and homomorphic images of

locally compact abelian groups

Walter R. Bloom

Let G be a Hausdorff locally compact abelian group. The author has shown (Bull. Austral. Math. Soc. 10 (1974), 59-66) that, given $\varepsilon>0$ and a certain base $\left\{V_{i}\right\}_{i \in I}$ of symmetric open neighbourhoods of zero, the algebra $L^{l}(G)$ admits a bounded positive approximate unit $\left\{k_{i}\right\}_{i \in I}$ such that for every p-th integrable function f on G,

$$
\left\|k_{i} * f-f\right\|_{p} \leq(1+\varepsilon) \omega\left(p ; f ; V_{i}\right), \quad i \in I,
$$

where $\omega\left(p ; f ; V_{i}\right)$ denotes the mean modulus of continuity with exponent p of f. The purpose of this paper is to obtain $\left\{k_{i}\right\}_{i \in I}$ (as above) with a simple dependence of $\operatorname{supp}\left(\hat{k}_{i}\right)$ on V_{i}; this is achieved for finite products and homomorphic images of groups for which such a simple dependence is known. The results obtained are used to give a simplified proof of the classical Jackson's Theorem for the circle group, and an analogue of this theorem for the a-adic solenoid.

We shall firstly examine extensions of the Corollary on p. 60 of [1]. Throughout this paper λ_{G} will denote a chosen Haar measure on the locally compact abelian group G. If G_{0} is an open subgroup of G then $\lambda_{G_{0}}$

[^0]will just be the restriction of λ_{G} to G_{0}. Where no confusion should arise (for example in integrals) the subscript to the Haar measure will be omitted.

We shall say that G has property $P\left(I, V_{i}, k_{i}, T_{i}, K\right)$ if there is a base $\left\{V_{i}\right\}_{i \in I}$ of symmetric open neighbourhoods of zero, and a corresponding family $\left\{k_{i}\right\}_{i \in I}$ of non-negative continuous functions on G such that for each $i \in I, \quad \int_{G} k_{i} d \lambda=1, \operatorname{supp}\left(k_{i}\right) \subset V_{i} \quad$ (the open subgroup of G generated by $\left.V_{i}\right), \operatorname{supp}\left(\hat{k}_{i}\right) \subset T_{i}, T_{i}$ is compact, and

$$
\int_{V_{i}} m_{V} k_{i} d \lambda \leq K
$$

here $m_{V_{i}}$ is the integer-valued function on V_{i} defined by

$$
m_{V_{i}}(x)=\min \left\{m \in\{1,2, \ldots\}: x \in m V_{i}\right\}
$$

Using the first part of the proof of [1], Theorem 2, we can readily obtain the following result for finite products of groups:

THEOREM 1. Suppose G, G^{\prime} have properties $P\left(I, V_{i}, k_{i}, T_{i}, K\right)$, $P\left(I, V_{i}^{\prime}, K_{i}^{\prime}, T_{i}^{\prime}, K^{\prime}\right)$ respectively. Then $G \times G^{\prime}$ has property $P\left(I, V_{i} \times V_{i}^{\prime}, \tau_{i}, T_{i}^{\prime \prime}, K K^{\prime}\right)$, where

$$
z_{i}\left(\left(x, x^{\prime}\right)\right)=k_{i}(x) k_{i}^{\prime}\left(x^{\prime}\right), \quad\left(x, x^{\prime}\right) \in G \times G^{\prime},
$$

and

$$
\begin{gathered}
\mathrm{T}_{i}^{\prime \prime}=\left\{\left[\gamma, \gamma^{\prime}\right]: \gamma \in T_{i}, \gamma^{\prime} \in T_{i}^{\prime}\right\} \\
\left(\left[\gamma, \gamma^{\prime}\right]\left(\left(x, x^{\prime}\right)\right)=\gamma(x) \gamma^{\prime}\left(x^{\prime}\right) \text { for }\left(x, x^{\prime}\right) \in G \times G^{\prime}\right)
\end{gathered}
$$

