

is rational only if c0 = · · · = cm = 0. Further, for r ≥ 3,

c0F0(z) + c1F1(z) + · · · + cm+1Fm+1(z)

is rational only if c0 = · · · = cm+1 = 0. It is enough to prove that conditions (i) and
(ii) are valid ((iii) is clear). To verify (i), we show that the set T = {arg z : zt − b = 0},
where |b| , 1, does not contain all arg z with zr − β = 0. For this, note that if

arg β
r

+
2 jπ

r
=

arg b
t

+
2iπ

t
,

arg β
r

+
2( j + 1)π

r
=

arg b
r

+
2kπ

t
with integers i, j, k, then r | t contrary to the assumption. Further, if r ≥ 3, U = {arg z :
zu − α = 0}, |β| = 1 and

arg β
r

+
2 jπ

r
∈ U,

then
arg β

r
+

2( j ± 1)π
r

< U,

since r is not a factor of u. This implies (ii).

Lemma 2.7. If the polynomials A0(z), A1(z), and B1(z) have degrees less than or equal
to r − 1, then g1(z) is rational if and only if a = r, c0 = 0 and, moreover,

B1(z) =
zr − α

z − α
with αr−1 = 1, A1(z) = czB′1(z) with c ∈ C\{0}, (2.7)

in which case
∞∑

k=0

rk zrk
B′1(zrk

)

B1(zrk )
=

z
α − z

.
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Remark 2.8. We note that [4, Theorem 8] implies that F1(z) with deg B1(z) = r − 1 is
rational only in the case of Lemma 2.7. The particular case a = 1 follows also from
[18, Lemma 1]. In the case r = 2, one has

∞∑
k=0

2k z2k

z2k
+ 1

=
z

1 − z
,

see also [3, Theorem 1.1]. The final equality in Lemma 2.7 is apparent, noticing that

zB′1(z)
B1(z)

=
−z

z − α
+

rzr

zr − α
.

Proof of Lemma 2.7. Under the assumptions of Lemma 2.7, conditions (i) and (ii)
with m = 1 of Corollary 2.3 are satisfied except in the case

B1(z) =
zr − α

z − γ
, |α| = 1, γr = α.

Therefore we now assume this and use the proof of Lemma 2.1.
By (2.5), deg Q(z) ≤ 1. If Q(z) = 1, then (2.4) gives

aP(zr)B1(z) = P(z)B1(z) − c0A0(z)B1(z) − c1A1(z).

Thus c1A1(δ) = 0 with some δ satisfying B1(δ) = 0. Since A1(δ) , 0, we get c1 = 0,
c0 , 0. By the last equation, we have

c0A0(z) = P(z) − aP(zr),

but this is not possible, since 1 ≤ deg A0(z) ≤ r − 1.
If deg Q(z) = 1, say Q(z) = z − β, then (2.5) leads to

zr − β = B1(z)(z − β).

Therefore |β| = |α| = 1, and α = β = γ, Q(zr) = B1(z)(z − α). Substituting this in (2.4),
we obtain

aP(zr) = P(z)B1(z) − c0A0(z)B1(z)(z − α) − c1A1(z)(z − α). (2.8)

This gives first deg P(z) = 1, P(z) = c∗z, c∗ ∈ C\{0}. Further, since deg A0(z)B1(z)(z −
α) ≥ r + 1 and the degrees of the other terms are less than or equal to r, we find
c0 = 0, c1 , 0. We now put A1(z) = zA∗(z) and note that γ = α implies αr−1 = 1,
B1(α) = r. Then (2.8) takes the form

ac∗zr−1 = c∗
zr − α

z − α
− c1A∗(z)(z − α).

At z = α we now get a = r. Then we find, after some calculations, that

A∗(z) = −
c∗

c1
B′1(z),

which proves Lemma 2.7. �
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Example 2.9. Let f0(z), f1(z) and f2(z) be the functions defined after Theorem 1.2. By
Lemma 2.7, the linear form c0 f0(z) + c1 f1(z) is rational for any a, r only if c0 = c1 = 0.
The same holds for f0(z) and f2(z) if r ≥ 3; but if r = 2, then f2(2, z) = z/(1 − z)
holds. Furthermore, by (2.10) in the following lemma, we see that f1(1, z) − f2(1, z) =

2z/(1 − z) if r = 2.

