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We propose a compressible multi-scale model that (i) captures the dynamics of both
large vapour cavities (resolved vapour) and micro-bubbles (unresolved vapour), and
(ii) accounts for medium compressibility. The vapour mass, momentum and energy in the
compressible homogeneous mixture equations are explicitly decomposed into constituent
resolved and unresolved components that are independently treated. The homogeneous
mixture of liquid and resolved vapour is tracked as a continuum in an Eulerian sense.
The unresolved vapour terms are expressed in terms of subgrid bubble velocities and
radii that are tracked in a Lagrangian sense using a novel ‘kR-RP equation’ (k, constant
multiple; R, bubble size; RP, Rayleigh-Plesset). The kR-RP equation is formally derived
in terms of the pressure at a finite distance (kR) from the bubble while accounting for
the effects of neighbouring bubbles; p(kR) may therefore be either a near-field or far-field
pressure. The equation exactly recovers the classical Rayleigh–Plesset and Keller–Miksis
equations in the limits that k and c (speed of sound) become very large. Also, the results are
independent of k for a single bubble for all k, and for multiple bubbles when kR < d (where
d denotes separation distance). Numerical results show this robustness of the model to the
choice of k, which can be different for each bubble. The multi-scale model is validated
for the collapse of a single resolved/unresolved bubble. Its ability to capture inter-bubble
interactions is demonstrated for multiple bubbles exposed to an acoustic pulse. The model
is then applied to a problem where resolved and unresolved bubbles co-exist. Finally, it is
validated using a cluster of 1200 bubbles exposed to a strong acoustic pulse. The results
show the impact of the bubble cluster on the transmitted and reflected waves and the
shielding effect where bubbles at the edge of the cluster shield the interior bubbles by
dampening the incident acoustic wave.
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1. Introduction

Cavitation refers to the phase change from liquid to vapour due to the liquid pressure
dropping below the vapour pressure. It is commonly observed in turbomachinery, the
wake of hydrofoils and propeller blades where it is often associated with noise and loss of
efficiency. Violent bubble collapse during cavitation can even result in structural damage.

Cavitating flows possess vapour pockets of varying size, large variations in sound speed,
turbulence and even shock waves. Accounting for all these features makes the numerical
simulation of cavitating flows a very challenging task. As figure 1 shows, large vapour
cavities can be captured on the computational grid while small bubbles are likely to be
smaller than the grid elements. The mixture speed of sound reduces significantly in the
presence of vapour/gas (Karplus 1957), and hence the presence of large cavities results in
a highly compressible medium. Micro-bubble clusters can undergo violent collapse when
subjected to a large external pressure, even generating shock waves (Reisman, Wang &
Brennen 1998; Wang & Brennen 1999). Hence, models that can (i) accurately capture
both resolved (large-scale vapour cavities) and unresolved phases (micro-bubbles), and
(ii) account for the compressibility of the medium are necessary to capture the essential
dynamics of a general cavitating flow.

The homogeneous mixture model (HMM) is one of the commonly used models for
simulating cavitating flows (Bensow & Bark 2010; Gnanaskandan & Mahesh 2015;
Asnaghi, Feymark & Bensow 2017; Schenke & van Terwisga 2017; Budich, Schmidt
& Adams 2018). The HMM represents the mixture of liquid and vapour as a single
continuum, and both are assumed to be in thermodynamic equilibrium. Past studies
suggest the importance of medium compressibility. Bensow & Bark (2010) studied
cavitation over a hydrofoil using incompressible HMM and observed a discrepancy in
the cavity length that they attributed to the incompressible approximation. Gnanaskandan
& Mahesh (2016) used compressible HMM to study the re-entrant jet mechanism during
the sheet to cloud transition over a wedge and obtained good agreement with experiments.
They also highlighted the role of medium compressibility in regulating the vorticity in the
sheet cavity region. Budich et al. (2018) and Bhatt & Mahesh (2020) studied the same
configuration in the periodic regime and observed a bubbly shock wave produced due to
the cloud collapse downstream of the wedge. They found the bubbly shock to be locally
supersonic, in agreement with experiments. Brandao, Bhatt & Mahesh (2020) studied
the flow over a cylinder and concluded that the condensation shock is responsible for
cavity collapse. Although HMM has successfully captured different physical mechanisms
associated with large cavities, it is less accurate for vapour regions of the order of the
computational cell size. For example, Bhatt & Mahesh (2020) have observed noticeable
differences in mean vapour void fraction between HMM and experiment (Ganesh,
Makiharju & Ceccio 2016) in the incipient regime for the flow over a wedge. Asnaghi,
Feymark & Bensow (2018) observed a discrepancy in the cavity shedding location on
a hydrofoil and concluded that finer computational meshes were needed to capture the
shedding accurately. The HMM can indeed accurately predict the behaviour of vapour
cavities (irrespective of their size) provided they are well resolved on the grid. This implies
that regions with tiny bubbles need a very fine mesh that can lead to computationally
expensive simulations.

Two popular approaches to track such tiny bubbles are Euler–Euler (EE) and
Euler–Lagrange (EL). In the EE approach (Zhang & Prosperetti 1994, 1997; Pan,
Dudukovic & Chang 1999; Park, Drew & Lahey 1999; Ando 2010), both phases are tracked
in an Eulerian sense, and the governing equations are developed using the ensemble
averaging method. The bubbles are grouped into bins in each computational cell based
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Unresolved vapour bubbles
(represented by ρYvun

)

Resolved vapour
(represented by ρYvres

)

Figure 1. A sketch showing a large vapour cavity and unresolved micro-bubbles found in a general cavitating
flow. The right plot shows the magnified view of the cell where the unresolved bubbles lie.

on their size distributions, and their statistics are computed. While it is cheaper than
EL approach for monodisperse bubbles, it can become computationally expensive for a
large number of polydisperse bubbles because the number of bins increases. Also, most
of these models assume the carrier liquid to be incompressible, constraining them from
being applied to highly compressible cavitating flows. In the EL approach (Seo, Lele
& Tryggvason 2010; Fuster & Colonius 2011; Ma, Chahine & Hsiao 2015; Ghahramani,
Arabnejad & Bensow 2019; Pakseresht & Apte 2019), the Navier–Stokes equations govern
the ‘carrier’ liquid continuum, and each bubble is tracked in a Lagrangian sense using
Newton’s law of motion and the Rayleigh–Plesset (RP) equation. The RP equation (and
most of its variants) assumes the bubble to be spherical and have spatially uniform
properties. Most EL models developed for cavitation simulations assume the liquid to
be incompressible (Ma et al. 2015; Ghahramani et al. 2019; Pakseresht & Apte 2019). For
single-bubble collapse, Ghahramani et al. (2019) show the incompressible EL model to be
accurate and allow for a higher time step and coarser grid compared with a fully resolved
simulation. Fuster & Colonius (2011) developed an EL model where the compressible
Navier–Stokes equations govern the carrier liquid. Maeda & Colonius (2018) used it to
study burst wave lithotripsy. However, the liquid pressure is governed by an isentropic
equation rather than a full equation of state. While such EL and EE formulations can
accurately estimate the dynamics of a bubbly flow, they fare poorly when the large cavities
either have an arbitrary shape or undergo asymmetric collapse.