To obtain an analogous result for a homomorphic image of G we require some preliminary work. Let H be a closed subgroup of G and denote by π the natural homomorphism of G onto G / H. For each $i \in I$ it is clear that the restriction $\pi \|_{V_{i}}$ of π to the open subgroup v_{i} of G is an open continuous homomorphism of V_{i} onto $\pi\left(V_{i}\right)$. It follows,
using [2], 5.27, that $\pi\left(V_{i}\right)$ and $V_{i} /\left(V_{i} \cap H\right)$ are topologically isomorphic, the natural topological isomorphism ν_{i} being given by

$$
v_{i}(x+H)=x+v_{i} \cap H, \quad x \in v_{i} .
$$

Haar measure $\lambda_{G / H}$ on G / H will be chosen so that Veil's formula holds (see [3], (28.54) (iii)). If we define Haar measure $\lambda_{V_{i} /\left(V_{i} \cap H\right)}$ on $v_{i}\left(v_{i} \cap H\right)$ by

$$
\lambda_{v_{i} /\left(v_{i} \cap H\right)}(E)=\lambda_{\pi}\left(v_{i}\right)\left(v_{i}^{-1}(E)\right),
$$

then [5], $7.8, \mathrm{p} .87$, shows that $\lambda_{V_{i}}, \lambda_{V_{i} \cap H}$ and $\lambda_{V_{i}} /\left(V_{i} \cap H\right)$ also satisfy Weil's formula. We shall assume these relations throughout.

The character group $\Gamma_{G / H}$ of G / H is topologically isomorphic with $A\left(\Gamma_{G}, H\right)$ (the annihilator of H in Γ_{G}) where, to each $\gamma \in A\left(\Gamma_{G}, H\right)$, there corresponds $\gamma^{+} \in \Gamma_{G / H}$ such that

$$
\gamma^{+}(x+H)=\gamma(x), \quad x \in G .
$$

Given $\Xi \subset A\left(\Gamma_{G}, H\right)$ we write

$$
\Xi^{+}=\left\{\gamma^{+} \in \Gamma_{G / H}: \gamma \in \Xi\right\} .
$$

For an open subgroup G_{0} of G the restriction map

$$
\sigma_{G_{0}}: \Gamma_{G} \rightarrow \Gamma_{G_{0}},
$$

defined by $\sigma_{G_{0}}(\gamma)=\left.\gamma\right|_{G_{0}}$, is an open continuous homomorphism of Γ_{G} onto the character group of G_{0}, with kernel $A\left(\Gamma_{G}, G_{0}\right)$.

Finally the adjoint v_{i}^{\sim} of v_{i} is a map

$$
v_{i}: \Gamma_{V_{i} /\left(v_{i} \cap H\right)} \rightarrow \Gamma_{\pi\left(v_{i}\right)},
$$

given by $v_{i}^{\sim}(\gamma)=\gamma \circ v_{i}$; see [2], (24.37).
With the notation as above we now have:

THEOREM 2. Suppose G has property $P\left(I, V_{i}, k_{i}, T_{i}, K\right)$. Then G/H has property $P\left(I, \pi\left(V_{i}\right), \tau_{i}, \Omega_{i}, K\right)$, where

$$
\begin{aligned}
z_{i}(x+H) & = \begin{cases}z_{i}^{\prime} \circ v_{i}(x+H), & x+H \in \pi\left(V_{i}\right), \\
0 & , \\
\tau_{i}^{\prime}\left(x+V_{i} \cap H\right) & =\int_{V_{i} \cap H} k_{i}(x+y) d \lambda(y),\end{cases}
\end{aligned}
$$

and

$$
\Omega_{i}=\sigma_{\pi}^{-1}\left(v_{i}\right)\left[v_{i}\left(\left[\sigma_{v_{i}}\left(T_{i}\right) \cap A\left(\Gamma_{v_{i}}, v_{i} \cap H\right)\right)^{+}\right)\right] .
$$

Proof. Clearly $l_{i} \geq 0$ and $\operatorname{supp}\left(l_{i}\right) \subset \pi\left(v_{i}\right)$ (note that $\pi\left(v_{i}\right)$ is the open subgroup of G / H generated by $\pi\left(V_{i}\right)$). Since $k_{i} \in L^{I}(G)$ and $\operatorname{supp}\left(k_{i}\right) \subset V_{i}$ we have $k_{i} \in L^{l}\left(V_{i}\right)$ and, by [3], (28.54) (ii), $\tau_{i}^{\prime} \in L^{l}\left(V_{i} /\left(V_{i} \cap H\right)\right)$. It follows that $\tau_{i} \in L^{\perp}(G / H)$ and, appealing to Weil's formula,

$$
\begin{aligned}
\int_{G / H} \tau_{i} d \lambda & =\int_{\pi\left(v_{i}\right)} \tau_{i}^{\prime} \circ v_{i} d \lambda \\
& =\int_{v_{i}^{\prime}\left(v_{i} \cdot N I\right)} i_{i}^{\prime d \lambda} \\
& =\int_{v_{i}} k_{i} d \lambda \\
& =1
\end{aligned}
$$

