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Abstract

A net (xy) in a vector lattice is unbounded order convergent (uo-convergent) to 0 if u A i xv i
order converges to 0 for all u g 0. We consider, in a Banach lattice, the relationship between
weak and uo-convergence. We characterise those Banach lattices in which weak convergence
implies uo-convergence and those in which uo-convergence of a bounded net implies weak
convergence. Finally we combine the results to characterise those Banach lattices in which weak
and uo -convergence coincide for bounded nets.

1. Introduction

The relationship between norm and various forms of order theoretic
convergence has been studied quite extensively (see Schaefer (1974),
Theorem II.5.10 and Wirth (1975)). In this note we look at the relationship
between weak convergence and unbounded order convergence (see below for
definition) in Banach lattices. The study is motivated by the spaces cu and lp

(1 < p < x). In these spaces the two notions of convergence coincide for norm
bounded nets.

In §2 we ask when weak convergence implies unbounded order con-
vergence. This is equivalent to the linear span of the minimal ideals in the
Banach lattice being order dense. It does not suffice in the proof of this result
to consider only sequences, as we show by an example, however it would if we
assumed that the Banach lattice had an order continous norm.

The final section asks when every norm bounded unbounded order
convergent net is weakly convergent (if all unbounded order convergent nets
are weakly convergent then the Banach lattice must be finite dimensional).
This turns out to be equivalent to the norms in both the Banach lattice and its
dual being order continuous. Again, we show that it does not suffice to
consider only sequences. The two main results are then combined to
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[2] Order convergence in Banach lattices 313

characterise those Banach lattices for which weak and unbounded order
convergence coincide for norm bounded nets.

We adopt Schaefer (1974) as our basic text on Banach lattices and use the
terminology therein wherever possible.

2. When does weak convergence imply uo- convergence?

Let E be a vector lattice. A net (xT) in E is said to be order convergent to
0(or to o-converge to 0) if there is a net (y6) in E+ decreasing to 0 such that for
each 8 there is y,> with jxT! = y6 whenever y i? y0. The net (xy) is unbounded
order convergent to 0 (or uo-converges to 0) if u A | xy | o-converges to 0 for all
« E £ + .

Unbounded order convergence has been used in DeMarr (1964). He
gives there some examples of its significance in concrete vector lattices.

THEOREM 1. In any Banach lattice E the following are equivalent:
(i) Every net in E which converges weakly to 0 must uo-converge to 0.
(ii) Every order bounded net in E which converges weakly to 0 must

o-converge to 0.
(iii) The linear span of the minimal ideals in E is order dense in E.

PROOF. Clearly (i) implies (ii).
Suppose (iii) is false, then there is x £ E+ such that x ^ 0 and Ex, the ideal

generated by x in E, has no minimal ideals. Ex normed by the gauge of
[-x, x] is an AM-space with unit so is isomorphic to some space C(K)
(Schaefer (1974), Corollary 1 of Theorem II.7.4). Ex having no minimal ideals
is equivalent to K having no isolated points. We shall prove that (ii) fails for
such a C(K) and hence for Ex. Now if we have a net (xy) in Ex which is order
bounded and converges a(Ex, E'x) to 0 then (xy) converges <x(E, E') to 0 as the
natural embedding of Ex into E is continuous (Schaefer (1974), Corollary of
Proposition II.7.2) and hence weakly continous (Kothe (1969), §20.4.5). If we
choose (xy) so that it does not o-converge to 0 in Ex then it will not do so in E,
so that (ii) fails also for E.

Suppose K has no isolated points, and let v G C(K) with 8eK Si v < eK

for some 8 > 0, where eK is the constantly one function on K. I claim that
given any basic weak neighbourhood of 0, B = {/G C(K): |/x.,-(/)| < 1,
/x, e C ( K ) ' , j = 1 , 2 , •• - , n } , B C\[- eK,eK]!t[- v , v ] . L e t (fc<) b e c o u n t a b l y
infinitely many distinct points of K with 0 < v(k<)< 1.

Let us identify each /LA, with a regular Borel measure on K. I claim that
the assumption that B n [ - eK, eK] C [ - v, v] implies that for each i there is /
with |/ti,({fc,})|g v(ki)~\ It would follow that
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for all integers m, which is impossible.
Fix i and suppose that | JU,,({/CI})| < !;(&;)"' for / = 1,2, ••- ,« . Choose

e > 0 such that u(/c)+ e < 1 and use regularity of ^i to find an open subset P
of K with fceP and | / M ) ( P ) | + |/n7(F)| S ( u ( k i ) + e ) ' ' for / = 1,2, • • •, n.
Now construct g E C(K) with g(/c,) = u(ki)+ e, 0 § g S= eK and g vanishing
on K\P. Now g E J5 D [ — eK, eK] but g (El [ — v, v], contradicting the assump-
tion that B n [ - eK, eK] C [ - v, v].