Hybrid models aim to capture both large cavities and micro-bubbles and the transition
between them. Hsiao, Ma & Chahine (2017) developed a hybrid model where the mixture
of liquid and resolved vapour is modelled as an incompressible homogeneous mixture.
This was coupled to a Lagrangian solver for the micro-bubbles. This hybrid model
was applied to model sheet cavity dynamics and cloud shedding for a two-dimensional
hydrofoil. Ghahramani, Strom & Bensow (2021) adopted a similar approach in developing
a hybrid model. Their approach also accounts for effects such as bubble–bubble collision
and bubble breakup. They found the hybrid model to perform better than the Eulerian
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approach in predicting cavitation inception in the wake of a bluff body. They acknowledge
the need to account for the compressibility of the mixture medium while developing
hybrid models for events such as cavitation erosion, where intense bubble-cloud collapse
generates shock waves that damage the nearby surface material. A model that can
capture both resolved and unresolved vapour accurately while accounting for medium
compressibility does not exist, to the best of our knowledge. Developing such a multi-scale
model is the first goal of this paper.

Another significant focus of this paper is the modelling of the bubble dynamics. The
original RP equation (Rayleigh 1917; Plesset 1949) describes single-bubble behaviour
in a quiescent incompressible liquid. Numerous modifications to this equation have
been proposed to account for liquid compressibility (Gilmore 1952; Keller & Miksis
1980) and inter-bubble interactions (Seo et al. 2010; Fuster & Colonius 2011; Maiga,
Coutier-Delgosha & Buisine 2018). In the original RP equation, the external pressure a
bubble experiences is the pressure at infinity (p∞). Hsiao, Chahine & Liu (2000) modified
p∞ to be the average liquid pressure close to the bubble surface. This modified version, the
surface averaged pressure model, revealed scaling effects for cavitation inception, which
the original RP equation could not show. They note that their proposed modification may
be inaccurate for bubbles of the order of the cell size or larger. Seo et al. (2010) developed
the locally volume-averaged Rayleigh–Plesset (LVARP) model where the volume average
of local mixture pressure models local flow effects on the bubble. This volume averaging
is performed over a region extending from the bubble surface (r = R) to d/2 (where d
is the inter-bubble separation distance). Its derivation requires a closed-form expression
for pressure at a finite distance. Hence, accounting for medium compressibility becomes
a difficult task. In addition, the dependence of the volume averaging process on d makes
it computationally expensive for non-uniform distribution of bubbles. Fuster & Colonius
(2011) developed a compressible RP equation that accounts for inter-bubble interactions
using potential flow theory. For a bubble, the impact of N neighbouring bubbles is
modelled explicitly in terms of their velocity potential. Obtaining the velocity potential
of these N bubbles, in turn, requires solving a system of N linear equations resulting
in O(N2) complexity. Ghahramani et al. (2019) developed an incompressible RP variant
by integrating the incompressible spherical momentum equation from the bubble surface
(r = R) to a finite distance r = 2R. The accuracy of pressure at r = 2R being the external
pressure has not been discussed for different bubble sizes and bubble separation distances.
To summarize, the models mentioned either incorrectly assume the local pressure to
be p∞ in the RP equation, do not account for medium compressibility or have a high
computational cost associated with the explicit modelling of the inter-bubble interactions.
In this paper, we derive a novel RP variant we term ‘kR-RP equation’, that accounts for
medium compressibility, local flow effect, inter-bubble interactions, and is derived in terms
of the external pressure at an arbitrary finite distance from the bubble. The kR-RP equation
is shown to yield the classical incompressible RP and Keller–Miksis equations in the limits
that the distance from the bubble centre and the speed of sound become infinitely large.

This paper proposes a novel multi-scale model that aims to simulate a wide range of
complex problems such as: (a) sheet-to-cloud cavitating flows, (b) bubbly flows where
dense bubble clusters are exposed to strong acoustic pulses and (c) interaction between
micro-bubbles and large-scale vapour cavities. The multi-scale model in its current form
does not account for the transition between resolved and unresolved vapour scales as
well as phenomena such as bubble break-up, coalescence and deformation. The key idea
in developing this model is to split the vapour mass, momentum and energy in the
compressible homogeneous mixture equations into constituent resolved and unresolved
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vapour components. These components are treated differently in that the homogeneous
mixture of liquid and the resolved vapour is tracked as a continuum entity in an Eulerian
sense, while the unresolved vapour is tracked using the kR-RP equation developed in this
work. The kR-RP equation is formally derived in terms of external pressure at a finite
distance from the bubble to capture the local flow effects and inter-bubble interactions.
Standard EL models do not perform such explicit decomposition; also they typically
assume the cell pressure to be p∞ in the RP equation. The derivation of the multi-scale
model and the kR-RP equation and their key properties are discussed in §§ 2 and 3.
Sections 4 and 5 summarize the multi-scale model and discuss the numerical method,
respectively. In § 6, the model is validated for some benchmark problems. The model is
then applied to a complex problem where a planar acoustic wave interacts with a cloud of
O(103) bubbles. A brief summary concludes the paper in § 7.

2. Derivation of the multi-scale model

The compressible Navier–Stokes equations for the homogeneous mixture of liquid and
vapour are

∂ρ

∂t
+ ∂(ρuj)

∂xj
= 0,

∂(ρui)

∂t
+ ∂(ρuiuj)

∂xj
= − ∂p

∂xi
+ ∂σij

∂xj
,

∂(ρes)

∂t
+ ∂(ρesuj)

∂xj
= ∂Qj

∂xj
− p

∂uj

∂xj
+ σij

∂ui

∂xj
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)

where ρ, ρui, ρes and p are the mixture density, velocity, internal energy and pressure,
respectively; ρ = ρYl + ρYv , where Yl and Yv are the liquid and vapour mass fraction,
respectively. The mixture pressure depends on the liquid and vapour mass (p ≡
p(ρYl, ρYv)). Hence, a governing equation is needed for the vapour mass to close the
system of equations. The HMM uses the following transport equation to track the vapour
mass:

∂(ρYv)

∂t
+ ∂(ρYvuj)

∂xj
= Se − Sc, (2.2)

where Se and Sc are the empirical source terms responsible for the change in phase; Se
causes the liquid to evaporate into vapour when its pressure drops below the saturation
vapour pressure, and Sc causes the vapour to condense into liquid when its pressure goes
above the saturation vapour pressure. The accuracy of the transport equation depends on
the resolution of the vapour region. Hence, HMM performs well for large vapour cavities
and under-performs when only micro-bubbles are present. On the other hand, EL models
use an RP equation (or its variant) to track the vapour mass. The RP equation (and most of
its variants) assumes the bubble to be spherical and possess spatially uniform properties.
Hence, the EL models accurately capture the behaviour of micro-bubbles but not massive
cavities that are often non-spherical and have spatially varying properties. The implication
is that the resolved and the unresolved vapour regions must be tracked differently to capture
their dynamics precisely. Hence, the vapour mass is split into constituent resolved and
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unresolved components

ρYv = ρYvres + ρYvun, (2.3)

where ρYvres and ρYvun represent the resolved vapour mass and the unresolved vapour
mass, respectively. Figure 1 schematically illustrates the vapour regions represented by
ρYvres and ρYvun . Such splitting enables the independent treatment of the resolved and
unresolved vapour. Now ρYvres is governed by the transport equation and ρYvun is governed
by an RP variant. By doing so, both HMM and EL models are brought together to develop
the multi-scale model. The mixture density, momentum and internal energy can be written
as

ρ = ρYl + ρYvres + ρYvun = ρlαl + ρvresαres + ρvunαun,

ρui = ρYluli + ρYvresuresi + ρYvunuuni,

ρes = ρYlesl + ρYvresesres + ρYvunesun,

⎫⎪⎬
⎪⎭ (2.4)

where α is the volume fraction and Y is the mass fraction. The subscripts l, res and un refer
to the liquid, resolved vapour and unresolved vapour, respectively; ρ, u and es refer to the
density, velocity and specific internal energy of the corresponding phases, respectively.