Lemma 2.10. If deg A0(z) ≤ r − 1, deg A1(z) ≤ r, and deg B1(z) = r, then g1(z) is rational
if and only if c0 = 0 and one of the following cases holds:

(1) a , r and

B1(z) = zr − α, αr−1 = 1, A1(z) = cα
( r∑

j=1

(α−1z) j − a(α−1z)r
)
, c ∈ C\{0};

(2.9)
(2) r = 2, a = 2 and

B1(z) = 1 + z2, A1(z) = cz2, c ∈ C\{0};

(3) r = 2, a = 4 and

B1(z) = (1 + z)2, A1(z) = cz, c ∈ C\{0};

(4) r = 2, a = −2 and

B1(z) = 1 − z + z2, A1(z) = cz, c ∈ C\{0};

(5) r = 2, a = 2 and

B1(z) = 1 − z + z2, A1(z) = cz(1 − 2z), c ∈ C\{0}.

Moreover,

∞∑
k=0

∑r
j=1(α−1z) jrk

− a(α−1z)rk+1

zrk+1
− α

=
z

α−1z − 1
, (2.10)

∞∑
k=0

2k z2k+1

z2k+1
+ 1

=
z2

1 − z2 ,

∞∑
k=0

4kz2k

(1 + z2k )2
=

z
(1 − z)2 ,

∞∑
k=0

(−2)kz2k

1 − z2k
+ z2k+1 =

z
1 + z + z2 ,

∞∑
k=0

2kz2k
(1 − 2zrk

)
1 − z2k

+ z2k+1 =
z(1 + 2z)
1 + z + z2 .

Remark 2.11. The case a = 1 of (1) follows also from [4, Theorem 9], and cases (3)
and (4) are given in [3, Theorem 1.1]. Note also that (2) is a special case of Lemma 2.7
if we replace z by z2 there.

Proof of Lemma 2.10. We again use the proof of Lemma 2.1. Now (2.5) implies that
deg Q(z) ≤ r/(r − 1), so deg Q(z) ≤ 1, if r ≥ 3, and deg Q(z) ≤ 2, if r = 2.
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If Q(z) = 1, we get a contradiction as in the proof of Lemma 2.7. Assume now that
deg Q(z) = 1 or 2 (if r = 2). By (2.4),

aP(zr)Q(z)B1(z) = P(z)Q(zr)B1(z) − c0A0(z)Q(zr)Q(z)B1(z)
− c1A1(z)Q(zr)Q(z). (2.11)

Assume first that deg Q(z) = 1. If deg P(z) ≥ 2, then the degree of the left-hand
side is greater than the degrees of the terms on the right-hand side, therefore deg
P(z) = 1, P(z) = cz, c ∈ C\{0} (remember that P(0) = 0). But this means that deg
A0(z)Q(zr)Q(z)B1(z) ≥ 2r + 2 is greater than the degree of any other term in the above
equality. Thus c0 = 0, c1 , 0. In the case r = deg Q(z) = 2 we get deg P(z) ≤ 2, and we
have the same conclusion c0 = 0, c1 , 0. This implies that F1(z) is a rational function
in all cases under consideration, and we may assume in the following that c1 = 1.

We now consider (2.11) with c0 = 0, c1 = 1. Clearly, it is enough to study those
B1(z) which do not satisfy conditions (i) and (ii) with m = 1 of Corollary 2.3. So we
have to consider the following two cases:

B1(z) = zr − α, (2.12)

B1(z) =
zr − α

z − γ
(z − δ), |α| = 1, γr = α, δ , γ. (2.13)

Assume first that deg Q(z) = 1, say Q(z) = z − β. We saw above that then P(z) = cz
holds with some c ∈ C\{0}. Equation (2.11) now takes the form

aczr(z − β)B1(z) = cz(zr − β)B1(z) − A1(z)(zr − β)(z − β). (2.14)

If B1(z) is of the form (2.12), then

(zr − β) | (z − β)(zr − α), (z − β) | (zr − β)(zr − α). (2.15)

This implies α = β, and then the second relation in (2.15) yields αr−1 = 1. By (2.14),

aczr = cz
zr − α

z − α
− A1(z).

