# ISOTROPIC VARIETIES IN THE SINGULAR SYMPLECTIC GEOMETRY 

Stanislaw Janeczko and Adam Kowalczyk

Maximal isotropic varieties of the singular symplectic structure $x_{1} d x_{1} \wedge d y_{1}+\sum_{i=2}^{n} d x_{i} \wedge d y_{i}$ on $\boldsymbol{R}^{\mathbf{2 n}}$ are characterised in terms of generating families. The normal forms of the simplest singularities (of codimension 1) are obtained with the help of the theory of boundary singularities.

## 1. Introduction

Many of the regular properties of physical systems have been described successfully in the symplectic geometry framework (see $[\mathbf{1}, \boldsymbol{9}, \mathbf{1 6}]$ ). However the singularities of wave front evolution [3], critical regions phenomona [8] and the low-temperature thermodynamics require another approach. As a first step towards a better modelling of these peculiar phenomona we investigate the geometry of maximal isotropic submanifolds in the phase space endowed with the simplest stable singular symplectic structure

$$
\sigma=x_{1} d x_{1} \wedge d y_{1}+\sum_{i=2}^{n} d x_{i} \wedge d y_{1}
$$

introduced in the theory of singularities of closed 2 -forms (see [11]).
In section 2 we give the canonical representations of maximal isotropic submanifolds ( $\sigma$-germs) in ( $\mathrm{R}^{2 n}, \sigma$ ) by means of generating functions. Then we obtain the $\sigma$-germs as pull-backs of Langrangian submanifolds in $\left(\mathrm{R}^{2 n}, \sum_{i} d x_{i} \wedge d y_{i}\right)$. In section 3 we generalise the $\sigma$-germs to $\sigma$-varieties. Then we obtain the initial classification list of normal forms of the $\sigma$-varieties in terms of generating families. These results are derived in the standard singularity theory fashion with an essential use of Arnold's classification of boundary singularities [2].

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/88 \$A2.00+0.00.

## 2. Local structure of maximal isotropic manifolds

Let us consider $\mathrm{R}^{2 n}$ with fixed coordinates ( $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ ) and a 2 -form $\sigma=x_{1} d x_{1} \wedge y_{1}+\sum_{i=2}^{n} d x_{i} \wedge d y_{i}$. A maximal isotropic manifold ( $\sigma$-manifold) is defined as an immersed $n$-dimensional submanifold $M=\iota\left(\mathbf{R}^{n}\right)$ of $\mathbf{R}^{2 n}$, where $\iota: \mathbf{R}^{n} \rightarrow \mathbf{R}^{2 n}$ is a smooth immersion such that $\iota^{\star} \sigma=0$. In this section we characterise germs at $0 \in \mathbf{R}^{2 n}$ of $\sigma$-manifolds. We denote them by $(M, 0)$ and call them $\sigma$-germs. A germ ( $\iota, 0$ ) of the immersion $\iota: \mathrm{R}^{n} \rightarrow \mathrm{R}^{2 n}$ can always be written in one of the following two forms:

$$
\begin{equation*}
\iota:\left(x_{I}, y_{1}, y_{J}\right) \in \mathbf{R}^{n} \mapsto\left(X_{1}\left(x_{I}, y_{1}, y_{J}\right), x_{I}, X_{J}\left(x_{I}, y_{1}, y_{J}\right), y_{1}, Y_{I}\left(x_{I}, y_{1}, y_{J}\right), y_{J}\right) \in \mathbf{R}^{2 n} \tag{1}
\end{equation*}
$$

or
(2)

$$
\ell:\left(x_{1}, x_{I}, y_{J}\right) \in \mathbf{R}^{n} \mapsto\left(x_{1}, x_{I}, X_{J}\left(x_{1}, x_{I}, y_{J}\right), Y_{1}\left(x_{1}, x_{I}, y_{J}\right), Y_{I}\left(x_{1}, x_{I}, y_{J}\right), y_{J}\right) \in \mathbf{R}^{2 n}
$$

where $X: \mathbb{R}^{n} \rightarrow \mathrm{R}^{|J|}, Y_{I}: \mathrm{R}^{n} \rightarrow \mathrm{R}^{|I|}$ and $Y_{1}, X_{1}: \mathrm{R}^{n} \rightarrow \mathrm{R}$ are smooth germs $(I \cup J=\{2, \ldots, n\}, \quad I \cap J=\emptyset)$. Using the results of $[2,16]$, we obtain,