Note that only the liquid and resolved vapour are assumed to be in thermodynamic
equilibrium, i.e. there is no temperature difference or slip velocity between these phases.
This implies ul = uvres = ulr and Tl = Tvres = Tlr where T denotes the temperature.
However, the unresolved vapour is not constrained to be in thermodynamic equilibrium
with the liquid or resolved vapour. With these assumptions, the mixture momentum and
energy in (2.4) can be rewritten as follows:

ρui = ρYlrulri + ρYvunuuni,

ρes = ρeslr + ρYvunesun,

}
(2.5)

where Ylr = Yl + Yvres , eslr = Ylesl + Yvresesres . Substituting (2.4) and (2.5) in (2.1), we
obtain the governing equations for the homogeneous mixture of liquid and resolved vapour

∂(ρYl)

∂t
+ ∂(ρYlulrj)

∂xj
= −∂(ρYvun)

∂t
− uunj

∂(ρYvun)

∂xj
− ρYvun

∂uunj

∂xj
− Se + Sc,

∂(ρYlrulri)

∂t
+ ∂(ρYlrulriulrj)

∂xj
= − ∂p

∂xi
+ ∂σij

∂xj
− ∂(ρYvunuuni)

∂t
− uunj

∂(ρYvunuuni)

∂xj

−ρYvunuuni

∂uunj

∂xj
,

∂(ρeslr)

∂t
+ ∂(ρeslr ulrj)

∂xj
= ∂Qj

∂xj
− p

∂uj

∂xj
+ σij

∂ui

∂xj
− ∂(ρYvunesun)

∂t

−uunj

∂(ρYvunesun)

∂xj
− ρYvunesun

∂uunj

∂xj
,

∂(ρYvres)

∂t
+ ∂(ρYvresulrj)

∂xj
= Se − Sc,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.6)
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where σij and Qj are the viscous stress and heat flux of the mixture. The mixture pressure
(p) is defined as

p = (1 − αun)plr +
N∑

k=1

αkpk, (2.7)

where plr is the pressure of homogeneous mixture of the liquid and resolved vapour, N is
the number of unresolved bubbles and pk and αk are the pressure and volume fraction of
the kth unresolved bubble, respectively; plr is expressed in terms of the liquid and resolved
vapour’s equation of state, as shown below:

plr = ρlα
′
lKlTlr

plr

plr + Pc
+ ρvresα

′
resRvTlr

where α′
l = αl

1 − αun
and α′

res = αres

1 − αun
.

⎫⎪⎬
⎪⎭ (2.8)

Here, Rv = 461.6 J kg−1 K−1, Kl = 2684.075 J kg−1 K−1 and Pc = 786.333 × 106 Pa are
the constants associated with these equations of state. For an unresolved vapour bubble, its
pressure (pk) is the saturated vapour pressure that exclusively depends on the temperature.
However, the pressure of an unresolved gas bubble is a function of both its temperature
and density. A common approach to compute it is to assume the bubble behaviour to
be isentropic. However, thermal damping can cause significant energy loss during the
nonlinear oscillation of the bubbles. Prosperetti, Crum & Commander (1988) developed
an equation for gas pressure that accounts for such heat losses in terms of the heat flux
across the bubble surface. Preston, Colonius & Brennen (2007) developed a reduced-order
model to compute the heat flux efficiently. The final equation that is used to compute the
gas pressure in this paper is

1
R3γ

d( pkR3γ )

dt
= 3(γ − 1)

R2 kwβ(Tk − T0), Tk = pk/ρRg, (2.9a,b)

where R and ρ are the bubble’s radius and density, respectively; Tk is the bubble
temperature (assumed to be uniform across the bubble), and T0 is the liquid temperature
at the bubble wall; γ , kw, Rg and β are the constant parameters defined as the ratio
of specific heats, thermal conductivity, gas constant and heat transfer coefficient of the
gas, respectively. Their values are γ = 1.4, Rg = 287.0 J kg−1 K−1, β = 5 and κ =
0.02479 W m−1 K−1.

The heat flux is defined as

Qj = (αlkl + αreskres)
∂Tlr

∂xj
+ αunkun

∂Tun

∂xj
, (2.10)

where kl, kres and kun are the thermal conductivities of the liquid, resolved vapour and
unresolved vapour, respectively; Se and Sc are the evaporation and condensation source
terms for vapour, obtained from Saito et al. (2007). They are shown below:

Se = Ceα
2
res(1 − αres)

2 ρl

ρv

max( pv − plr, 0)√
2πRvTlr

Sc = Ccα
2
res(1 − αres)

2 max( plr − pv, 0)√
2πRvTlr

pv = pa exp
((

1 − Tm

Tlr

)
(a + (b − cTlr)(Tlr − d)2)

)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

, (2.11)
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where Ce and Cc are the empirical constants with units m−1; pa = 22.130 MPa, Tm =
647.31 K, a = 7.21, b = 1.152 × 10−5, c = −4.787 × 10−9 and d = 483.16. The resolved
component of the mixture internal energy is defined as follows:

ρeslr = ρlα
′
lel + ρvresα

′
resevres,

el = CvlTlr + Pc

ρl
, evres = Cvv Tlr,

ρeslr = 1
1 − αun

(
ρYvresCvv Tlr + ρYlCvlTlr + ρYlPcKlTlr

plr + Pc

)
,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.12)

where Tlr is the temperature of the homogeneous mixture of the liquid and resolved vapour;
Cvl and Cvv are the specific heats at constant volume for the liquid and vapour, respectively.
Note that the latent heat effects during the phase transfer have not been considered here.
The pressure term on the right-hand side of the energy equation (p(∂uj/∂xj)) can be
expressed as follows:

p
∂uj

∂xj
= (1 − αun)plr

∂ulrj

∂xj
+ αunpun

∂uunj

∂xj
. (2.13)

Note that, if the resolved bubble contained gas instead of vapour, it can still be tracked
using the transport equation. However, since gas does not undergo a phase change, the
source terms will be inactive, i.e. Se = Sc = 0.