This gives

A1(z) = cα
( r∑

j=1

(α−1z) j − a(α−1z)r
)

which is case (1), if a , r. If a = r, then A1(α) = 0, which contradicts the coprimality
of A1(z) and B1(z) (in fact we get the special case of Lemma 2.7, if we cancel out the
common factor z − α).

Secondly, we consider B1(z) from (2.13). By (2.5),

(zr − β)
∣∣∣∣∣ zr − α

z − γ
(z − δ)(z − β), (2.16)

or B1(z)(z − β) = (zr − β)T (z), where T (z) is a monic polynomial of degree 1. This
result with P(z) = cz and (2.11) implies

aczrT (z) = czB1(z) − A1(z)(z − β). (2.17)
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If r ≥ 3, then we get, by (2.16) and δ , γ,

α = β = γ, T (z) = z − δ.

Thus the use of (2.17) leads to A1(δ)(δ − β) = 0. Since δ , γ = β and A1(δ) , 0
by coprimality of A1(z) and B1(z), we get a contradiction. If r = 2 and α = β,
we have the same contradiction as above. In the case r = 2 and α , β we get
z2 − β = (z − δ)(z − β), β = 1, δ = −1, B1(z) = (z + γ)(z + 1) and T (z) = z + γ. By
using these results with (2.17), we now obtain A1(−γ)(−γ − 1) = 0, which again gives
a contradiction. Thus, the case deg Q(z) = 1 is proved.

Assume now that r = 2 = deg Q(z). Let Q(z) = z2 + q1z + q0 and B1(z) = z2 − α as
in (2.12). By (2.5), Q(z2) = Q(z)B1(z), or

z4 + q1z2 + q0 = (z2 + q1z + q0)(z2 − α).

By comparing coefficients on both sides, we obtain α = q0 = −1, q1 = 0. Substituting
this in (2.11), we get

aP(z2) = P(z)(z2 + 1) − A1(z)(z2 − 1).

Here P(z) = p1z + p2z2, A1(z) = a1z + a2z2, and, comparing coefficients again, we have
a = 2, A1(z) = cz2, P(z) = −cz2, c ∈ C\{0}. This is case (2).

Assume then that B1(z) is of the form (2.13),

B1(z) =
z2 − α

z − γ
(z − δ) = (z + γ)(z − δ) =: z2 + b1z + b0.

Note that b1 , 0 since γ , δ. If Q(z) = z2 + q1z + q0, then, by (2.5),

z4 + q1z2 + q0 = (z2 + q1z + q0)(z2 + b1z + b0). (2.18)

Comparison of the coefficients in this equation gives q1 = −b1 , 0, q0 = b0 = 1.
Therefore,

B1(z) = z2 + bz + 1, Q(z) = z2 − bz + 1, b = γ − δ, γδ = −1,

and therefore Q(z) = (z − γ)(z + δ). Consequently, (2.18) has the form

(z2 − γ)(z2 + δ) = (z2 − γ2)(z2 − δ2).

Now there are two possibilities, either γ = γ2, δ = −δ2 or γ = δ2, δ = −γ2. In the first
case γ = 1, δ = −1 and b = 2, and in the second γ3 = 1 (γ , 1), δ = −γ2 and b = −1.

By the above information, (2.11) has the form

aP(z2) = P(z)(z2 + bz + 1) − A1(z)(z2 − bz + 1),

where P(z) = p1z + p2z2 and A1(z) = a1z + a2z2. By comparing coefficients we get the
following system of equations:

p1 − a1 = 0, p2 + bp1 − a2 + ba1 = ap1, bp2 + p1 + ba2 − a1 = 0, p2 − a2 = ap2.

These imply three possibilities. The first is p2 = a2 = 0, p1 = a1 = c , 0, b = 2, a = 4,
leading to (3). Then we may have p2 = a2 = 0, p1 = a1 = c , 0, b = −1, a = −2, which
gives (4). Finally, the case p1 = a1 = c , 0, p2 = −a2 = 2c, b = −1, a = 2 leads to (5).
Thus, Lemma 2.10 is proved. �
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We note that Corollary 2.3 and Lemmas 2.7 and 2.10 can be used to study the
rationality of the function

F(z) =

∞∑
k=0

ak A(zrk
)

B(zrk )

with coprime polynomials A(z) and B(z) satisfying A(0) = 0, and 1 ≤ deg B(z) ≤ r.
Namely, we may write

A(z) = A0(z)B(z) + A1(z),

where A0(0) = A1(0) = 0, A1(z), B(z) are coprime and deg A1(z) ≤ deg B(z), and
therefore

F(z) =

∞∑
k=0

akA0(zrk
) +

∞∑
k=0

ak A1(zrk
)

B(zrk )
.