Proposition 2.1. A $\sigma$-germ, $(M, 0)$, can be represented by at least one of the following systems of equations:

$$
\begin{align*}
\frac{1}{2} x_{1}^{2} & =\frac{\partial F}{\partial y_{1}}\left(y_{1}, x_{I}, y_{J}\right) \\
y_{I} & =\frac{\partial F}{\partial x_{I}}\left(y_{1}, x_{I}, y_{J}\right)  \tag{3}\\
-x_{J} & =\frac{\partial F}{\partial y_{J}}\left(y_{1}, x_{I}, y_{J}\right)
\end{align*}
$$

or

$$
\begin{align*}
x_{1} y_{1} & =\frac{\partial F}{\partial x_{1}}\left(x_{1}, x_{I}, y_{J}\right) \\
y_{I} & =\frac{\partial F}{\partial x_{I}}\left(x_{1}, x_{I}, y_{J}\right)  \tag{4}\\
-x_{J} & =\frac{\partial F}{\partial y_{J}}\left(x_{1}, x_{I}, y_{J}\right)
\end{align*}
$$

where $F$ is a germ of smooth function on $\mathbb{R}^{n}$ and $I \cup J=\{2, \ldots, n\}, I \cap J=\emptyset$.
A $\sigma$-germ having representation (3) is called regular. A diffeomorphism $\mathbf{R}^{2 \boldsymbol{n}} \rightarrow \mathbf{R}^{2 \boldsymbol{n}}$ preserving the 2-form $\sigma$ and the fibration $\pi: \mathbf{R}^{2 n} \rightarrow \mathbf{R}^{n},(x, y) \rightarrow x$ is called a $\sigma$ equivalence.

Lemma 2.2. Any $\sigma$-germ is $\sigma$-equivalent to a regular $\sigma$-germ.
Proof: If an immersion $\iota: \mathbf{R}^{n} \rightarrow \mathbf{R}^{2 n}$ is not regular, it has representation (1) with

$$
\begin{equation*}
\frac{\partial Y_{1}}{\partial x_{1}}(0)=0 \tag{5}
\end{equation*}
$$

In this case its composition with the $\sigma$-equivalence $\phi: \mathbf{R}^{2 \boldsymbol{n}} \rightarrow \mathbf{R}^{2 \boldsymbol{n}},(x, y) \rightarrow(x, x+y)$ is regular (since it has a representation of the form (1) but not satisfying (5)).

Let us now consider a symplectic form $\omega \stackrel{\text { def }}{=} \sum d x_{i} \wedge d y_{i}$ on $\mathrm{R}^{2 n}$. We recall some basic notions of the standard theory of Lagrangian singularities [2, 15]. A symplectomorphism of ( $\mathrm{R}^{2 n}, \omega$ ) preserving the fibration $\pi$ is called a Lagrangian equivalence (L-equivalence). An L-equivalence preserving the hyperplane $\left\{x_{1}=0\right\}$ will be called restricted (rL-equivalence). An $n$-dimensional immersed submanifold $\iota: \mathbb{R}^{n} \rightarrow \mathbb{R}^{2 n}$ such that $\iota^{\star} \omega=0$ is called Lagrangian; in such a case the germ $(L, 0), L \stackrel{\text { def }}{=} \iota\left(\mathrm{R}^{n}\right)$, will be called an L-germ.

The transformation

$$
\begin{equation*}
\rho:(x, y) \in \mathbf{R}^{2 n} \mapsto\left(\frac{1}{2} x_{1}^{2}, x_{2}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \in \mathbf{R}^{2 n} \tag{6}
\end{equation*}
$$

preserves the fibration $\pi$ and satisfies the condition

$$
\begin{equation*}
\rho^{\star} \omega=\sigma . \tag{7}
\end{equation*}
$$

Obviously $\rho$ is not a unique transformation with these properties. For example its composition with any Lagrangian equivalence of $\left(R^{2 n}, \omega\right)$ has the same properties.