2.1. Source terms
The unresolved vapour terms on the right-hand side of (2.6) act as source terms. The
unresolved vapour mass (ρYvun), momentum (ρYvunuuni) and internal energy (ρesun) can
be expressed in terms of the unresolved bubble properties as shown below

ρYvun =
N∑

k=1

ρvkαk, ρYvunuuni =
N∑

k=1

ρvkαkuk, ρesun =
N∑

k=1

ρvkαkCvv Tk, (2.14a–c)

where αk, ρvk , uk and Tk are the volume fraction, density, translational velocity and
temperature of the kth unresolved bubble; uk may be obtained by interpolating the local
Eulerian velocity field to the bubble’s centre of mass (examples in this paper) or from a
bubble momentum equation. Some of the terms have a divergence rate (∂uunj/∂xj) that
is a measure of the expansion/collapse rate of the unresolved bubbles. Computing this
divergence by differentiating the velocity field will not be accurate for unresolved bubbles.
A better approach is to obtain ∂uunj/∂xj in terms of the bubble quantities. The velocity
divergence for a single bubble can be written as

∂uunj

∂xj
= − 1

ρv

Dρv

Dt
= 1

V
DV
Dt

= 3Ṙ
R

, (2.15)
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A compressible multi-scale model for cavitating flows

where ρv , V and R are the density, volume and radius of the bubble, respectively. Summing
over N unresolved bubbles, the divergence term on the right-hand side of the liquid
transport equation becomes

ρYvun

∂uunj

∂xj
=

N∑
k=1

3ρvkαkṘk

Rk
. (2.16)

Similarly, the divergence terms on the right-hand side of the momentum and energy
equation become

ρYvunuuni

∂uunj

∂xj
=

N∑
k=1

3ρvk ukαkṘk

Rk
, ρYvunesun

∂uunj

∂xj
=

N∑
k=1

3ρvk Cvv TkαkṘk

Rk
,

αunpun
∂uunj

∂xj
=

N∑
k=1

3pkαkṘk

Rk
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.17)

Here, pk and Tk are obtained from (2.9a,b). The computation of αk is shown in the
following section. The bubble size (Rk) and velocity (Ṙk) are obtained from the novel
kR-RP equation derived in § 3.

2.2. Computing volume fraction (αk)
While computing αk as the ratio of the volume of the bubble to the cell volume seems
intuitive, it often gives rise to unstable solutions due to the discontinuous nature of αk
(Apte, Mahesh & Lundgren 2008; Raju et al. 2011). Using a kernel to smoothen the bubble
volume distribution has been a popular approach in developing stable EL models. The
commonly used Gaussian kernel has a standard distribution (σ ) which depends exclusively
on the cell size. Horne & Mahesh (2013) have shown that such kernels can result in
unphysical volume fractions especially when bubble size is bigger and grows to become
much larger than a computational cell. They proposed a new kernel function, which
depends on both the bubble size and the computational cell size, and demonstrated its
superior performance for bubbles bigger than the cell. The kernel function ( f ) is given by

f =
N∑

k=1

e−rk
2/2σ 2

2π3/2m3 , (2.18)

where N is the total number of bubbles, rk is the distance between the cell centre and
the kth bubble and σ (standard distribution) is defined as σ = m(4π/3)1/3Rk, where m
is a constant parameter and Rk is the size of the kth bubble. The volume fraction is then
computed as follows:

αun =

∫
f dV

Vcv
, (2.19)

where Vcv is the volume of the cell.

3. Derivation of kR-RP equation

The RP equation (and its several variants) are derived in terms of the ambient pressure at
large distances (p∞); p∞ may be unambiguously defined for a single bubble or a cluster of
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bubbles with large inter-separation distances in a quiescent medium. However, cavitating
flows often possess dense bubble clusters or bubbles in the vicinity of large vapour cavities.
The local pressure and not p∞, determines the dynamics of the bubbles in such scenarios.
Most simulations improperly use the standard RP equation with p∞ defined as the carrier
fluid pressure interpolated to the bubble location. Here, we formally derive a novel kR-RP
equation in terms of the pressure at finite distance kR; p(kR) may therefore be a near-
or far-field pressure. The proposed equation is very attractive for simulations since the
resolved mixture yields this pressure; the kR-RP equation ensures that the effect on bubble
radius is independent of kR.

The kR-RP equation is derived using the spherical momentum equation (assuming the
bubble to be spherical) along with the linear wave equation (to account for medium
compressibility). The momentum and wave equations are

∂

∂r

(
∂φ

∂t
+ 1

2

(
∂φ

∂r

)2 )
= − 1

ρ

∂p
∂r

,

∂2φ

∂t2
= c2
φ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.1)

where φ and p are the velocity potential and pressure respectively. Instead of integrating
the momentum equation from the bubble surface (r = R) to infinity (r = ∞), we integrate
it from r = R to r = kR (where k is a constant parameter) to account for the effect of local
flow on the bubble dynamics. This yields

φt(kR) − φt(R) + 1
2
(φ2

r (kR) − φ2
r (R)) + p(kR) − p(R)

ρ
= 0. (3.2)

The general solution of the linear wave equation is

φ = φou + φin

where φou = 1
r

f (t − r/c), φin = 1
r

g(t + r/c).

⎫⎬
⎭ (3.3)

Here, φou is the potential of the outgoing wave generated by the bubble, and φin is the net
potential of the incoming waves generated by the neighbouring bubbles. Substituting (3.3)
in (3.2) yields

φou
t (kR) − φou

t (R) + 1
2
(φou

r
2
(kR) − φou

r
2
(R)) = p(R) − p(kR)

ρ
+ I∗∗

where I∗∗ = −(φin
t (kR) − φin

t (R)) − (φin
r (kR)φou

r (kR) − φin
r (R)φou

r (R))

−1
2
(φin

r
2
(kR) − φin

r
2
(R)).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.4)
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A compressible multi-scale model for cavitating flows

From (3.3), φin
t and φou

t can be expressed in terms of φin
r and φou

r , respectively.

φin
t = c

r
φin + cφin

r , φou
t = −c

r
φou − cφou

r . (3.5a,b)

The kinematic boundary condition at the bubble surface is φr(R) = Ṙ, i.e. φin
r (R) +

φou
r (R) = Ṙ. Also, it is reasonable to assume that this velocity is mainly due to that bubble

itself. Hence, φin
r (R) ≈ 0 and φou

r (R) ≈ φr(R) = Ṙ. Substituting the kinematic boundary
condition and (3.5a,b) in (3.4), and then taking its temporal derivative yields

RR̈
(

1 − Ṙ
c

)
+ Ṙ2

(
1 − Ṙ

2c

)
− 1

k
d
dt

φou(kR) −
(

Ṙ + R
d
dt

)
φou

r (kR)

+ 1
2

(
Ṙ
c

+ R
c

d
dt

)
φou

r
2
(kR) + d

dt
φou(R) = 1

ρ

(
Ṙ
c

+ R
c

d
dt

)
( p(R) − p(kR)) + dI

dt

∗∗
.