Here A0(z) ≡ 0 if deg A(z) ≤ deg B(z), and , 0 otherwise. Thus F(z) is of the form
F(z) = c0F0(z) + c1F1(z) with (c0, c1) = (0, 1) or (1, 1).

As our final result of this section we give a generalization of Example 2.6, where
we apply (2.3) following the lines of the proof in [14, Lemma 6], which studies the
case where Ai(z) are powers of z and all ti below are equal.

Lemma 2.12. Assume that t1, . . . , tm and u are positive integers. Let α1, . . . , αm, α ∈

C\{0} satisfy |αi| , 1, ti
√
|αi| ,

t j
√
|α j| for all i , j, |α| = 1. If Bi(z) = zti − αi, i =

1, . . . ,m, Bm+1(z) = zu − α, and (r − 1)ti ≥ t j for all i, j, then

g(z) := c0F0(z) + · · · + cmFm(z) + cm+1Fm+1(z)

with nontrivial (c0, . . . , cm+1) is rational if and only if c1 = · · · = cm = 0 and g1(z) :=
c0F0(z) + cm+1Fm+1(z) is rational. In particular, if A0(z) is not of the form C(z) − aC(zr)
with C(z) ∈ C[z] and either cm+1 = 0 or r ≥ 3 and u is not divisible by r, then g(z) is
not a rational function.

Proof. Assuming that g(z) = P(z)/Q(z) as in the proof of Lemma 2.1, we have an
analogue of (2.3),

ag(zr) = g(z) − c0A0(z) − c1
A1(z)
B1(z)

− · · · − cm
Am(z)
Bm(z)

− cm+1
Am+1(z)
Bm+1(z)

. (2.19)

If (c1, . . . , cm) , 0, then g(z) must have a pole of absolute value not equal to 1. If
there exists a pole of absolute value greater than 1, let p be such a pole with maximal
absolute value. Now p is not a pole of g(zr), so the assumptions of our lemma together
with (2.19) imply that pti − αi = 0 with exactly one 1 ≤ i ≤ m. But then all

ti
√

1p

are poles of g(z). This implies that rti numbers
r
√

ti
√

1p are poles of g(zr). By the

assumption ti
√
|αi| ,

t j
√
|α j| for i , j, the function ag(zr) − g(z) has exactly t j poles of

the same absolute value
t j
√
|α j| (if c j , 0), and therefore at least rti − t j ≥ ti (with some

j , i) of the above
r
√

ti
√

1p are poles of g(z). Let these be q1, . . . , qv with v ≥ ti. The
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rv numbers r√qi are poles of g(zr), and again at least rv − tk ≥ ti of these are poles of
g(z). By repeating this, we get a contradiction, and therefore (c1, . . . , cm) = 0. The
same argument works also if g(z) has a pole of absolute value less than 1. Then the
final claim of the lemma follows from Example 2.6, and Lemma 2.12 is proved. �

3. Algebraic independence and hypertranscendence

Our subsequent algebraic independence considerations are based on [13,
Theorems 3.2.1 and 3.2.2] saying that algebraic independence of the functions
satisfying functional equations of type (2.1) can be reduced to rationality
considerations of linear combinations (over C) of these functions, and here we may
use the results in Section 2.

For the proof of Theorem 1.1, we need the following analogue for functions.

Theorem 3.1. Assume that the polynomials Bi(z), i = 1, . . . ,m, satisfy conditions (i)–
(iii). Then the functions

F〈1〉0 (z), . . . , F〈r−1〉
0 (z), F1(z), . . . , Fm(z)

are algebraically independent over C(z).

Proof. Assume that the above functions are algebraically dependent. Then [13,
Theorems 3.2.2] implies that these functions are linearly dependent over C mod C(z).
Thus there exist nontrivial constants c0,µ and ci such that

g(z) := c0,1F〈1〉0 (z) + · · · + c0,r−1F〈r−1〉
0 (z) + c1F1(z) + · · · + cmFm(z) ∈ C(z).