It is easy to prove that for all $y \in V_{i} \cap H$ and $x+v_{i} \cap H \in v_{i}\left(V_{i} \cap H\right)$,

$$
m_{\pi\left(V_{i}\right)} \circ v_{i}^{-1}\left(x+V_{i} \cap H\right) \leq m_{V_{i}}(x+y)<\infty .
$$

From this we deduce

$$
\begin{aligned}
\int_{\pi\left(V_{i}\right)} m_{\pi\left(V_{i}\right)} z_{i} d \lambda & =\int_{\pi\left(V_{i}\right)} m_{\pi\left(V_{i}\right)^{z}{ }_{i} \circ v_{i} d \lambda} \\
& =\int_{V_{i} /\left(v_{i} \cap H\right)} m_{\pi\left(V_{i}\right)} \circ v_{i}^{-1}(\dot{x}) \int_{V_{i, \cap H}} k_{i}(x+y) d \lambda(y) d \lambda(\dot{x}) \\
& \leq \int_{V_{i} /\left(v_{i} \cap H\right)} \int_{V_{i} \cap H} m_{V_{i}}(x+y) k_{i}(x+y) d \lambda(y) d \lambda(\dot{x}) \\
& =\int_{V_{i}} m_{V_{i}} k_{i} d \lambda \\
& \leq K .
\end{aligned}
$$

For $\quad \gamma \in A\left(\Gamma_{V_{i}}, U_{i} \cap H\right)$ we know $([3]$, (31.46) (ii)) that

$$
\hat{z}_{i}^{\prime}\left(\gamma^{+}\right)=\hat{k}_{i}(\gamma),
$$

whence it follows that

$$
\operatorname{supp}\left(\hat{i}_{i}^{\prime}\right) \subset\left(\sigma_{v_{i}}\left(\mathrm{~T}_{i}\right) \cap A\left(\Gamma_{v_{i}}, v_{i} \cap H\right)\right)^{+}
$$

Also, for $\dot{\gamma} \in \Gamma_{G / H}$, we have

$$
\begin{aligned}
\hat{z}_{i}(\dot{\gamma}) & =\left(l: \circ v_{i}\right)^{\wedge}\left(\sigma_{\pi\left(v_{i}\right)}(\dot{\gamma})\right) \\
& =\hat{z}_{i}^{\prime}\left(v^{\sim-1}\left(\sigma_{\pi\left(v_{i}\right)}(\dot{\gamma})\right)\right)
\end{aligned}
$$

which, combined with the previous equation, gives

$$
\begin{aligned}
\operatorname{supp}\left(\hat{l}_{i}\right) & \subset \sigma_{\pi}^{-1}\left(V_{i}\right)\left(\nu_{i}^{\sim}\left(\operatorname{supp}\left(\hat{z}_{i}^{\prime}\right)\right)\right) \\
& \subset \sigma_{\pi}^{-1}\left(V_{i}\right)\left[\nu_{i}^{\sim}\left(\left(\sigma_{V_{i}}\left(T_{i}\right) \cap A\left(\Gamma_{V_{i}}, v_{i} \cap H\right)\right)^{+}\right)\right]
\end{aligned}
$$

Now $A\left(\Gamma_{G / H}, \pi\left(V_{i}\right)\right)$ is compact (since $\pi\left(V_{i}\right)$ is open), whence it follows, using [2], (5.24) (a), that Ω_{i} is compact.

Finally, as $\mathcal{Z}_{i} \in L^{l}(G / H)$ has compactly supported Fourier transform, we have τ_{i} equal almost everywhere to a continuous function. //

It appears that for groups having property $P\left(I, V_{i}, k_{i}, T_{i}, K\right)$ there is a ready analogue of Jackson's Theorem. For each $i \in I$ we let

$$
\omega\left(p ; f ; v_{i}\right)=\sup \left\{\left\|\tau \tau_{a} f-f\right\|_{p}: a \in V_{i}\right\}
$$

denote the mean modulus of continuity with exponent p of $f \in L^{p}(G)$, and put

$$
E_{\mathrm{T}}{ }_{i}(p ; f)=\inf \left\{\|f-g\|_{p}: g \in L^{p}(G), \Sigma(g) \subset \mathrm{T}_{i}\right\} ;
$$

(for the definition of the spectrum $\Sigma(g)$ of g, see [1], p. 59).
THEOREM 3. Let G be a locally compact abelian group having property $P\left(I, V_{i}, k_{i}, T_{i}, K\right)$. Then
(1) $\left\|k_{i} * f-f\right\|_{p} \leq K \omega\left(p ; f ; v_{i}\right)$,
(2) $E_{\mathrm{T}_{i}}(p ; f) \leq K \omega\left(p ; f ; v_{i}\right)$
for every $f \in L^{p}(G)$ if $p \in[1, \infty)$, or for every bounded uniformly continuous f if $p=\infty$.