(3.6)

Also, p(R) = pb − 2σ/R − 4μṘ/R, where pb is the bubble pressure, σ is the surface
tension of the bubble and μ is the viscosity of the liquid. Substituting p(R) in (3.6) yields
(please refer to Appendix A for the details)

RR̈
(

1 − Ṙ
c

)
+ 3

2
Ṙ2

(
1 − Ṙ

3c

)
= 1

ρ

(
1 + Ṙ

c
+ R

c
∂

∂t

)(
pb − 2σ

R
− 4μ

Ṙ
R

− p(kR)

)

−1
2

(
1 + Ṙ

c
+ R

c
∂

∂t

)
φou

r
2
(kR) − φou

t (kR) − R(kṘ − c)
c2 φou

tt (kR) + I

where I = dI
dt

∗∗
= −1

2

(
1 + Ṙ

c
+ R

c
∂

∂t

) (
φin

r
2
(kR) + 2φin

r (kR)φou
r (kR)

)

−φin
t (kR) − R(kṘ + c)

c2 φin
tt (kR) + φin

t (R).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.7)

Equation (3.7) is referred to as the kR-RP equation. Two important terms in this equation
are p(kR) and I; p(kR), the pressure of the resolved field at a finite distance, is defined as
follows:

p(kR) =
∑Ncell

i=1
pi(r = kR)

Ncell
, (3.8)

where Ncell is the number of cells which are at a distance r = kR from the bubble centre
and pi(r = kR) is the pressure of the resolved phase (plr) in the ith cell. Hence, p(kR)

can be either near-field or far-field pressure depending on the value of k; I represents
the variations in the velocity potential and kinetic energy of the neighbouring bubbles.
While p(kR) captures the local flow effects, both p(kR) and I together contribute to the
inter-bubble interactions.
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3.1. Closure to the kR-RP equation
The unknown terms in (3.7) are φou(kR), φin(kR) and their derivatives. Since the goal
is to capture the local flow effects, regions in the bubble vicinity are considered and a
small k represents such regions. The flow can be assumed to be incompressible in the
vicinity of the bubble as the time taken for sound to travel is very small relative to the
bubble timescale (acoustic compactness). Hence, the potential of the outgoing wave can be
approximated as

φou(r) ≈ − ṘR2

r
. (3.9)

Therefore

φou
r (kR) ≈ Ṙ

k2 ; φou
t (kR) ≈ −2RṘ2 + R̈R2

kR
; φou

tt (kR) ≈ −2Ṙ3 + 6RṘR̈ + R2...R
kR

.

(3.10a–c)

The net potential of the incoming waves is trickier to compute because of its non-uniform
nature. Consider the sketch shown in figure 2 where the bubble i has only one neighbour
(bubble j) in its vicinity. Let φj(P) denote the potential of the jth bubble at point P on the
kR surface of the ith bubble. It can be approximated under the incompressible assumption
as

φj(P) = −
ṘjR2

j√
d2

ij + k2R2 − 2kRdij cos θ
, (3.11)

where θ is the orientation of P with respect to the coordinate system attached to the ith
bubble. Note that φj varies with θ , i.e. φj ≡ φj(kR, θ). Hence, it needs to be integrated
over the kR surface to obtain an average value (please refer to Appendix B for details of
the integration). The final expression is shown below

φin(kR) =
R2

j Ṙj

2kRd
(dij + kR − |dij − kR|). (3.12)

For N neighbouring bubbles in the vicinity, the net potential of the incoming wave is

φin(kR) = −
N∑

j=1

R2
j Ṙj

2kRdij
(dij + kR − |dij − kR|). (3.13)
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A compressible multi-scale model for cavitating flows

The other terms such as φin
t (kR), φou

r (kR)φin
r (kR), φin

r
2
(kR) and φin

tt (kR) are obtained in a
similar way. Their final expressions are given below:

φin
t (kR) = −

N∑
j=1

2RjṘ2
j + R2

j R̈j

2kRdij

(
dij + kR − |dij − kR|) ,

φin
tt (kR) = −

N∑
j=1

2Ṙ3
j + 6RjṘjR̈j + R2

j
...
Rj

2kRdij
(dij + kR − |dij − kR|),

φou
r (kR)φin

r (kR) =
N∑

j=1

R2
j ṘjṘ

2dijRk3 (1 + dij − kR
|dij − kR| − 1

kR
(dij + kR − |dij − kR|)),

φin
r

2
(kR) =

N∑
j=1

N∑
k=1
k /= j

R2
j ṘjR2

kṘk

4dijdikk2R2
i

(
1 + dij − kR

|dij − kR| − 1
kR

(
dij + kR − |dij − kR|))

(
1 + dik − kR

|dik − kR| − 1
kR

(dik + kR − |dik − kR|)
)

+
N∑

j=1

(R2
j Ṙj)

2

(dij + kR)2(dij − kR)2 ,

φin
t (R) = −

N∑
j=1

2RjṘ2
j + R2

j R̈j

dij

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(3.14)

Substituting (3.14) in (3.7) gives a closed-form expression for I. It can be further simplified
based on the sign of (dij − kR) as shown below

I =
N∑

j=1

I∗
j

I∗
j = −1

2

(
1 + Ṙ

c
+ R

c
∂

∂t

) ⎛
⎜⎜⎝−

R2
j ṘjṘ

k4R2 +
(R2

j Ṙj)
2

(dij + kR)2(dij − kR)2 +
N∑

k=1
k /= j

R2
j ṘjR2

kṘk

k4R4

⎞
⎟⎟⎠

+(2RjṘ2
j + R2

j R̈j)

(
1

kR
− 1

dij

)
+

2Ṙ3
j + 6RjṘjR̈j + R2

j
...
Rj

kc
if dij < kR

=
(R2

j Ṙj)
2

(dij + kR)2(dij − kR)2 +
R(2Ṙ3

j + 6RjṘjR̈j + R2
j
...
Rj)

kcdij
if dij > kR

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(3.15)

where I∗
j represents the impact of the jth neighbouring bubble. The kR-RP equation, upon

substituting (3.10a–c) in (3.7) and neglecting c−2 terms, becomes

RR̈
(

1 − 1
k

− Ṙ
c

(
1 + 6

k
− 1

k4

))
+ 3

2
Ṙ2

(
1 − 4

3k
− 1

3k4 − Ṙ
3c

(
1 + 4

k
− 1

k4

))
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dij jthith

kR
P

θ

Figure 2. A sketch of two bubbles that gives a physical sense of the non-uniform effect of bubble j on the kR
surface of bubble i.

= 1
ρ

(
1 + Ṙ

c
+ R

c
∂

∂t

)
( pb − 2σ/R − 4μṘ/R − p(kRi)) + R2...R

kc
+ I, (3.16)

where I is given by (3.15).

3.2. Significance of the interaction term I
If the inter-bubble separation distance is much larger than the bubble radius (i.e. dij > R,
dij > R) and |dij/kR| � 1, then

(R2
j Ṙj)

2

(dij + kR)2(dij − kR)2 ∼ 0. (3.17)

Also, c−1 terms can be neglected for gentle bubble oscillations. Thus, I would become

I =
N∑

j=1

(
2RjṘ2

j + R2
j R̈j

) (
1

kR
− 1

dij

)

−
N∑

j=1

R2
j ṘjṘ

k4R2 +
N∑

j=1

N∑
k=1
k /= j

R2
j ṘjR2

kṘk

k4R4 if dij < kR

= 0 if dij > kR.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.18)

The important implication is that, for large inter-bubble separation distances, p(kR) alone
can capture the inter-bubble interactions when kR < dij. Else, both p(kR) and I contribute
to the inter-bubble interactions.

3.3. Special cases of the kR-RP equation
Well-known RP variants such as the incompressible RP equation, Keller–Miksis equation
and the RP equation with inter-bubble interaction can be obtained from the kR-RP equation
with appropriate assumptions as shown below.