Let £$ be the family of all basic weak neighbourhoods of 0. Order the set
{(B, v): B e 98, 5eK S u < eK for some 5 > 0} by defining (B, u) g (B', v') to
mean B CB' and u =? t/. By the arguments of the last three paragraphs, for
each (B, v) there is x = x(B, u )E [ - eK, eK] with x E B, x^v. The net
(x(B, v)) converges weakly to 0, but does not o-converge to 0. For suppose
(ws) decreased to 0 and for each 8 there was (Bo, v0) with \x(B, v)\ = vv6 for
(B, u) g (Bo, Do). If ws < eK we may choose v such that eK > v > u0, w8, and
then (Bo, u) S (Bo, u0) yet x(B0, v)£v, so x(B0, u) ^ vvg. This completes the
proof that (ii) implies (iii).

Finally we prove that (iii) implies (i). Suppose that (iii) holds and that (xs)
is a net in E which converges weakly to 0. If / is a minimal ideal in E, we let P,
denote the band projection onto /. Fix u E E+, we construct a net as follows.
Let 3* be the family of all finite sets of minimal ideals of E. 9> x N, ordered by
(F,n)^(G,m) if and only if FDG and n^m, is a directed set. If
( F , n ) £ f x N , where F = {7(1), 7(2), • • -,J(k)} let

y(F,n) = (/ - P/(1)) • • • ( / - Pm))u + £ PJ(j)(«) A (j(i)/n)
i

where / ( i )E7(i )+, | | / ( 0 l l = l - ^he net y(F,n) is downard directed and has
infimum 0. For if 0 S z S y(F,n, for all (F, n) E S? x N then 0 g P,2 g P,y(fj,.n)g
//n for all minimal ideals 7 and each n E N (again / E 7+, ||/|| = 1). Hence
PjZ = 0. As the linear span of the minimal ideals is order dense in £, z = 0.

Now fix (F, n). If 7 is a minimal ideal, fix / E 7* with ||; || = 1, and define />
by Pj(x) = /j(x) • / for all x E E. fj is a lattice homomorphism and lies in E' .
As xy —>0 weakly we may find y0 such that |/>(xT)| S n"1 for each 7 E F and
all y a y0. Now Pj( |xT| A M ) = | P , ( X T ) | A PJ{U) S F 7 (M) A (J/n) if 7 E F and

y S y0. It follows that | xy \ A M S y<F,n) if y = yo so that (xT) MO-converges to 0.

In proving the equivalence of (i) and (iii) it would not have sufficed to
consider only sequences in (i). Indeed if m is any measure which is not purely
atomic then L'(m) provides a counterexample by virtue of:
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PROPOSITION 2. Let S be a compact quasi-Stonian space. Every sequence
in C(S) which converges weakly to 0 must uo-converge to 0.

PROOF. Let /„ —>0 weakly, /„ £ C(S). As S is quasi-Stonian we may, for
each m £ N, form V'n.m\fn | in C(S), (Schaefer (1974), Corollary of Proposi-
tion II.7.7, plus the fact that the /,,'s must be norm, and hence order bounded
in C(S)). Furthermore Nm = { s £ S : V;.m|/n(s) | ^ (V;_m|/n |)(s)} is nowhere
dense in S. It suffices to prove that A* =1 V*.m |/n | = 0. If this fails we may find
a non-empty open and closed A C S and e >0 for which V^,m|/n | g E\A for
all m. As A is of the second category B = A\(U* _, N m ) ^ 0 . If s £ B then
(V:_m|/n|)(s)= v;,m|/n(s)|forall m. But (V^=m|/n |)(s) g e for all m, whilst
|/n(s)|—»0, as /„—»() weakly. This contradiction establishes the claim.

It is of some interest that it does suffice to consider sequences if the
Banach lattice £ has an order continous norm. For such an E the condition
that the linear span of the minimal ideals is order dense is equivalent to the
norm closed convex hull of the extremal rays of £L being the whole of £L (an
extremal ray of E+ is the positive part of a minimal ideal in E). Banach
lattices with this property have been studied in Walsh (1968) and Wickstead
(1975). Before proving the result we state a lemma.

LEMMA 3. Let E be a Banach lattice with an order continuous norm, and
for which E+ has no extremal rays. If x £ £+, / £ El and f(x)>0 there is
y E £ with 0 S y g v , y A ( r - y ) = 0 and f(y) = f(x)/2.