If all c0,µ = 0, then at least one of the ci is nonzero, and we have a contradiction to
Corollary 2.2. If c0,µ , 0 for some µ, then

g(z) = F0(z) + c1F1(z) + · · · + cmFm(z) ∈ C(z),

where A0(z) = c0,1z + · · · + c0,r−1zr−1, but this contradicts Lemma 2.1, proving
Theorem 3.1. �

Analogously, Lemmas 2.7, 2.10 and 2.12 give the following results.

Theorem 3.2. If the degrees of A1(z) and B1(z) are less than or equal to r − 1, then the
functions

F〈1〉0 (z), . . . , F〈r−1〉
0 (z), F1(z)

are algebraically independent over C(z) except if a = r and (2.7) holds.

For example, Theorem 3.2 applied to the functions of Example 2.9 implies, that,
for r ≥ 3, the functions f0(z), f1(z) and f2(z) are algebraically independent. In the case
r = 2, f0(z) and f1(z) are algebraically independent, f0(z) and f2(z) are algebraically
independent for all a , 2, but f2(2, z) = z/(1 − z). See also [8, Theorem 2] for these
functions.
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Theorem 3.3. If deg A1(z) ≤ r and deg B1(z) = r, then the functions

F〈1〉0 (z), . . . , F〈r−1〉
0 (z), F1(z)

are algebraically independent over C(z) except in cases (1)–(5) of Lemma 2.10.

Theorem 3.4. Let the assumptions of Theorem 1.5 be satisfied. Then the functions

F〈1〉0 (z), . . . , F〈r−1〉
0 (z), F1(z), . . . , Fm(z)

are algebraically independent over C(z). Further, if r ≥ 3 and u is not divisible by r,
then these functions together with Fm+1(z) are algebraically independent over C(z).

We next study hypertranscendence of the solutions of (2.1),

ag(zr) = g(z) −
A(z)
B(z)

,

with coprime polynomials A(z) and B(z) satisfying A(0) = 0.

Theorem 3.5. If (2.1) does not have a rational solution, F(z) ∈ C[[z]] converges
in some neighbourhood of the origin, and satisfies (2.1), then F(z) is hyper-
transcendental.

Proof. We assume that there is some nonnegative integer m such that F(z),
F′(z), . . . , F(m)(z) are algebraically dependent over C(z), which is equivalent to the
algebraic dependence of F(z), DF(z), . . . , DmF(z), where D := z(d/dz). Then we
apply [11, Theorem 3] or [13, Theorem 4.2.3] to F(z). By (2.1), we have to take
u(z) = a−1, v(z) = a−1A(z)/B(z), whence M = 0 = Q, u1(z) = 1 using the notation of
[13, Theorem 4.2.3]. By this theorem, there exists some w(z) ∈ C(z) satisfying

w(zr) = a−1w(z) + a−1 A(z)
B(z)

or w(zr) = a−1w(z) + a−1 A(z)
B(z)

−
γ

u2(z)
, (3.1)

where u2 ∈ C(z)\{0} fulfils the condition u2(zr) = u2(z) (leading to u2 ∈ C
×), and γ ∈ C

is the constant term in the z-expansion of A(z)/(B(z)u2(z)) which vanishes since
A(0) = 0, B(0) , 0. Thus, (3.1) reduces to the single equation

aw(zr) = w(z) +
A(z)
B(z)

and this contradicts an assumption of Theorem 3.5. �

Corollary 3.6. All functions gm(z) and g1(z) of the previous section, which are not
rational functions, are hypertranscendental. For example, if the assumptions of
Lemma 2.7 are valid, then g1(z) is hypertranscendental except if a = r and (2.7) hold.

Remark 3.7. Very recently, Coons [2] considered functional equations of type (2.1)
with a = 1 and deg A(z), deg B(z) ≤ r − 1, A(0) = 0. In his Theorem 2.2, he
established the transcendence overC(z) of the solutions F(z) ∈ C[[z]] of such equations
converging on some U as above. Note that our Corollary 3.6 implies even the
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hypertranscendence of these functions F(z). Under the additional hypotheses that
F(0) and the coefficients of A(z) and B(z) are algebraic, one obtains the algebraic
independence of F(ζ), F′(ζ), F′′(ζ), . . . for any algebraic ζ ∈ U\{0} with B(ζrν) , 0
for ν = 0, 1, . . . (compare also our Theorem 1.6 above). This fairly generalizes the
transcendence results on F(ζ) for very particular examples F given in [2].