## Proposition 2.3.

(i) For any rL-equivalence $\Phi$ of $\left(R^{2 n}, \omega\right)$ there exists a $\sigma$-equivalence $\phi$ making the following diagram commutative:
(8)

(ii) $(\rho(L), 0)$ is an $L$-germ for any regular $\sigma$-germ ( $L, 0$ ).

## Proof:

(i) For any rL-equivalence $\Phi$ we have $\Phi(x, y)=\left(X_{i},(x), Y_{i}(x, y)\right)$, where $X_{1}(x)=x_{1}(a+\alpha(x)), 0 \neq a \in \mathbf{R}$ and $\alpha \in \mathbf{m}_{x}^{2}$. A diffeomorhpism $\phi$
satisfying diagram (8) and preserving the fibration $\pi$, can be defined as follows:

$$
\left.\phi(x, y) \stackrel{\text { def }}{=}\left(x_{1} \sqrt{a+\alpha(\xi)}, X_{2}(\xi), \ldots, X_{n}(\xi), Y_{1}(\xi, y), \ldots, Y_{n}(\xi, y)\right)\right|_{\xi=\left(\frac{1}{2} x_{1}^{2}, x_{2}, \ldots, x_{n}\right)} .
$$

For such $\phi$ we have $\phi^{\star} \sigma=\phi^{\star} \rho^{\star} \omega=\rho^{\star} \Phi^{\star} \omega=\rho^{\star} \omega=\sigma$ (see 7).
(ii) follows directly from equation (3).

Example 2.4. For a regular $\sigma$-germ $(M, 0), M=\{(t, t)\}$, the set $L \stackrel{\text { def }}{=} \rho(M)$ is the parabola $x=y^{2}$. Its pre-image is given by the equation $x^{2}-y^{2}=0$. It contains $M$ as one of two smooth branches. $\rho^{-1}(L)$ is a symmetrisation (with respect to reflection in the $y$-axis) of this branch. On the basis of Proposition 2.1 we can easily calculate the generating function for $L: F(y)=\frac{1}{3} y^{3}$.

## 3. Modified classification of Lagrangian varieties

It is well known $[2,15]$ that an L -germ $(L, 0)$ in $\left(\mathbb{R}^{2 n}, \omega\right)$ is generated by the germ $(F, 0)$ of a Morse family, that is, it is given by the equations

$$
\begin{align*}
y & =\frac{\partial F}{\partial x}(\lambda, x), \\
0 & =\frac{\partial F}{\partial \lambda}(\lambda, x), \tag{9}
\end{align*}
$$

where $F(\lambda, x) \in C^{\infty}\left(\mathbf{R}^{k} \times \mathbf{R}^{n}\right)$ and

$$
\begin{equation*}
\left.\operatorname{rank}\left(\frac{\partial^{2} F}{\partial \lambda^{2}}, \frac{\partial^{2} F}{\partial \lambda \partial x}\right)\right|_{0}=\max =k \tag{10}
\end{equation*}
$$

By dropping requirement (10) we generalise the notion of Morse family to generating family $[\mathbf{9}, 7]$. By applying equations (9) to the generating family we obtain a Lagrangian variety (L-variety) which is not necessarily a smooth submanifold of $\mathrm{R}^{2 n}$. (Such Lvarieties appeared naturally in Arnold's theory of singularities of systems of rays [3].) In the generic case, when the generating family $F$ is polynomial, the corresponding L-variety is stratifiable with all strata isotropic and maximal strata Lagrangian [ $\mathbf{9}$, 6]. Two generating families $\left(F_{i}, 0\right), F_{i}(\lambda, x) \in C^{\infty}\left(\mathbf{R}^{k} \times \mathbf{R}^{n}\right), i=1,2$, are called equivalent if there exists a diffeomorphism

$$
\Phi:\left(\mathbf{R}^{k} \times \mathbf{R}^{n}, 0\right) \rightarrow\left(\mathbf{R}^{k} \times \mathbf{R}^{n}, 0\right), \quad(\lambda, x) \mapsto(\Lambda(\lambda, x), X(x))
$$

and a smooth function $f \in C^{\infty}\left(\mathbf{R}^{n}\right)$ such that

$$
\begin{equation*}
F_{2}(\Lambda(\lambda, x), X(x))=F_{1}(\lambda, x)+f(x) \tag{11}
\end{equation*}
$$

near $0 \in \mathbf{R}^{\boldsymbol{k}} \times \mathbf{R}^{\boldsymbol{n}}$. The equivalence of generating families which preserves the hyperplane $\left\{x_{1}=0\right\}$ will be called restricted (r-equivalence). For r-equivalences the first coordinate of $X$ is divisible by $x_{1}$, that is

$$
\begin{equation*}
X_{1}(x)=x_{1}(\alpha+\phi(x)) \tag{12}
\end{equation*}
$$

where $\alpha=$ const $\neq 0$ and $\phi \in \mathbf{m}(n)$. By straightforward calculation we obtain:
Proposition 3.1. Two L-varieties generated by r-equivalent generating families are rL-equivalent.

