BULL. AUSTRAL. MATH. SOC. VOL. 12 (1975), 301-309.

Jackson's Theorem for finite products

and homomorphic images of locally compact abelian groups

Walter R. Bloom

Let G be a Hausdorff locally compact abelian group. The author has shown (Bull. Austral. Math. Soc. 10 (1974), 59-66) that, given $\varepsilon > 0$ and a certain base $\{V_i\}_{i \in I}$ of symmetric open neighbourhoods of zero, the algebra $L^1(G)$ admits a bounded positive approximate unit $\{k_i\}_{i \in I}$ such that for every p-th integrable function f on G,

 $\|k_i \star f - f\|_p \leq (1 + \varepsilon) \omega(p; f; V_i)$, $i \in I$,

where $\omega(p; f; V_i)$ denotes the mean modulus of continuity with exponent p of f. The purpose of this paper is to obtain $\{k_i\}_{i \in I}$ (as above) with a simple dependence of $\operatorname{supp}(\hat{k}_i)$ on V_i ; this is achieved for finite products and homomorphic images of groups for which such a simple dependence is known. The results obtained are used to give a simplified proof of the classical Jackson's Theorem for the circle group, and an analogue of this theorem for the **a**-adic solenoid.

We shall firstly examine extensions of the Corollary on p. 60 of [1]. Throughout this paper λ_G will denote a chosen Haar measure on the locally compact abelian group G. If G_0 is an open subgroup of G then λ_{G_0}

Received 9 December 1974.

will just be the restriction of λ_G to G_0 . Where no confusion should arise (for example in integrals) the subscript to the Haar measure will be omitted.

We shall say that G has property $P(I, V_i, k_i, T_i, K)$ if there is a base $\{V_i\}_{i \in I}$ of symmetric open neighbourhoods of zero, and a corresponding family $\{k_i\}_{i \in I}$ of non-negative continuous functions on G such that for each $i \in I$, $\int_G k_i d\lambda = 1$, $\operatorname{supp}(k_i) \subset V_i$ (the open subgroup of G generated by V_i), $\operatorname{supp}(\hat{k}_i) \subset T_i$, T_i is compact, and

$$\int_{V_i} m_{V_i} k_i d\lambda \leq K ;$$

here m_{V_i} is the integer-valued function on V_i defined by

$$m_{V_i}(x) = \min\{m \in \{1, 2, ...\} : x \in m_i\}$$

Using the first part of the proof of [1], Theorem 2, we can readily obtain the following result for finite products of groups:

THEOREM 1. Suppose G, G' have properties $P(I, V_i, k_i, T_i, K)$, $P(I, V'_i, k'_i, T'_i, K')$ respectively. Then $G \times G'$ has property $P(I, V_i \times V'_i, l_i, T''_i, KK')$, where

$$l_{i}((x, x')) = k_{i}(x)k_{i}'(x')$$
, $(x, x') \in G \times G'$,

and

$$T_i'' = \left\{ [\gamma, \gamma'] : \gamma \in T_i, \gamma' \in T_i' \right\},$$
$$([\gamma, \gamma']((x, x')) = \gamma(x)\gamma'(x') \quad for \quad (x, x') \in G \times G'). //$$

To obtain an analogous result for a homomorphic image of G we require some preliminary work. Let H be a closed subgroup of G and denote by π the natural homomorphism of G onto G/H. For each $i \in I$ it is clear that the restriction $\pi|_{V_i}$ of π to the open subgroup V_i of G is an open continuous homomorphism of V_i onto $\pi(V_i)$. It follows,

using [2], 5.27, that $\pi(V_i)$ and $V_i/(V_i \cap H)$ are topologically isomorphic, the natural topological isomorphism v_i being given by

$$v_i(x+H) = x + V_i \cap H, x \in V_i$$

Haar measure $\lambda_{G/H}$ on G/H will be chosen so that Weil's formula holds (see [3], (28.54) (iii)). If we define Haar measure $\lambda_{V_i/(V_i \cap H)}$ on $V_i/(V_i \cap H)$ by

$$\lambda_{V_i/(V_i \cap H)}(E) = \lambda_{\pi(V_i)}(v_i^{-1}(E))$$
,

then [5], 7.8, p. 87, shows that λ_{v_i} , $\lambda_{v_i} \wedge u_i$ and $\lambda_{v_i} (v_i \wedge H)$ also satisfy Weil's formula. We shall assume these relations throughout.