Finally, we consider the functions (1.7). By (1.2), we have

Fi,0(x, z) = xFi,0(x, zr) +
Ai(z)
Bi(z)

,

Fi,1(x, z) = xFi,1(x, zr) + Fi,0(x, zr),
Fi,2(x, z) = xFi,2(x, zr) + 2Fi,1(x, zr),

...

Fi,`(x, z) = xFi,`(x, zr) + `Fi,`−1(x, zr).

This implies that, for any pair (i, k), the functions Fi,0,k(z), . . . , Fi,`,k(z) satisfy a system
of functional equations

Fi,0,k(zr) = a−1
k Fi,0,k(z) + bi,k,0(z),

Fi,1,k(zr) = −a−2
k Fi,0,k(z) + a−1

k Fi,1,k(z) + bi,k,1(z),

Fi,2,k(zr) = ai,k
2,0Fi,0,k(z) − 2a−2

k Fi,1,k(z) + a−1
k Fi,2,k(z) + bi,k,2(z),

...

Fi,`,k(zr) = ai,k
`,0Fi,0,k(z) + · · · + ai,k

`,`−2Fi,`−2,k(z) − `a−2
k Fi,`−1,k(z) + a−1

k Fi,`,k(z) + bi,k,`(z),

where the ai,k
j,t are complex constants and

bi,k, j(z) = (−1) j−1 j!a− j−1
k

Ai(z)
Bi(z)

.

An analogous system is obtained for F〈µ〉0,0,k(z), . . . ,F〈µ〉0,`,k(z), where, in this case, Ai(z)
should be replaced by zµ, and Bi(z) by 1.

Theorem 3.8. If conditions (i)–(iii) are satisfied, then the functions

F〈1〉0, j,k(z), . . . , F〈r−1〉
0, j,k (z), F1, j,k(z), . . . , Fm, j,k(z) ( j = 0, . . . , `; k = 1, . . . , s)

are algebraically independent over C(z).

Proof. Assume that the functions under consideration are algebraically dependent.
We can apply [13, Theorem 3.2.1] to the above system of functional equations.
Since the ak are distinct, only the (i, k) pairs (1, k), . . . , (m, k) and the (0, µ, k) triples
(0, 1, k), . . . , (0, r − 1, k) have the same ak, and therefore there exists a nontrivial set of
constants c1, . . . , cm; c0,1,k, . . . , c0,r−1,k such that, for some k, the function

c0,1,kF〈1〉0,0,k(z) + · · · + c0,r−1,kF〈r−1〉
0,0,k (z) + c1F1,0,k(z) + · · · + cmFm,0,k(z)

= F0(ak, z) + c1F1(ak, z) + · · · + cmFm(ak, z)
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is rational, where A0(z) = c0,1,kz + · · · + c0,r−1,kzr−1. This is impossible by Theorem 3.1
(take there a = ak). �

Obviously Theorems 3.2–3.4 can be analogously generalized.
The proofs of Theorems 1.1–1.3, 1.5, 1.6 and 1.8 now follow immediately by

applying [13, Theorem 4.2.1] with the above Theorems 3.1–3.5, 3.8 and Corollary 3.6,
very much parallel to the proof of [1, Theorem 2].

4. Applications

To prove Theorems 1.9 and 1.10, we first recall that

Fn =
1
√

5
(ρn

1 − ρ
n
2), Ln = ρn

1 + ρn
2 where ρ1 =

1 +
√

5
2

, ρ2 = −ρ−1
1 .