Remark 3.2. For Morse familes and L-germs the converse is true. From [16, 2] it follows that any two L-equivalent L -germs have equivalent minimal Mores families (that is Morse families $F_{i}(\lambda, x)$ such that $\left.\partial^{2} F_{1} /\left.\partial \lambda^{2}\right|_{0}=0\right)$.

We recall $[\mathbf{2}, \mathbf{5}]$ that a generating family $(F(\lambda, x), 0),(\lambda, x) \in \mathbf{R}^{\boldsymbol{k}} \times \mathbf{R}^{\boldsymbol{n}}$, is versal if any other generating family $\left(F^{\prime}\left(\lambda, x^{\prime}\right), 0\right),\left(\lambda, x^{\prime}\right) \in \mathbf{R}^{k} \times \mathbf{R}^{\mathbf{n}^{\prime}}$ such that $\left.F^{\prime}\right|_{x^{\prime}=0}=\left.F\right|_{x=0}$ is induced from $F$, that is there exists a mapping

$$
\begin{equation*}
\left(\lambda, x^{\prime}\right) \in \mathbf{R}^{k} \times \mathbf{R}^{n^{\prime}} \mapsto\left(\Lambda\left(\lambda \cdot x^{\prime}\right), X\left(x^{\prime}\right)\right) \in \mathbf{R}^{k} \times \mathbf{R}^{n} \tag{13}
\end{equation*}
$$

and a function $f: \mathbf{R}^{\mathbf{n}^{\prime}} \rightarrow \mathrm{R}$ such that

$$
F^{\prime}\left(\lambda, x^{\prime}\right)=F\left(\Lambda\left(\lambda, x^{\prime}\right), X\left(x^{\prime}\right)\right)+f\left(x^{\prime}\right) .
$$

(Classifications of versal families can be found in [12, 10].)
For the purposes of this paper it seems natural to consider restricted versality by imposing on the inducing mappings (13) a requirement of preservation of distinguished hyperplanes, that is in the case of hyperplanes $\left\{x_{1}=0\right\}$ and $\left\{x_{1}^{\prime}=0\right\}$, by assuming $X\left(\left\{x_{1}^{\prime}=0\right\}\right) \subset\left\{x_{1}=0\right\}$. This requirement means that $X_{1}$, the first coordinate of $X$, is of the form (12). The following result reduces the restricted versality to ordinary versality.

Proposition 3.3. A family $(F(\lambda, x), 0)$ is restricted versal if and only if the family ( $\left.\left.F(\lambda, x)\right|_{x_{1}=0}, 0\right)$ is versal.

Proof: $\Longleftarrow$. Assume $\left(\left.F(\lambda, x)\right|_{x_{1}=0}, 0\right),(\lambda, x) \in \mathbf{R}^{\boldsymbol{k}} \times \mathbf{R}^{\boldsymbol{n}}$ is a versal family and $\left(F^{\prime}\left(\lambda, x^{\prime}\right), 0\right),\left(\lambda, x^{\prime}\right) \in \mathbf{R}^{k} \times \mathbf{R}^{m}$ is such that $F^{\prime}(\lambda, 0)=F(\lambda, 0)$. Then $\left(\lambda, x^{\prime}\right) \mapsto$ $\left(\Lambda\left(\lambda, x^{\prime}\right), 0, X_{2}\left(\lambda, x^{\prime}\right), \ldots, X_{n}\left(\lambda, x^{\prime}\right)\right)$ is the demanded morphism.
$\Longrightarrow$. Following the standard lines of versality theory $[4,13]$ for restricted versality we obtain the following necessary condition:

$$
\left\langle\frac{\partial F}{\partial \lambda}\right\rangle_{\mathcal{E}_{\lambda_{x}}}+\left\langle x_{1} \frac{\partial f}{\partial x_{1}}, \frac{\partial F}{\partial x_{2}}, \ldots, \frac{\partial F}{\partial x_{n}}, 1\right\rangle_{\varepsilon_{x}}=\mathcal{E}_{\lambda_{x}}
$$