The character group $\Gamma_{G/H}$ of G/H is topologically isomorphic with $A(\Gamma_G, H)$ (the annihilator of H in Γ_G) where, to each $\gamma \in A(\Gamma_G, H)$, there corresponds $\gamma^+ \in \Gamma_{G/H}$ such that

$$\gamma^+(x+H) = \gamma(x)$$
, $x \in G$.

Given $\Xi \subset A(\Gamma_G, H)$ we write

$$\Xi^+ = \{\gamma^+ \in \Gamma_{G/H} : \gamma \in \Xi\} .$$

For an open subgroup G_{\cap} of G the restriction map

$$\sigma_{G_0} : \Gamma_G \to \Gamma_{G_0}$$
,

defined by $\sigma_{G_0}(\gamma) = \gamma|_{G_0}$, is an open continuous homomorphism of Γ_G onto the character group of G_0 , with kernel $A(\Gamma_G, G_0)$.

Finally the adjoint v_i of v_i is a map

$$\tilde{v_i} : \Gamma V_i / (V_i \cap H) \rightarrow \Gamma (V_i)$$

given by $\tilde{v_i}(\gamma) = \gamma \circ v_i$; see [2], (24.37).

With the notation as above we now have:

THEOREM 2. Suppose G has property $P(I, V_i, k_i, T_i, K)$. Then G/H has property $P(I, \pi(V_i), l_i, \Omega_i, K)$, where

$$\begin{split} \mathcal{L}_{i}(x+H) &= \begin{cases} \mathcal{L}_{i}^{\prime} \circ v_{i}^{\prime}(x+H) , & x + H \in \pi(V_{i}) , \\ \\ 0 & , & otherwise, \end{cases} \\ \mathcal{L}_{i}^{\prime}(x+V_{i}\cap H) &= \int_{V_{i}\cap H} k_{i}^{\prime}(x+y)d\lambda(y) , \end{split}$$

and

$$\Omega_{i} = \sigma_{\pi}^{-1}(V_{i}) \left[v_{i} \left(\left[\sigma_{V_{i}}(T_{i}) \cap \left\{ \Gamma_{V_{i}}, V_{i} \cap H \right\} \right]^{+} \right) \right] .$$

Proof. Clearly $l_i \geq 0$ and $\operatorname{supp}(l_i) \subset \pi(V_i)$ (note that $\pi(V_i)$ is the open subgroup of G/H generated by $\pi(V_i)$). Since $k_i \in L^1(G)$ and $\operatorname{supp}(k_i) \subset V_i$ we have $k_i \in L^1(V_i)$ and, by [3], (28.54) (ii), $l_i \in L^1(V_i/(V_i \cap H))$. It follows that $l_i \in L^1(G/H)$ and, appealing to Weil's formula,

$$\int_{G/H} l_i d\lambda = \int_{\pi} (V_i) l_i \circ v_i d\lambda$$
$$= \int_{V_i/(V_i \cap H)} l_i' d\lambda$$
$$= \int_{V_i} k_i d\lambda$$
$$= 1 .$$