Therefore we have, for all integers d ≥ 1, v ∈ Z and k ≥ 0 satisfying drk + v > 0,

1
Fdrk+v

= C1,v
A1,v(ρ−drk

1 )

B1,v(ρ−drk

1 )
,

1
Ldrk+v

= C2,v
A2,v(ρ−drk

1 )

B2,v(ρ−drk

1 )
, (4.1)

where A1,v(z) = A2,v(z) = z, B1,v(z) = z2 − αv, B2,v(z) = z2 + αv with αv = (−1)dr+vρ2v
1 ,

and certain C1,v,C2,v ∈ Q(
√

5)\{0}.
We now define

ϕv(x, z) =

∞∑
k=0

xk zrk

z2rk
− αv

, λv(x, z) =

∞∑
k=0

xk zrk

z2rk
+ αv

,

assuming, for the moment, only that α0, α1, . . . , αm ∈ C\{0} satisfy |α0| = 1, |αi| , |α j|

for i , j. Further, let ϕv(z) = ϕv(a, z), λv(z) = λv(a, z) for some nonzero complex a, and
let

Gm(z) := c1F〈1〉0 (z) + · · · + cr−1F〈r−1〉
0 (z) +

m∑
v=0

(c1,vϕv(z) + c2,vλv(z))

with nontrivial constants ci, c1,v, c2,v. Then the following lemma holds.

Lemma 4.1. If r ≥ 3, then Gm(z) is not a rational function.

Proof. We assume that Gm(z) ∈ C(z) and deduce a contradiction. Clearly, Gm(z)
satisfies the functional equation

aGm(zr) = Gm(z) − c1z − · · · − cr−1zr−1 −

m∑
v=0

(
c1,v

z
z2 − αv

+ c2,v
z

z2 + αv

)
. (4.2)

If (c1,v, c2,v) , (0, 0), we may write

c1,v
z

z2 − αv
+ c2,v

z
z2 + αv

=:
Av(z)
Bv(z)
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with coprime Av(z), Bv(z), namely

Av(z) = z((c1,v + c2,v)z2 + (c1,v − c2,v)αv), Bv(z) = z4 − α2
v if c1,vc2,v , 0,

and
Av(z) = c j,vz, Bv(z) = z2 + (−1) jαv if c j,v , 0, c j+1,v = 0

for j ∈ {1, 2}, adopting the convention c3,v := c1,v. Thus, we may use Lemma 2.12 with
tv = 2 or tv = 4; note that 4

√
|α2

v | =
√
|αv|. Since (r − 1)2 ≥ 4 for all r ≥ 3 we get a

contradiction if (c1,v, c2,v) , (0, 0) holds for some v ∈ {1, . . . ,m}. Therefore a rational
Gm(z) satisfies a simplified Equation (4.2), namely

aGm(zr) = Gm(z) − c1z − · · · − cr−1zr−1 −
A0(z)
B0(z)

.

If c1,0c2,0 , 0, then B0(z) = z4 − α2
0 and A0(z) = z((c1,0 + c2,0)z2 + (c1,0 − c2,0)α0). In

the case r = 3 or r ≥ 5, the use of Lemma 2.1 gives a contradiction as in Example 2.6.
In the case r = 4, Lemma 2.10 implies that Gm(z) could be rational only if c1 = c2 =

c3 = 0, a = 1, and A0(z) were of the form given in (2.9), but this is not the case. Thus
we must have c1,0c2,0 = 0.

If c1,0 , 0 and c2,0 = 0, then B0(z) = z2 − α0, A0(z) = c1,0z, and we get a
contradiction from Corollary 2.3 (if r ≥ 4), or from Lemma 2.7 (if r = 3). A
similar contradiction follows if c1,0 = 0 and c2,0 , 0. Thus c1,0 = c2,0 = 0. But then
Corollary 2.4 gives a final contradiction, proving Lemma 4.1. �

The above proof does not work in the case r = 2. However, in this case, Lemma 2.12
immediately gives the following lemma. Note that the case α0 = 1 leads to exception
(1) of Lemma 2.10.

Lemma 4.2. If r = 2 and α0 , 1, α1, . . . , αm are as in Lemma 4.1, then, for any nontrivial
choice of (c1, c1,0, . . . , c1,m), the linear form

c1F〈1〉0 (z) +

m∑
v=0

c1,vϕv(z)

is not a rational function.

We now define

ϕv, j(x, z) =

(
∂

∂x

) j
ϕv(x, z), λv, j(x, z) =

(
∂

∂x

) j
λv(x, z),

and, for distinct a1, . . . , as ∈ C\{0},

ϕv, j,k(z) = ϕv, j(ak, z), λv, j,k(z) = λv, j(ak, z).