Factorising by $\mathbf{m}_{x} \mathcal{E}_{\lambda_{x}}$ we get the following condition of infinitesimal versality for $\left.F\right|_{x_{1}=0}$ :

$$
\left\langle\left.\frac{\partial F}{\partial \lambda}\right|_{x=0}\right\rangle_{\varepsilon_{\lambda}}+\left\langle\left.\frac{\partial F}{\partial x_{2}}\right|_{x=0}, \ldots,\left.\frac{\partial F}{\partial x_{n}}\right|_{x=0}, 1\right\rangle_{\mathbf{R}}=\mathcal{E}_{\lambda}
$$

As is well known this condition implies varsality of $\left.F\right|_{x_{1}=0}[2,4,11]$.
In the case when the vector space $\mathcal{E}_{\lambda} /\left\langle\left.\frac{\partial F}{\partial \lambda}(\lambda, x)\right|_{x=0}\right\rangle_{\mathcal{E}_{\lambda}}$ has a finite number of generators, say $\left\{e_{1}(\lambda), \ldots, e_{m}(\lambda), 1\right\}$, we have the decomposition

$$
F(\lambda, x)=F(\Lambda(\lambda, x), 0)+\sum_{i=1}^{m} e_{i} \circ \Lambda(\lambda, x) u_{i}(x)+f(x)
$$

for some smooth $u=\left(u_{1}, \ldots, u_{m}\right): \mathbf{R}^{\boldsymbol{n}} \rightarrow \mathbf{R}^{m}$ and $f: \mathbf{R}^{\boldsymbol{n}} \rightarrow \mathbf{R}[4,14]$, where $\Lambda: \mathbf{R}^{\boldsymbol{k}} \times$ $\mathbf{R}^{\boldsymbol{n}} \rightarrow \mathbf{R}^{k},\left.\Lambda\right|_{\mathbf{R}^{k} \times\{0\}}=i d_{\mathbf{R}^{k}}$. From Proposition 3.3 we find that any other r-equivalent family ( $F^{\prime}, 0$ ) has the form

$$
F^{\prime}(\lambda, x)=F(\Lambda(\lambda, x), 0)+\sum_{i=1}^{m} e_{i}(\Lambda(\lambda, x)) u_{i}^{\prime}(x)+f(x)
$$

where $\left.\Lambda\right|_{\mathbf{R}^{k} \times\{0\}}$ is a diffeomorphism of $\left(R^{k}, 0\right)$ and $u^{\prime}$ makes the following diagram commutative:


Here $\phi$ is a diffeomorphism preserving the hyperplane $\left\{x_{1}=0\right\}$. It is apparent that $r$ equivalence classes of generating families $(F(\lambda, x), 0)$ are parametrised by singularities of $\left.F\right|_{x=0}$ and equivalence classes of mappings $u$ in the sense of diagram (14) (we call them $\mathcal{A}_{r}$-equivalences). In this context it is natural to introduce the following characteristics of $F:$ (i) codimension of $(F, 0), \operatorname{codim} F \stackrel{\text { def }}{=} \operatorname{dim}\left(\mathcal{E}_{\lambda} /\left(\left.\frac{\partial F}{\partial \lambda}(\lambda, x)\right|_{x=0}\right\rangle \mathcal{E}_{\lambda}\right)$ and (ii) corank of $F=m-\left.\operatorname{rank}\left(\frac{\partial \widetilde{u}}{\partial x}\right)\right|_{x=0}$, where $\widetilde{u}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is assumed to be such that $F$ is induced via a pull-back $(\tilde{\Lambda}, \tilde{u})$ from a universal unfolding $\widetilde{F}$ of $\left.F\right|_{x=0}$. It is easily seen that these two characteristics are invariants of r-equivalences. Now using Arnold's classification methods [3] we obtain lists of normal forms for some simplest r-equivalence classes. We consider here the simplest case of codim $=1$. The case of codim $=2$ and 3 will be considered subsequently in the forthcoming paper.

