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In a considerable number of works on relativistic astrometry (see, e.g. Kovalevsky and Brumberg 
1986) the reference frames (RFs) are introduced either by means of coordinate representation of a 
space-time metric, such as using harmonicity conditions (Brumberg and Kopejkin 1989), or on the 
basis of invariant constructions like Fermi coordinates (Synge 1960; Ashby and Bertotti 1986; 
Boucher 1986). Both approaches must, probably, be combined in applications. We consider the local 
observer RFs (LORFs) based on the Fermi coordinates and on the optical ones (Synge 1960), which 
are rigorously defined for a general metric and are directly related to observable quantities. In 
particular, the optical RF operates with the observed direction of the light source, whereas the Fermi 
RF seems to be a natural generalization of the classical Cartesian RF. 

The specificity of the radiointerferometry in space leads to the following questions dealt with in 
this report.: 

(i) In view of a large baseline (10 5 to 106 km) of the space radiointerferometer (SRI) a more 
accurate account of relativistic effects in calculation of the delay time τ is needed in 
comparison with VLBI on the Earth. As in Finkelstein et al. (1983) and in Zeller et al. 
(1986), we are guided by accuracy of 1 ps; however, for the above baseline size this 
requires the relative accuracy of 10 - 1 2 , that is two orders higher than that discussed by 
Finkelstein et al. and by Zeller et al. 

(ii) In construction of LORFs in the nearby space taking into account of the Earth-Moon 
gravitational field is desirable. This is not allowed by the methods of Ashby and Bertotti 
(1985) and Boucher (1986) where the Fermi RF in a fictitious background metric has 
been treated by using the Taylor expansion in spatial coordinates. We used the other 
way to construct the transformation to the Fermi and optical RFs, which embraces the 
case when the distance from gravitating bodies is comparable with the SRI base. The 
transformations are obtained according to the definitions of Synge (1960) by means of 
direct solution of the geodesic equations in the first weak-field approximation. If one 
rules out the Earth-Moon field, then in the case of geocentrical Fermi RF the transforma-
tions can be reduced to the results of Ashby and Bertotti (1985) and Boucher (1986). 
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On the basis of these results we obtain the relation for τ in the LORF, in which at the limit of the 
accuracy there is the input of the geodesic precession of the LORF for the measurement time of 103 

sec, and of the homogeneous part of the solar gravitational field. For VLBI on the Earth (relative 
accuracy 10 - 1 0) the relation for τ in the Fermi RF agrees with the result of Zhu and Groten (1988) and 
differs from that of Finkelstein et al. (1983) and Zeller et al (1986) by the scale factor (1 - φ) where 
φο is the solar gravitational potential. The reason for the discrepancy is that another normalization 
of the distance was employed in Finkelstein et al (1983) and Zeller et al (1986). 

For SRI with a large baseline the calculation of the gravitational input in τ is somewhat different 
from that of Finkelstein et al (1983). Apart from the Sun and the Earth, the gravitational 
contributions of Jupiter and Saturn are essential, the inputs of the other planets are essential only for 
the received signals passing in the close neighborhood of the planets. In analogous cases, (a) the post-
post-Newtonian corrections to the solar gravitational field and (b) angular momentum of the Sun give 
also the input of some ps. The input (b) linear in J is derived in harmonic coordinates, the PPN 
contribution (a) is given by the results of Brumberg (1987). 

With the aim of rigorous formulation of some LORF problems, we have considered the methods 
of construction of the Fermi and optical RFs using the exponential mapping technique (EMT) in 
curved space-times. It gives a consistent description of extended relativistic systems in the closed 
form, including the cases when their sizes are comparable with the characteristic scale of the 
gravitational field. EMT allows one to specify an even Ρ by means of a four-vector y at the position 
of the observer, the components of y being Riemannian normal coordinates of P. The algorithms to 
find all physical characteristics in this coordinate system through observables are known (Alexan-
drov 1981). To apply these to the above LORFs one must take into account the variation of the 
mapping P-> y under the shift along the observer's trajectory and perform (3+l)-splitting of the 
space-time. This is described by Jacobi fields which satisfy the geodesic deviation equation. By 
means of EMT we have obtained the transformation of observables to the LORFs and the exact 
equations of the test body motion in the LORFs. The resulting expressions are presented in the 
covariant form and may be computed either by means of covariant Taylor expansion or in the weak-
field approximation. 
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Discussion 

KOPEJKIN: I want to point out that the method of construction of local coordinate systems in the 
vicinity of a massive body was developed by Fukushima et al. as well. 

Z H D A N O V : The difference of our consideration from other works is that we avoid expansion in spatial 
coordinates and therefore we do not need to separate the gravitational field of the Earth in 
construction of the LORFs. 

KLIONER: I think that to derive the relativistic correction due to the rotation of the bodies and in 
particular due to the rotation of the Sun, you had to obtain the trajectory of the light 
considering the bodies' rotation. Did you really obtain this trajectory and, if yes, what kind 
of coordinates (i.e. cartesian or spherical) did you use? 

Z H D A N O V : We actually have obtained this trajectory in the cartesian coordinates. 
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