It is easy to prove that for all $y \in V_i \cap H$ and $x + V_i \cap H \in V_i / (V_i \cap H)$,

$$m_{\pi}(V_i) \circ v_i^{-1}(x+V_i \cap H) \leq m_{V_i}(x+y) < \infty$$

From this we deduce

$$\begin{split} \int_{\pi} (V_{i})^{m} \pi(V_{i})^{l} i^{d\lambda} &= \int_{\pi} (V_{i})^{m} \pi(V_{i})^{l} l^{l} i^{\circ} v_{i}^{d\lambda} \\ &= \int_{V_{i}^{\prime}} (V_{i} \cap H)^{m} \pi(V_{i})^{\circ} v_{i}^{-1}(x)^{\circ} \int_{V_{i}^{\prime} \cap H} k_{i}^{(x+y)d\lambda(y)d\lambda(x)} \\ &\leq \int_{V_{i}^{\prime}} (V_{i} \cap H)^{\prime} \int_{V_{i}^{\prime} \cap H} m_{V_{i}^{\prime}}(x+y)k_{i}^{(x+y)d\lambda(y)d\lambda(x)} \\ &= \int_{V_{i}^{\prime}} m_{V_{i}^{\prime}}k_{i}^{d\lambda} \\ &\leq \kappa . \end{split}$$
For $\gamma \in A\left[\Gamma_{V_{i}}, V_{i} \cap H\right]^{\circ}$ we know ([3], (31.46) (ii)) that $\hat{l}_{i}^{\prime}(\gamma^{+}) = \hat{k}_{i}(\gamma)$,

whence it follows that

$$\operatorname{supp}(\hat{l}_{i}') \subset \left(\sigma_{V_{i}}(T_{i}) \cap \left(\Gamma_{V_{i}}, V_{i} \cap H\right)\right)^{+}$$

Also, for $\gamma \in \Gamma_{G/H}$, we have

$$\hat{l}_{i}(\dot{\mathbf{y}}) = (l_{i}^{\prime} \circ v_{i})^{\wedge} \left(\sigma_{\pi}(V_{i})^{\prime} (\dot{\mathbf{y}}) \right)$$

$$= \hat{l}_{i}^{\prime} \left(v^{-1} \left(\sigma_{\pi}(V_{i})^{\prime} (\dot{\mathbf{y}}) \right) \right)$$

which, combined with the previous equation, gives

$$\sup_{\boldsymbol{v} \in \mathcal{T}_{i}} (\hat{\boldsymbol{v}}_{i}) \subset \sigma_{\pi}(\boldsymbol{v}_{i}) (\tilde{\boldsymbol{v}}_{i}(\operatorname{supp}(\hat{\boldsymbol{i}}_{i}))) \\ \subset \sigma_{\pi}(\boldsymbol{v}_{i}) \left[\tilde{\boldsymbol{v}}_{i} \left(\left(\sigma_{\boldsymbol{v}_{i}}(\boldsymbol{T}_{i}) \cap A \left(\boldsymbol{\Gamma}_{\boldsymbol{v}_{i}}, \boldsymbol{v}_{i} \cap H \right) \right)^{\dagger} \right) \right] .$$

Now $A(\Gamma_{G/H}, \pi(V_i))$ is compact (since $\pi(V_i)$ is open), whence it follows, using [2], (5.24) (a), that Ω_i is compact.

Finally, as $l_i \in L^1(G/H)$ has compactly supported Fourier transform, we have l_i equal almost everywhere to a continuous function. // It appears that for groups having property $P(I, V_i, k_i, T_i, K)$ there is a ready analogue of Jackson's Theorem. For each $i \in I$ we let

$$\omega(p; f; V_i) = \sup\{\|\tau_a f - f\|_p : a \in V_i\}$$

denote the mean modulus of continuity with exponent p of $f \in L^p(G)$, and put

$$E_{\mathrm{T}_{i}}(p; f) = \inf \left\{ \left\| f - g \right\|_{p} : g \in L^{p}(G), \Sigma(g) \subset \mathrm{T}_{i} \right\};$$

(for the definition of the spectrum $\Sigma(g)$ of g, see [1], p. 59).