Proposition 3.4. The list of simple normal forms of r-equivalence classes of generating families $F(\lambda, x),(\lambda, x) \in \mathbf{R} \times \mathbf{R}^{n}$ of codimension 1 is the following:

$$
\begin{array}{ll}
A_{2} A_{0}^{0}: & \lambda^{3}+x_{2} \lambda ; \\
A_{2} A_{k}^{0}: & \lambda^{3}+\left( \pm x_{2}^{k+1} \pm x_{1}+q\right) \lambda, \quad k \geqslant 1 ; \\
A_{2} D_{k}^{0}: & \lambda^{3}+\left(x_{2} x_{3}^{2} \pm x_{2}^{k-1} \pm x_{1}+q\right) \lambda, \quad k \geqslant 4 ; \\
A_{2} E_{6}^{0}: & \lambda^{3}+\left(x_{2}^{3} \pm x_{3}^{4} \pm x_{1}+q\right) \lambda ; \\
A_{2} E_{7}^{0}: & \lambda^{3}+\left(x_{2}^{3}+x_{2} x_{3}^{3} \pm x_{1}+q\right) \lambda ; \\
A_{2} E_{8}^{0}: & \lambda^{3}+\left(x_{2}^{3}+x_{3}^{5} \pm x_{1}+q\right) \lambda ; \\
A_{2} B_{k}^{1}: & \lambda^{3}+\left( \pm x_{1}^{k}+x_{2}^{2}+q\right) \lambda, \quad k \geqslant 2 ; \\
A_{2} C_{k}^{1}: & \lambda^{3}+\left(x_{1} x_{2} \pm x_{2}^{k}+q\right) \lambda, \quad k \geqslant 2 ; \\
A_{2} F_{4}^{1}: & \lambda^{3}+\left( \pm x_{1}^{2}+x_{2}^{3}+q\right) \lambda ;
\end{array}
$$

where $q$ is a non-degenerate quatratic form of the remaining variables.
Proof: Up to an r-equivalence we have

$$
F(\lambda, x)=\lambda^{3}+\lambda u(x),
$$

where $-u: \mathbb{R}^{n} \rightarrow \mathbf{R}$. Using the list of simple normal forms of singularities of $u$ on the manifold $\left\{x_{1} \geqslant 0\right\} \subset R^{n}$ with boundary $\left\{x_{1}=0\right\}[2$, Sec. 17.4] we obtain the above classification.

## Remark 3.5.

(i) In the above list $A_{2} A_{0}^{0}$ is the only restricted versal family.
(ii) Families $A_{2} A_{k}^{0}, A_{2} D_{k}^{0}$ and $A_{2} E_{i}^{0}$ are Morse families while $A_{2} B_{k}^{1}, A_{2} C_{k}^{1}$ and $A_{2} F_{4}^{1}$ are not (and provide L-varieties which are not manifolds).
(iii) Generating families $(\widetilde{F}(\lambda, x), 0),(\lambda, x) \in \mathbf{R}^{k} \times \mathbf{R}^{n}, k \geqslant 2$ with $\left.\widetilde{F}\right|_{x=0}$ having singularity $A_{2}$ have simple normal forms $F\left(\lambda_{1}, x\right)+Q\left(\lambda_{2}, \ldots, \lambda_{k}\right)$, where $F$ has one of the normal forms in Proposition 3.4 and $Q$ is a non-degenerate quadratic form. Obviously $\widetilde{F}$ and $F$ generate the same L-variety.
We define a $\sigma$-variety as a $\rho$ pull-back (see [ $\mathbf{6}]$ ) of a $L$-variety in $\mathbf{R}^{2 n}$. Having a generating family $(F(\lambda, x), 0),(\lambda, x) \in \mathbf{R}^{m} \times \mathbf{R}^{\boldsymbol{n}}$ for the L-variety, we obtain the following equations for the corresponding $\sigma$-variety $V_{F}$ :

$$
\begin{aligned}
y_{1} & =\frac{\partial F}{\partial \xi_{i}}\left(\lambda, \frac{1}{2} x_{1}^{2}, x_{2}, \ldots, x_{n}\right), \\
0 & =\frac{\partial F}{\partial \lambda}\left(\lambda, \frac{1}{2} x_{1}^{2}, x_{2}, \ldots, x_{n}\right) .
\end{aligned}
$$