Case 1: k → ∞
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A compressible multi-scale model for cavitating flows

For large k

I ∼ −
N∑

j=1

2RjṘ2
j + R2

j R̈j

dij
. (3.19)

Hence, (3.16) becomes

RR̈
(

1 − Ṙ
c

)
+ 3

2
Ṙ2

(
1 − Ṙ

3c

)
= 1

ρ

(
1 + Ṙ

c
+ R

c
∂

∂t

)(
pb − 2σ

R
− 4μ

Ṙ
R

− p∞
)

−
N∑

j=1

2RjṘ2
j + R2

j R̈j

dij
. (3.20)

This equation has been widely used to study the primary and secondary Bjerknes forces
(Mettin et al. 1997; Doinikov 2001) during the interaction between an acoustic pulse and
a pair of bubbles. If N = 1, I = 0. Equation (3.20) then reduces to

RR̈
(

1 − Ṙ
c

)
+ 3

2
Ṙ2

(
1 − Ṙ

3c

)
= 1

ρ

(
1 + Ṙ

c
+ R

c
∂

∂t

) (
pb − 2σ

R
− 4μ

Ṙ
R

− p∞
)

.

(3.21)

This is the well-known Keller–Miksis equation for a single bubble that accounts for
medium compressibility.

Case 2: c → ∞
For large c, all the c−1 terms will become 0. Hence (3.16) becomes

RR̈
(

1 − 1
k

)
+ 3

2
Ṙ2

(
1 − 4

3k
− 1

3k4

)
= 1

ρ

(
pb − 2σ/R − 4μṘ/Ri − p(kR)

) + I,

(3.22)

where

I =
N∑

j=1

I∗
j (3.23)

I∗
j = −1

2

⎛
⎜⎜⎝−

R2
j ṘjṘ

k4R2 +
(R2

j Ṙj)
2

(dij + kR)2(dij − kR)2 +
N∑

k=1
k /= j

R2
j ṘjR2

kṘk

k4R4

⎞
⎟⎟⎠

+ (2RjṘ2
j + R2

j R̈j)

(
1

kR
− 1

dij

)
if dij < kR

=
(R2

j Ṙj)
2

(dij + kR)2(dij − kR)2 if dij > kR. (3.24)

This is the incompressible version of the kR-RP equation.
Case 3: c → ∞ and k → ∞
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For large k and c, (3.16) becomes

RR̈ + 3
2

Ṙ2 = 1
ρ

(
pb − 2σ/R − 4μṘ/R − p∞

) −
N∑

j=1

2RjṘ2
j + R2

j R̈j

dij
. (3.25)

This is the incompressible RP equation with inter-bubble interaction terms (Bremond et al.
2006). For N = 1, (3.25) would reduce to the classic incompressible RP equation.

4. Summary of the model

To summarize the multi-scale model, the governing equations for the homogeneous
mixture of liquid and resolved vapour are

∂(ρYl)

∂t
+ ∂(ρYlulrj)

∂xj
= −∂(ρYvun)

∂t
− uunj

∂(ρYvun)

∂xj
− ρYvun

∂uunj

∂xj
− Se + Sc,

∂(ρYlrulri)

∂t
+ ∂(ρYlrulriulrj)

∂xj
= − ∂p

∂xi
+ ∂σij

∂xj
− ∂(ρYvunuuni)

∂t
− uunj

∂(ρYvunuuni)

∂xj
,

∂(ρeslr)

∂t
+ ∂(ρeslr ulrj)

∂xj
= ∂Qj

∂xj
− p

∂uj

∂xj
+ σij

∂ui

∂xj
− ∂(ρYvunesun)

∂t

−uj
∂(ρYvunesun)

∂xj
− ρYvunesun

∂uj

∂xj
,

∂(ρYvres)

∂t
+ ∂(ρYvresulrj)

∂xj
= Se − Sc,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.1)

where the terms on the right-hand side with divergence rate (∂uunj/∂xj) are modelled in
terms of unresolved bubble properties

ρYvun

∂uunj

∂xj
=

N∑
k=1

3ρvkαkṘk

Rk
, ρYvunuuni

∂uunj

∂xj
=

N∑
k=1

3ρvk ukαkṘk

Rk
,

ρYvunesun

∂uunj

∂xj
=

N∑
k=1

3ρvk Cvv TkαkṘk

Rk
, αunpun

∂uunj

∂xj
=

N∑
k=1

3pkαkṘk

Rk
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.2)

The dynamics of the unresolved bubbles is governed by the following kR-RP equation:

RR̈
(

1 − 1
k

− Ṙ
c

(
1 + 6

k
− 1

k4

))
+ 3

2
Ṙ2

(
1 − 4

3k
− 1

3k4 − Ṙ
3c

(
1 + 4

k
− 1

k4

))

= 1
ρ

(
1 + Ṙ

c
+ R

c
∂

∂t

)
( pb − 2σ/R − 4μṘ/R − p(kRi)) + R2...R

kc
+ I (4.3)
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where

I =
N∑

j=1

I∗
j (4.4)

and

I∗
j = −1

2

(
1 + Ṙ

c
+ R

c
∂

∂t

) ⎛
⎜⎜⎝−

R2
j ṘjṘ

k4R2 +
(R2

j Ṙj)
2

(dij + kR)2(dij − kR)2 +
N∑

k=1
k /= j

R2
j ṘjR2

kṘk

k4R4

⎞
⎟⎟⎠

+ (2RjṘ2
j + R2

j R̈j)

(
1

kR
− 1

dij

)
+

2Ṙ3
j + 6RjṘjR̈j + R2

j
...
Rj

kc
if dij < kR

=
(R2

j Ṙj)
2

(dij + kR)2(dij − kR)2 +
R(2Ṙ3

j + 6RjṘjR̈j + R2
j
...
Rj)

kcdij
if dij > kR. (4.5)

For a resolved gas bubble, Se = Sc = 0; pb = pvsat for an unresolved vapour bubble. For
a kth unresolved gas bubble, pk is obtained from the following equations (accounting for
thermal damping):

1
R3γ

d
(

pkR3γ
)

dt
= 3(γ − 1)

R2 kwβ(Tk − T0), Tk = pk/ρRg. (4.6a,b)

4.1. Special cases

4.1.1. Case αun = 0
If αun = 0, all the unresolved source terms on the right-hand side of (2.6) become 0, and
the equation reduces to

∂(ρYl)

∂t
+ ∂(ρYluj)

∂xj
= −Se + Sc,

∂(ρui)

∂t
+ ∂(ρuiuj)

∂xj
= − ∂p

∂xi
+ ∂σij

∂xj
,

∂(ρes)

∂t
+ ∂(ρesuj)

∂xj
= ∂Qj

∂xj
− p

∂uj

∂xj
+ σij

∂ui

∂xj
,

∂(ρYv)

∂t
+ ∂(ρYvuj)

∂xj
= Se − Sc,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.7)

with the mixture pressure p as

p = ρYlKlT
p

p + Pc
+ ρYvRvT. (4.8)

This is the HMM derived by Gnanaskandan & Mahesh (2015).
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4.1.2. Case αres = 0
If αres = 0 and ρvun is neglected, then ρYl = ρl(1 − αun) and ρYun = ρvunαun ∼ 0. In
addition, if the liquid is assumed to have an isentropic behaviour, (2.6) would then become

∂ρl

∂t
+ ∂(ρluj)

∂xj
= ρl

1 − αun

(
∂αun

∂t
+ uj

∂αun

∂xj

)
,

∂ρlui

∂t
+ ∂(ρluiuj)

∂xj
= ρlui

1 − αun

(
∂αun

∂t
+ uj

∂αun

∂xj

)
− 1

1 − αun

(
∂p
∂xi

− ∂σij

∂xj

)
,

p = p0 + c2(ρl − ρl0).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.9)

These are the Eulerian equations for liquid in the EL model developed by Fuster &
Colonius (2011).