THEOREM 3. Let G be a locally compact abelian group having property $P(I, V_i, k_i, T_i, K)$. Then

(1) $||k_i * f - f||_p \le K \omega(p; f; V_i)$, (2) $E_{T_i}(p; f) \le K \omega(p; f; V_i)$

for every $f \in L^p(G)$ if $p \in [1, \infty)$, or for every bounded uniformly continuous f if $p = \infty$.

Proof. For f as in the statement of the theorem we have

$$k_i * f - f = \int_G (\tau_x f - f) k_i(x) d\lambda(x)$$

(interpreting the right-hand side as a vector-valued integral) and

$$\begin{aligned} \|k_{i} \star f - f\|_{p} &\leq \int_{V_{i}} \|\tau_{x} f - f\|_{p} k_{i}(x) d\lambda(x) \\ &\leq \omega(p; f; V_{i}) \int_{V_{i}} m_{V_{i}} k_{i} d\lambda \\ &\leq K \omega(p; f; V_{i}) , \end{aligned}$$

thus proving (1); (2) now follows immediately. //

As our first application of the preceding results we give a straightforward proof of Jackson's Theorem for the circle group, which does not rely on the existence of the somewhat complicated kernel of Fejér-Korovkin (see [4], p. 75). With k_n and K (= C) as in [1], Theorem 3, we see that the real line R has property $P\left(N, \left(-\frac{1}{n}, \frac{1}{n}\right), k_n, [-n, n], K\right)$ (we identify Γ_R with R). Theorem 2 then shows that R/Z has property $P\left(N, \pi\left(\left(-\frac{1}{n}, \frac{1}{n}\right)\right), l_n, \Omega_n, K\right)$. Now $\Omega_n = \left([-n, n] \cap A(R, Z)\right)^+$,

so that l_n is a trigonometric polynomial of degree at most n. From Theorem 3 (with a slight change of notation) we obtain

$$E_n(p; f) \leq K\omega\left(p; f; \frac{1}{n}\right)$$

for $f \in L^p(\mathbb{R}/\mathbb{Z})$ if $p \in [1, \infty)$, or for continuous f if $p = \infty$; for $p = \infty$ this is just the classical statement of Jackson's Theorem.

Our other application is for functions on the **a**-adic solenoid. For this we shall use many of the results in [2], Section 10. Let Δ_a denote the O-dimensional compact Hausdorff abelian group of **a**-adic integers, where $\mathbf{a} = (a_0, a_1, \ldots)$ and each a_n is greater than 1. The **a**-adic solenoid is the compact Hausdorff abelian group defined by

$$\Sigma_{\mathbf{a}} = (\mathbf{R} \times \Delta_{\mathbf{a}}) / B$$
,

where $B = \{(n, n\mathbf{u})\}_{n=-\infty}^{\infty}$ is an infinite cyclic discrete (closed) subgroup of $\mathbf{R} \times \Delta_{\mathbf{a}}$, and $\mathbf{u} = (1, 0, 0, ...)$.

Now R has property $P\left(N, \left(-\frac{1}{n}, \frac{1}{n}\right), k_n^{(1)}, [-n, n], K\right)$, and the remarks on [1], p. 64, show that Δ_a has property $P\left(N, \Lambda_n, k_n^{(2)}, A\left(\Gamma_{\Delta_a}, \Lambda_n\right), 1\right)$, where Λ_n is the compact open subgroup of Δ_a given by

$$\Lambda_n = \{x \in \Delta_a : x_k = 0 \text{ for } k < n\},\$$

and $k_n^{(2)} = \lambda_{\Delta_a} (\Lambda_n)^{-1} \xi_{\Lambda_n}$. Theorems 1, 2 now combine to show that Σ_a has property $P\left[N, \pi\left[\left(-\frac{1}{n}, \frac{1}{n}\right) \times \Lambda_n\right], \ell_n, \Omega_n, K\right]$; here