Proof. For f as in the statement of the theorem we have

$$
k_{i} * f-f=\int_{G}\left(\tau_{x} f-f\right) k_{i}(x) d \lambda(x)
$$

(interpreting the right-hand side as a vector-valued integral) and

$$
\begin{aligned}
\left\|k_{i} * f-f\right\|_{p} & \leq \int_{V_{i}}\left\|\tau{ }_{x} f-f\right\|_{p} k_{i}(x) d \lambda(x) \\
& \leq \omega\left(p ; f ; V_{i}\right) \int_{V_{i}} m_{V_{i}} k_{i} d \lambda \\
& \leq K \omega\left(p ; f ; V_{i}\right),
\end{aligned}
$$

thus proving (1); (2) now follows immediately. //
As our first application of the preceding results we give a straightforward proof of Jackson's Theorem for the circle group, which does not rely on the existence of the somewhat complicated kernel of Fejér-Korovkin (see [4], p. 75). With k_{n} and $K(=C)$ as in [1], Theorem 3, we see
that the real line R has property $P\left(N,\left(-\frac{1}{n}, \frac{1}{n}\right), k_{n},[-n, n], K\right)$ (we identify Γ_{R} with R). Theorem 2 then shows that R / Z has property $P\left\{N, \pi\left\{\left(-\frac{1}{n}, \frac{1}{n}\right)\right\}, \tau_{n}, \Omega_{n}, K\right\}$. Now

$$
\Omega_{n}=([-n, n] \cap A(\mathrm{R}, \mathrm{Z}))^{+}
$$

so that l_{n} is a trigonometric polynomial of degree at most n. From Theorem 3 (with a slight change of notation) we obtain

$$
E_{n}(p ; f) \leq K \omega\left(p ; f ; \frac{1}{n}\right)
$$

for $f \in L^{p}(R / Z)$ if $p \in[1, \infty)$, or for continuous f if $p=\infty$; for $p=\infty$ this is just the classical statement of Jackson's Theorem.

Our other application is for functions on the a-adic solenoid. For this we shall use many of the results in [2], Section 10. Let Δ_{a} denote the 0 -dimensional compact Hausdorff abelian group of a-adic integers, where $\mathrm{a}=\left(a_{0}, a_{1}, \ldots\right)$ and each a_{n} is greater than 1 . The a-adic solenoid is the compact Hausdorff abelian group defined by

$$
\Sigma_{a}=\left(R \times \Delta_{a}\right) / B
$$

where $B=\{(n, n \mathbf{U})\}_{n=-\infty}^{\infty}$ is an infinite cyclic discrete (closed) subgroup of $R \times \Delta_{a}$, and $u=(1,0,0, \ldots)$.

Now R has property $p\left(N,\left(-\frac{1}{n}, \frac{1}{n}\right), k_{n}^{(1)},[-n, n], K\right)$, and the remarks on [1], p. 64, show that Δ_{a} has property $P\left(N, \Lambda_{n}, k_{n}^{(2)}, A\left(\Gamma_{\Delta_{a}}, \Lambda_{n}\right), I\right)$, where Λ_{n} is the compact open subgroup of Δ_{a} given by

$$
\Lambda_{n}=\left\{x \in \Delta_{\mathrm{a}}: x_{k}=0 \text { for } k<n\right\} \text {, }
$$

and $k_{n}^{(2)}=\lambda_{\Delta_{a}}\left(\Lambda_{n}\right)^{-1} \xi_{\Lambda_{n}}$. Theorems 1, 2 now combine to show that Σ_{a} has property $P\left(N, \pi\left[\left(-\frac{1}{n}, \frac{1}{n}\right) \times \Lambda_{n}\right], \tau_{n}, \Omega_{n}, K\right) ;$ here