Directly from Proposition 2.1 and the existence theorem for Morse familes (for example [2, 16]) we obtain:

Proposition 3.6. For any regular $\sigma$-germ, $(\Sigma, 0)$, there exists a generating family $(F, 0)$ on $\mathbf{R}^{\boldsymbol{m}} \times \mathbf{R}^{\boldsymbol{n}}$ such that

$$
\Sigma^{s y m} \stackrel{\text { def }}{=}\left\{\left( \pm x_{1}, x_{2}, \ldots, x_{n}, y\right) ;(x, y) \in \Sigma\right\}=V_{F} \text { near } 0 \in \mathbf{R}^{2 n} .
$$

From Lemma 3.7 and Proposition 2.3 follows immediately:
Proposition 3.7. Two $\sigma$-varieties corresponding to $r$-equivalent generating families are $\sigma$-equivalent.

The above results show that the local classification of $\sigma$-germs is subordinate to the classification of $\sigma$-varieties, and subsequently to the classification of generating families up to r-equivalences (described in Section 3).

Theorem 3.8. Initial classification of generic $\sigma$-varieties is provided by the classification list of generating families in Proposition 3.4.

## References

[1] R. Abraham and J.E. Marsden, Foundations of Mechanics (Benjamin/Cummings, Reading, 1978).
[2] V.I. Arnold, S.M. Gusein-Zade, and A.N. Varchenko, Singularities of Differentiable Maps 1, Engl. ed. (Birkhauser, Boston, 1985).
[3] V.I. Arnold, 'Singularities of systems of rays', Russian Math. Surveys 38 (1983), 87-176.
[4] Th. Bröcker and L. Lander, Differentiable Germs and Catastrophes (Cambridge University Press, Cambridge, 1975).
[b] J.J. Duistermaat, 'Oscilatory integrals, lagrange immersions and unfoldings of singularities', Comm. Pure Appl. Math. 27 (1974), 207-281.
[b] S. Janeczko, 'Constrained Lagrangian submanifolds over singular constraining varieties and discriminant varieties', Ann. Inst. H. Poincaré, Sect A. (N.S.) 46 (1987), 1-25.
[7] S. Janeczko, 'Generating families for images of lagrangian submanifolds and open swallowtails', Math. Proc. Cambridge Phit. Soc. 10 (1986), 91-107.
[8] S. Janeczko, 'Geometrical approach to phase transitions and singularities of Lagrangian submanifolds', Demonstratio Math. 16 (1983), 487-502.
[日] S. Janeczko, 'On singular lagrangian submanifolds and thermodynamics', Ann. Soc. Sci. Bruxelles Ser. I. $9 \theta$ (1985), 49-83.
[10] J. Martinet, Singularities of Smooth Functions and Maps (Cambridge Univ. Press, Cambridge, 1982).
[11] J. Martinet, 'Sur les singularites des formes differentielles', Ann. Inst. Fourier (Grenoble) 20 (1970), 95-178.
[12] T. Poston and I. Stewart, Catastrophe Theory and its Applications (Pitman, San Francisco, 1978).
[13] R. Thom, Structural Stability and Morphogenesis (Benjamin, New York, 1975).
[14] C.T.C. Wall, 'Geometric properties of generic differentiable manifolds', in Geometry and Topology: Lecture Notes in Math 597, A. Dold and B. Eckmann, editors, pp. 707-774 (Springer-Verlag, 1977).
[15] A. Weinstein, Lectures on Symplectic Manifolds (CBMS Regional Conf. Ser. in Math., 1977).
[16] V.M. Zakalyukin, 'Lagrangian and Legrendrian singularities', Functional Anal. Appl. 10 (1976), 23-31.

Dr S. Janeczko<br>Department of Mathematics<br>Monash University<br>Clayton, Vic. 3168<br>Australia<br>and<br>Institute of Math<br>Technical University of Warsaw<br>Pl. Jednos̀ci Robotniczej 1<br>00661 Warsaw<br>Poland


[^0]:    Received 15 October, 1987
    We would like to express our gratitude to Dr A.J. Pryde for his help in preparation of this paper. S.J. wishes to thank Monash University for a visiting appointment.