$$\begin{split} \Omega_n &= \sigma_{\pi}^{-1}(\mathbb{R} \times \Lambda_n) \left[\nu_n^{\sim} \left[\left(\sigma_{\mathbb{R} \times \Lambda_n}(\Xi_n) \cap A \left(\Gamma_{\mathbb{R} \times \Lambda_n}, (\mathbb{R} \times \Lambda_n) \cap B \right) \right)^+ \right) \right] , \\ \text{where } \Xi_n &= \left\{ \left[\gamma_1, \gamma_2 \right] \in \Gamma_{\mathbb{R} \times \Delta_a} : \gamma_1 \in [-n, n], \gamma_2 \in A \left(\Gamma_{\Delta_a}, \Lambda_n \right) \right\} . \quad \text{It remains to simplify the above expression for } \Omega_n . \end{split}$$

Firstly observe that for $n \ge 1$,

$$(\mathbb{R} \times \Lambda_n) \cap B = \{(m, m\mathbf{u}) : m \in a_0 a_1 \dots a_{n-1} Z\}$$

and

$$\sigma_{\mathsf{R}\times\Lambda_n}(\Xi_n) = \{[\gamma, 0] : \gamma \in [-n, n]\}$$

Thus

$$\sigma_{\mathsf{R}\times\Lambda_n}(\Xi_n) \cap A\left[\Gamma_{\mathsf{R}\times\Lambda_n}, (\mathsf{R}\times\Lambda_n)\cap B\right]$$
$$= \left\{ \left[\frac{l}{a_0a_1\cdots a_{n-1}}, 0\right] : l \in \mathsf{Z} \text{ and } \left[\frac{l}{a_0a_1\cdots a_{n-1}}\right] \leq n \right\}.$$

It follows that the members of Ω_n can be identified (as in [2], (25.3)) with rational numbers of the form $\frac{l}{a_0 a_1 \dots a_{n-1}}$, where l is an integer and $\left|\frac{l}{a_0 a_1 \dots a_{n-1}}\right| \leq n$. We then have

THEOREM 4. The algebra $L^{1}(\Sigma_{a})$ admits a bounded positive approximate unit $\{k_n\}_{n=1}^{\infty}$ such that for each n, $k_n \in C(\Sigma_a)$, $\hat{k}_{n}(0) = 1$,

$$\operatorname{supp}(\hat{k}_n) \subset \Omega_n = \left\{ \frac{l}{a_0 a_1 \cdots a_{n-1}} : l \in \mathbb{Z} \quad and \quad \left| \frac{l}{a_0 a_1 \cdots a_{n-1}} \right| \leq n \right\}$$

and, for some K > 0,

(1)
$$\|k_n \star f - f\|_p \leq K\omega \left\{ p; f; \left(\left(-\frac{1}{n}, \frac{1}{n} \right) \times \Lambda_n \right) + B \right)$$

(2) $E_{\Omega_n}(p; f) \leq K\omega \left\{ p; f; \left(\left(-\frac{1}{n}, \frac{1}{n} \right) \times \Lambda_n \right) + B \right)$

308

for every $f \in L^p(\Sigma_a)$ if $p \in [1, \infty)$, or for every continuous f if $p = \infty$. //

References

- [1] Walter R. Bloom, "Jackson's Theorem for locally compact abelian groups", Bull. Austral. Math. Soc. 10 (1974), 59-66.
- [2] Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis, Volume I (Die Grundlehren der mathematischen Wissenschaften, 115. Academic Press, New York; Springer-Verlag, Berlin, Göttingen, Heidelberg, 1963).
- [3] Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis, Volume II (Die Grundlehren der mathematischen Wissenschaften, 152. Springer-Verlag, Berlin, Heidelberg, New York, 1970).
- [4] P.P. Korovkin, Linear operators and approximation theory (translated from the Russian ed. (1959). Hindustan Publishing Corp. (India), Delhi, 1960).
- [5] Hans Reiter, Classical harmonic analysis and locally compact groups (Clarendon Press, Oxford, 1968).

Department of Mathematics, University of Tasmania, Hobart, Tasmania; present address: School of Mathematical and Physical Sciences, Murdoch University, Murdoch, Western Australia.