Analogously to the proof of Theorem 3.8, we now get the following theorems.
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Theorem 4.3. If r ≥ 3 and α0, α1, . . . , αm ∈ C\{0} satisfy |α0| = 1, and |αi| , |α j| for
i , j, then the functions

F〈1〉0, j,k(z), . . . , F〈r−1〉
0, j,k (z), ϕ0, j,k(z), λ0, j,k(z), . . . , ϕm, j,k(z), λm, j,k(z)

( j = 0, . . . , `; k = 1, . . . , s)

are algebraically independent over C(z).

Theorem 4.4. If r = 2 and α0 , 1, α1, . . . , αm are as in Theorem 4.3, then the functions

F〈1〉0, j,k(z), ϕ0, j,k(z), . . . , ϕm, j,k(z) ( j = 0, . . . , `; k = 1, . . . , s)

are algebraically independent over C(z).

This implies, as in the previous section, the following results for function values.

Theorem 4.5. Let r ≥ 3 and α0, α1, . . . , αm be nonzero algebraic numbers satisfying
|α0| = 1, and |αi| , |α j| for i , j. If ζ ∈ U\{0} is an algebraic number satisfying
ζ2rν , ±αi for ν = 0, 1, . . . and i = 0, 1, . . . ,m, then the numbers

F〈1〉0, j,k(ζ), . . . , F〈r−1〉
0, j,k (ζ), ϕ0, j,k(ζ), λ0, j,k(ζ), . . . , ϕm, j,k(ζ), λm, j,k(ζ)

( j = 0, . . . , `; k = 1, . . . , s)

are algebraically independent over Q.

Theorem 4.6. Let r = 2 and α0 , 1, α1, . . . , αm be nonzero algebraic numbers satisfying
|α0| = 1, and |αi| , |α j| for i , j. If ζ ∈ U\{0} is an algebraic number satisfying
ζ2rν , αi for ν = 0, 1, . . . and i = 0, 1, . . . ,m, then the numbers

F〈1〉0, j,k(ζ), ϕ0, j,k(ζ), . . . , ϕm, j,k(ζ) ( j = 0, . . . , `; k = 1, . . . , s)

are algebraically independent over Q.

We now apply the above Theorem 4.5 with the special choice m = 2M, αv =

(−1)dr+vρ2v
1 , v = 0, 1, . . . , M, αM−v = (−1)dr+vρ2v

1 , v = −1, . . . ,−M, and ζ = ρ−drt

1 with
drt > M. Here M is an arbitrary positive integer, fixed for the moment. By defining

Φv(x, z) = xtϕv(x, z),Φv, j(x, z) =

(
∂

∂x

) j
Φv(x, z),

Λv(x, z) = xtλv(x, z),Λv, j(x, z) =

(
∂

∂x

) j
Λv(x, z),

we obtain, by Theorem 4.5, the algebraic independence of the numbers

F〈1〉0, j (ak, ρ
−drt

1 ), . . . , F〈r−1〉
0, j (ak, ρ

−drt

1 ),Φv, j(ak, ρ
−drt

1 ),Λv, j(ak, ρ
−drt

1 )
( j = 0, . . . , `; k = 1, . . . , s; −M ≤ v ≤ M).

Since, by (4.1),

C1,vΦv, j(ak, ρ
−drt

1 ) = ϕ∗v, j,k −

t−1∑
h=0

drh+v>0

h · · · (h − j + 1)ah− j
k

1
Fdrh+v
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with

ϕ∗v, j,k =

∞∑
h=0

drh+v>0

h · · · (h − j + 1)ah− j
k

1
Fdrh+v

,

and the corresponding formula holds also for Λv, j(ak, ρ
−drt

1 ), we obtain the algebraic
independence of

F〈1〉0, j (ak, ρ
−d
1 ), . . . , F〈r−1〉

0, j (ak, ρ
−d
1 ), ϕv, j,k, λv, j,k

( j = 0, . . . , `; k = 1, . . . , s; −M ≤ v ≤ M)

for r ≥ 3. This proves Theorem 1.9. Furthermore, by noting that the change of αv to
−αv in ϕv(z) leads to λv(z), we finally get Theorem 1.10 by using Theorem 4.6.
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