$$
\Omega_{n}=\sigma_{\pi}^{-1}\left(R \times \Lambda_{n}\right)\left[\nu_{n}^{\sim}\left(\left(\sigma_{R \times \Lambda_{n}}\left(\Xi_{n}\right) n A\left(\Gamma_{R \times \Lambda_{n}},\left(\mathrm{R} \times \Lambda_{n}\right) \cap B\right)\right)^{+}\right]\right]
$$

where $\Xi_{n}=\left\{\left[\gamma_{1}, \gamma_{2}\right] \in \Gamma_{R \times \Delta_{\mathrm{a}}}: \gamma_{1} \in[-n, n], \gamma_{2} \in A\left(\Gamma_{\Delta_{\mathrm{a}}}, \Lambda_{n}\right)\right\}$. It remains to simplify the above expression for Ω_{n}.

Firstly observe that for $n \geq 1$,

$$
\left(\mathrm{R} \times \Lambda_{n}\right) \cap B=\left\{(m, m \mathbf{u}): m \in a_{0} a_{1} \cdots a_{n-1} Z\right\}
$$

and

$$
{ }^{\sigma_{R \times \Lambda_{n}}}\left(\Xi_{n}\right)=\{[\gamma, 0]: \gamma \in[-n, n]\} .
$$

Thus

$$
\begin{aligned}
\sigma_{R \times \Lambda_{n}}\left(\Xi_{n}\right) \cap A\left(\Gamma_{\mathrm{R} \times \Lambda_{n}},\right. & \left.\left(\mathrm{R} \times \Lambda_{n}\right) n B\right) \\
& =\left\{\left[\frac{2}{a_{0} a_{1} \cdots a_{n-1}}, 0\right]: \tau \in Z \text { and }\left[\frac{2}{a_{0} a_{1} \ldots a_{n-1}}\right] \leq n\right\}
\end{aligned}
$$

It follows that the members of Ω_{n} can be identified (as in [2], (25.3)) with rational numbers of the form $\frac{l}{a_{0} a_{1} \ldots a_{n-1}}$, where l is an integer and $\left|\frac{2}{a_{0} a_{1} \ldots a_{n-1}}\right| \leq n$. We then have

THEOREM 4. The algebra $L^{l}\left(\Sigma_{\mathrm{a}}\right)$ admits a bounded positive approximate unit $\left\{k_{n}\right\}_{n=1}^{\infty}$ such that for each $n, k_{n} \in C\left(\Sigma_{a}\right)$, $\hat{k}_{n}(0)=1$,

$$
\operatorname{supp}\left(\hat{k}_{n}\right) \subset \Omega_{n}=\left\{\frac{\tau}{a_{0} a_{1} \ldots a_{n-1}}: \tau \in Z \text { and }\left|\frac{2}{a_{0} a_{1} \ldots a_{n-1}}\right| \leq n\right\}
$$

and, for some $K>0$,
(1) $\left\|k_{n} * f-f\right\|_{p} \leq K \omega\left(p ; f ;\left(\left(-\frac{1}{n}, \frac{1}{n}\right) \times \Lambda_{n}\right)+B\right)$,
(2) $E_{\Omega_{n}}(p ; f) \leq K \omega\left[p ; f ;\left(\left(-\frac{1}{n}, \frac{1}{n}\right) \times \Lambda_{n}\right)+B\right)$
for every $f \in L^{p}\left(\Sigma_{\alpha}\right)$ if $p \in[1, \infty)$, or for every continuous f if $p=\infty$. //

References

[1] Walter R. Bloom, "Jackson's Theorem for locally compact abelian groups", Bull. Austral. Math. Soc. 10 (1974), 59-66.
[2] Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis, Volume I (Die Grundlehren der mathematischen Wissenschaften, 115. Academic Press, New York; Springer-Verlag, Berlin, Göttingen, Heidelberg, 1963).
[3] Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis, Volume II (Die Grundlehren der mathematischen Wissenschaften, 152. Springer-Verlag, Berlin, Heidelberg, New York, 1970).
[4] P.P. Korovkin, Linear operators and approximation theory (translated from the Russian ed. (1959). Hindustan Publishing Corp. (India), Delhi, 1960).
[5] Hans Reiter, Classical harmonic analysis and locally compact groups (Clarendon Press, Oxford, 1968).

```
Department of Mathematics,
University of Tasmania,
Hobart, Tasmania;
present address:
School of Mathematical and Physical Sciences,
Murdoch University,
Murdoch, Western Australia.
```


[^0]: Received 9 December 1974.