PROOF. AS £ has an order continuous norm the order intervals in £ are
weakly compact (Schaefer (1974), Theorem II.5.10). The first two paragraphs
of the part of the proof of Theorem 5 in Wickstead (1975) labelled "Main
Proof" proves the result, using weak compactness of order intervals in place
of norm compactness.

THEOREM 4. If E is a Banach lattice with an order continuous norm then
following are equivalent:

(i) Every net in E which converges weakly to 0 must uo-converge to 0.
(ii) Every sequence in E which converges weakly to 0 must uo-converge

to 0.
(iii) £+ is the norm closed convex hull of its extremal rays.

PROOF. We have only to prove that (ii) implies (iii). The norm closed
linear span of the extremal rays of £+ is an ideal in E, and hence, (Schaefer
(1974), Theorem II.5.14) a band. As £ is Dedekind complete (Schaefer
(1974), Theorem II.5.10) if (iii) fails the complementary band is non-zero.
Thus to prove the result it suffices to suppose that £^{0} and E+ has no
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extremal rays, and then to construct a sequence in E which converges weakly
to 0, but does not wo-converge to 0. Choose / £ £+\{0}, we may suppose (if
necessary by replacing E by the band complementary to
{xGE:f(\x\) = 0}) that / is strictly positive on E+\{0}.

Choose y £ E+ with / (y) = 1. Using lemma 3 we may construct zn,; E £ +

(n £ N, 1 § i § 2") as follows:

Zi.i + Zi.2 = y, Zi.i A 2,,2 = 0, /(-Zi.i) = /(Z1.2) = 2 " ' .

If zn.i is defined then zn+i,2j-i and zn+i.2l are defined so that

Zn + l , 2 i - l + Z n + i 2 i = Zn,i

Zn + 1,2,-1 A Z n + 1 , 2 i = 0

Hence V^ 1 z n , ,=2?I , zn-i = y for all n £ N. Define the sequence (xm) by
JC2"+, = zn,,. The sequence (xm) does not MO-converge to 0, for w g |xm | A y =
xm for all w s W o. Choose n E N with 2" S w0. Now w s jc2-+i (1 S 1 S 2") so
that w g y > 0 .

It remains to prove that (xm) converges weakly to 0. Let X =
{xm : m £ N} U {0}. I claim X is weakly closed in the order interval [0, y], and
is hence weakly compact. Indeed, if (sy) is a net in X that converges weakly to
s £ [0, y] then either s = 0 (in which case we have nothing to prove) or
/ ( s ) > 0 (as / is strictly positive on £\\{0}). As f(sy)^>f(s) and f(sy) takes
only the values 2~\ for k £ N, f{sy) must eventually be constant. Also there
are, for each k, only finitely many distinct sy with f(sy)= 2~\ Thus the net
must eventually be constant, so 5 £ X.

As / is strictly positive on E+\{0}, d(s, t) = f{\ s - t j) defines a metric on
X. The topology induced on X by d is coarser then the weak topology
restricted to X. For if (sy) is a net in X converging weakly to s then either
s = 0 or (sy) is eventually constant (as we have just shown). In the latter case
we have d(sy, s) = 0 eventually, whilst in the former case d(sy,0) =
f(\sy — 0|) = f(sy)^>0. It follows that the weak and d-topologies coincide on
X. As d(x2"+,,0) = 2~" we see that xm—>0 for the d-topology and hence
xm —>0 weakly.

3. When does uo- convergence imply weak convergence?

We deal with the reverse implication in this section. The answer to the
problem posed in the title of this section is "only for finite dimensional
spaces". Indeed such a space must satisfy the equivalent conditions of
Theorem 5. If it were infinite dimensional we could choose disjoint xn with
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||xn||= 1. As in the proof of (i) => (ii) in Theorem 5 we have (nxn) uo-
converging to 0, yet ||nxn ||—*°° so it is impossible that nxn —>0 weakly. The
situation is rather more interesting if we limit our attention to norm bounded
nets.

THEOREM 5. For any Banach lattice E the following are equivalent:
(i) Every norm bounded net in E which uo-converges to 0 must converge

weakly to 0.
(ii) E has an order continuous norm and every norm bounded disjoint

sequence in E converges weakly to 0.
(iii) E and E' have order continuous norms.