5. Numerical method

The left-hand side of (2.6) is solved using a predictor–corrector approach developed
by Gnanaskandan & Mahesh (2015). The predictor step uses a non-dissipative scheme
to compute the convective fluxes at the faces of the cell, and the time advancement
is computed using a second-order explicit Adams–Bashforth scheme. The corrector
step uses a characteristic-based filtering method to add dissipation locally and capture
discontinuities in the flow. This method has been validated for a variety of problems and
for details on implementation, refer to Gnanaskandan & Mahesh (2015). We initialize the
calculations with background vapour/gas α = 10−6 − 10−9 in liquid regions and liquid
fraction of 10−6/zero in vapour/gas bubbles. The temporal terms on the right-hand side of
(2.6) are computed using a second-order backward difference scheme. For the Lagrangian
model, we use the fourth-order Runge–Kutta method to compute the temporal derivative
term of the kR-RP equation. Using such higher-order time-stepping scheme ensures that
events such as violent bubble collapse are accurately captured.

6. Results

The HMM, a special case of the current multi-scale model, has been used to study
problems such as sheet to cloud cavitation transition over cylinders (Brandao et al. 2020)
and wedges (Gnanaskandan & Mahesh 2016; Bhatt & Mahesh 2020) where phenomena
such as re-entrant jet formation and bubbly shocks were observed. Hence, in this paper, we
choose cases that emphasize the other features of the multi-scale model such as accurately
estimating the behaviour of single unresolved bubbles, inter-bubble interactions between
the micro-bubbles and the mutual interaction between resolved cavities and unresolved
bubbles.

Section 6.1 demonstrates the ability of the model to capture the collapse dynamics of
both resolved and unresolved vapour bubbles. The model is validated for gas bubbles
in § 6.2. Inter-bubble interactions between gas bubbles are considered in § 6.3. Section
6.4 demonstrates the ability to capture the interaction between resolved and unresolved
gas bubbles. Finally, we discuss a complex problem in § 6.5 where 1200 gas bubbles are
exposed to a strong acoustic pulse.

6.1. Resolved and unresolved vapour bubbles
The multi-scale model is first validated for its ability to capture the collapse of both,
resolved and unresolved vapour bubbles subjected to a high external pressure. The relevant
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Figure 3. Bubble size comparison between the multi-scale model and the RP ODE for the collapse of a
(a) resolved vapour bubble and an (b) unresolved vapour bubble. (c) The independence of the multi-scale
model from k is shown for the collapse of the unresolved vapour bubble.

parameters are as follows:

resolved bubble R0 = 1 mm; R0/
x = 50; P0 = 0.02 atm

unresolved bubble R0 = 0.1 mm; R0/
x = 0.5; P0 = 0.02 atm,

}
(6.1)

where R0, 
x and P0 are the initial bubble size, cell size and initial bubble pressure,
respectively; k is the constant parameter that allows p(kR) to capture the effect of local
disturbances on the unresolved bubble – k = 5 here. The external pressure (Pext) for both
cases is 1 atm. For the unresolved bubble case, αres = 0 and αun > 0 in (2.6). Similarly,
αres > 0 and αun = 0 for the resolved bubble case. Figures 3(a) and 3(b) compare the
unresolved and resolved vapour bubble size with the RP equation, respectively. We observe
good agreement between the multi-scale model and the reference solution for both cases.
Also, the collapse time for both cases agree with the reference solution. The kR-RP
equation is expected to be independent of k for a single bubble. We choose k = 5 and
40 for this purpose, where k = 5 represents regions close to the bubble and k = 40
represents regions far away. The comparison is shown in figure 3(c), and we observe a
good agreement.
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Figure 4. (a) Comparison of the bubble size between the multi-scale model and the RP ODE for an unresolved
gas bubble. (b) The instantaneous pressure at three different locations from the bubble centre (r = 5R, r = 10R
and r = 40R) is compared with the analytical solution (�). (c) The bubble size is compared for k = 5, 10 and
40 to demonstrate the insensitivity of the multi-scale model to k.

6.2. Unresolved gas bubble
We simulate the collapse of an unresolved gas bubble subjected to a high external pressure.
A key difference between vapour and gas bubbles is that the gas pressure varies inversely
with the bubble volume. Hence the gas bubble rebounds following its initial collapse.
For this problem, R0 = 0.1 mm, R0/
x = 0.5, P0 = 0.5 atm, Pext = 1 atm and k = 5.
Figure 4(a) shows the bubble radius for three oscillation cycles and the good agreement
between the multi-scale model and the reference RP equation solution.

Following its initial collapse, the gas bubble rebounds and continues to oscillate. During
these oscillations, it generates pressure waves that propagate away from its surface. The
simulated values of pressure are compared with the analytical solution at three different
locations: r = 5R (close to the bubble), r = 10R (intermediate distance from the bubble)
and r = 40R (far away from the bubble). Figure 4(b) shows the good agreement between
the analytical and multi-scale model solutions at all three locations. Since the pressure
wave decays with distance from the bubble, its amplitude is the highest at r = 5R and the
lowest at r = 40R. This example illustrates the ability of the multi-scale model to capture
the two-way interaction between the bubble and the surrounding liquid. We also compare
the solutions for different k (k = 5, 10 and 40) to test the robustness of the model, as
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done for the unresolved vapour bubble. Figure 4(c) shows the comparison, and we indeed
observe a good agreement.

6.3. Bubble–bubble interaction

6.3.1. A pair of bubbles
When a gas bubble is exposed to an acoustic wave, its initial size and the wavelength
of the acoustic wave determine the intensity of its oscillations. However, this intensity
can be damped or amplified when another bubble oscillates in the vicinity. The ability
of the multi-scale model to capture such bubble–bubble interactions is demonstrated in
this section. For this purpose, we compare the solutions of the kR-RP equation and the
analytical equation (3.20). Equation (3.20) has been widely used to understand the nature
of primary and secondary Bjerknes forces that arise during the interaction between bubbles
and an acoustic wave. Hence, it is chosen here for comparison. For a pair of bubbles, (3.20)
becomes

R1R̈1

(
1 − Ṙ1

c

)
+ 3

2
Ṙ2

1

(
1 − Ṙ1

3c

)
=

(
1 + Ṙ1

c
+ R1

c
∂

∂t

) (
pb1 − p∞

ρ

)

− 2Ṙ2
2R2 + R2

2R̈2

d
, (6.2)

where the subscripts 1 and 2 refer to the first and second bubbles, respectively; d denotes
the distance between the bubbles. The last term in this equation (1/d(2Ṙ2

2R2 + R2
2R̈2))

accounts for the interaction between bubbles. We consider two cases for validation. The
parameters of the problem are

Acoustic wave: P = P0 + 
P sin (2πft); 
P = 1.32 bar; f = 75 kHz; P0 = 1 bar.