PROOF, (i) =̂> (ii). (i) certainly implies that if (xy) is a net decreasing to 0
then xy^>0 weakly, and xT—>0 in norm by (Schaefer (1974), Corollary to
Theorem II.5.9). Thus E has order continuous norm. If (xn) is a disjoint norm
bounded sequence in E then (xn) uo-converges to 0. Indeed if u £ E+ then
for each m E N V „ = *,(] xn JAM) exists as E is Dedekind complete (Schaefer
(1974), Theorem II.5.10), and V ; = m (| xn | A U ) \ 0 as the xn 's are disjoint. Thus
(i) implies that xn—>0 weakly.

(ii) => (i). Let E have an order continuous norm and (xy) be a norm
bounded net in E which Mo-converges to 0, but does not converge weakly to
0. We construct a norm bounded disjoint sequence in E which does not
converge weakly to 0. This will prove the implication. We note first that if
u G £ , then (u A | xy |) must, as E has an order continuous norm, converge to
0 in norm.

If (xy) does not converge weakly to 0 there is / GE El such that f(xy)y^0.
By choosing a subnet of the (xy) and an appropriate / we may assume that
\f(xy)\'^2 for all y. Thus we have / ( | x 7 | ) § 2 for all y.

We construct a bounded collection of yn_, in £;+ ( n £ N , l § j g n ) with
the properties that

yn., A yn,j = 0 if iV y

yn.i = y.n-1.,- if n £ N , n § i.

The construction proceeds inductively. Choose any y, and set y,., = | xT11. Now

suppose we have defined yn.i, • • •, yn m we show how to choose yn + i., (1 =i i =

n + 1).

Let u = Vr.iyn.,-. Choose y such that f(u A \xy | ) § 2 ~ ( " + 1). Set yn*,.n + , =

xy | - u A | xy I, so that / (yn + , ,„.,) a 2 - 2 "(" + 1) S 1 + 2 < n + 1). Let O be the band

projection onto the band generated by yn+i,B + i. It is readily verified that

Qu S u A \xy |. We set yn.,., = ( / - Q)ynJ ( l S i S n). We certainly have the
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disjointness condition and the monotonicity condition satisfied. Also )>„,, g u
so Qyn., § Qu S u A | xy | (1 S i: ^ n). Hence

Finally note that each yn,, is dominated by some | xy |, so the set of all of them
is certainly norm bounded.

Let Zi = A*=, }>„.,. As the norm in E is order continuous /(z,) =
A*. / / (y n i )g 1. Thus (Z() does not converge weakly to 0. As the z*'s are
clearly disjoint, we have the desired contradiction of (ii).

(ii) z> (iii). If E has an order continuous norm but E' does not then E
contains a sublattice topologically order isomorphic with U (Meyer-Nieberg
(1973), Korollar 1.4). Let en be the sequence in /, with n'th coordinate 1 and
the remainder 0, then en does not converge weakly to 0 in /,. Hence the
corresponding sequence in E, which is disjoint, does not converge weakly to 0
yet is norm bounded, showing that (ii) fails.

(iii) =̂> (ii). If the sequence (xn) in E is norm bounded, disjoint, and does
not converge weakly to 0, we may (as in the proof of (ii) =̂> (i)) suppose xn =? 0
and that there is / €E El with /(*„)=? 1 for each n. It is routine to verify that
the norm on the linear span of the xn 's is equivalent to the norm ||j 2 attXj \\\ =
21 a, |. Thus the closed linear span of the xn 's is isomorphic to /1? and (iii) fails
by Meyer-Nieberg (1973), Korollar 1.4.

It does not suffice to consider only sequences in (i), as is shown by the
space of all continous real valued functions on the one point compactification
of an uncountable discrete space. A norm bounded Mo-convergent sequence
there must converge in norm, so certainly weakly (see Luxemburg and
Zaanen (1964), Example 33.1).

We note that if E+ is the norm closed convex hull of its extremal rays
then the linear span of the extremal rays of El is order dense in El. Thus if
El also has an order continuous norm then the norm closed convex hull of the
extremal rays in HI is the whole of El. We may now combine Theorems 1
and 5 to obtain:

THEOREM 6. For any Banach lattice E the following are equivalent:
(i) For norm bounded nets in E weak and uo-convergence coincide.
(ii) The positive cones in both E and E' are the norm closed convex hull of

their extremal rays.
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Any Banach lattice satisfying the conditions of Theorem 6 will certainly
satisfy those of Theorem 5. This may be seen directly by arguing that (ii) of
Theorem 5 is equivalent to order intervals in E and E' being norm (and hence
weakly) compact by Theorem 5 of Wickstead (1975), and this implies that E
and £ ' have order continous norms by Schaefer (1974), Theorem II.5.10.
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