Initial bubble size: R10 = R20 = 50 μm.

Distance between the bubbles (d): 4 mm − first case; 0.4 mm − second case.

⎫⎪⎪⎬
⎪⎪⎭ (6.3)

The bubbles are closer to each other in the second case; hence the nature of the interaction
is expected to be different; k = 4 for both cases, and since the bubbles are identical, results
are shown for one of the bubbles. Figure 5(a) shows the first case (bubbles far apart),
and figure 5(b) shows the second case (bubbles close to each other). Good agreement
is obtained between the multi-scale model and the reference solution for both cases.
While the first cycle of oscillation is similar for both cases, the subsequent oscillations
get damped when the bubbles are closer, indicating a strong interaction between them. It
is important to test the sensitivity of the solution to k as both p(kR) and I are strongly
dependent on k. Figure 5(c) shows the bubble size for the second case for k = 2, 4 and 10
and we observe a good agreement among them. This strengthens the robustness feature of
the kR-RP equation as the insensitivity of the bubble dynamics for a cluster of bubbles is
non-trivial.

We also perform the simulations with and without I for each k to understand its
significance; kR < d for k = 2 and 4, and kR > d for k = 10. Hence, I could be negligible
for the former but significantly important for the latter, as per the discussion in § 3.2.
Figures 6(a), 6(b) and 6(c) show the plots for k = 2, 4 and 10, respectively. The solutions
indeed agree for k = 2 and 4; however, they differ for k = 10 as expected. In addition,
we also analyse the ratio of I to p(kR) for each k as shown in figure 6(d). Firstly, I is
at least an order of magnitude larger for k = 10 than that for k = 2. Secondly, at some
time instances (between T = 40 and 60 μs), I is larger than p(kR) and hence cannot

961 A6-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

19
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.192


A. Madabhushi and K. Mahesh

RP

Multi–scale

R

(a) (b)

(c)

RP

Multi–scale

t (µs)

t (µs)

t (µs)

k = 2

k = 4

k = 10

R

0
0.5

1.0

1.5

2.0

2.5

0.5

1.0

1.5

2.0

2.5

0.5

1.0

1.5

2.0

2.5

10 20 30 40 50 60

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

Figure 5. The bubble–bubble interaction feature of the multi-scale model is demonstrated for a pair of
unresolved gas bubbles. The bubble radius (R) is compared between the multi-scale model and the analytical
equation (3.20) when they are (a) far apart (d = 4 mm) and (b) close to each other (d = 0.4 mm). (c) The
independence of the bubble dynamics from k is shown by comparing the bubble size for k = 2, 4 and 10.

be neglected when kR > d. Therefore, p(kR) alone can capture these interactions when
kR < d. This implies that for kR < d, a bubble’s dynamics is well represented by the
pressure at a finite distance from the bubble when this pressure is in turn affected by
the incoming waves from neighbouring bubbles.

6.3.2. Multiple bubbles
We consider sixteen bubbles with initial size (R0 = 50 μm) and distance between adjacent
bubbles (d) being 0.6 mm (figure 7a). The dimensions of the domain are Lx = 100 mm,
Ly = 100 mm and Lz = 500 mm. The acoustic wave is the same as that used in § 6.3. Since
the bubbles lie across different planes along the direction of the wave propagation, the
bubbles oscillate out of phase. As a result, the interaction dynamics is more complicated
than that of the pair of bubbles discussed in § 6.3.1. We investigate the sensitivity of the
bubble dynamics to k by considering three values of k: 3, 6 and 12. Figure 7(b), which
shows a two-dimensional sketch of the set-up for four bubbles, gives a physical sense of
the chosen k. We focus on one bubble (black) for which the spherical surfaces represented
by the different k are shown. Note that k = 3 and 6 surfaces do not include neighbouring
bubbles (i.e. kR < d) whereas k = 12 intersects some neighbouring bubbles (i.e. kR � d).
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Figure 6. The simulations are performed for (a) k = 2, (b) k = 4 and (c) k = 10 with and without I for a pair
of bubbles with the separation distance, d = 0.4 mm. (d) The ratio of I to p(kR) is compared for k = 2 and 10.

Figure 7(c) shows the average size of the bubbles, and we observe a good agreement for
all k. This underlines the robustness feature of the multi-scale model.

6.4. Unresolved and resolved bubble pair
Here, we consider a situation where both unresolved and resolved cavities co-exist. A pair
of resolved and unresolved gas bubbles are initially subjected to high external pressure,
and their subsequent interaction is studied. Figure 8 shows the schematic of the problem,
defined as follows:

resolved bubble R10 = 1 mm; R10/
x = 25; P10 = 0.5 atm

unresolved bubble R20 = 0.1 mm; R20/
x = 1.25; P20 = 0.5 atm

domain size − 10 mm � x, y � 10 mm; −10 mm � z � 15 mm

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (6.4)

The unresolved bubble is much smaller than the resolved bubble. Hence, it will have a
negligible impact on the resolved bubble, whereas the resolved bubble can significantly
affect its smaller counterpart. Figure 9(a) shows the radius of the unresolved bubble
with and without the resolved bubble in its vicinity. Since the initial pressure of the
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Figure 7. (a) Sketch of the set-up for the multi-bubble case to study the insensitivity of bubble dynamics to
k. (b) A two-dimensional sketch of the bubble cluster giving a physical sense of the surfaces represented by k.
(c) Comparison of the average size of the bubble cluster (R̄) among k = 3, 6 and 12.

resolved bubble is much less than the ambient pressure, shock waves are generated that
travel towards its centre and expansion waves propagate outward. These expansion waves
cause the unresolved bubble to experience lower pressure than the ambient pressure. As
a result, the intensity of its oscillations decreases during the initial phase, as observed
in figure 9(a) (before t = 0.1 ms). As the resolved bubble starts to collapse, it generates
compression waves that propagate outward. This can be observed in figure 9(b), which is
a snapshot taken during the collapse of the resolved bubble. As these compression waves
hit the unresolved bubble, its oscillation intensity gets dampened further as observed in
figure 9(a) (post t = 0.15 ms). Eventually, the unresolved bubble comes to rest, whereas
the resolved bubble oscillates unperturbed. Capturing such impact of the resolved bubble
on the unresolved counterpart would not have been possible if the Eulerian equations
governed only the liquid. This result demonstrates the importance of splitting the net
vapour quantities into the constituent resolved and unresolved components, which allows
for tracking their behaviour independently and accurately.
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Figure 8. Problem set-up for the interaction between a resolved and an unresolved gas bubble.
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Figure 9. (a) The radius (R) of the unresolved bubble (bun) is shown with and without the resolved bubble
(bres) in its vicinity. (b) Instantaneous snapshot showing the pressure wave generated by the resolved bubble
during its collapse. The bubbles are represented by the iso-contour values of volume fraction (α), coloured with
pressure (p): α = 0.65 for the resolved bubble and α = 0.015 for the unresolved bubble.

6.5. Bubble-cloud interaction with an acoustic wave
We apply the multi-scale model to a problem with a large number of gas bubbles:
1200 bubbles exposed to an incoming pressure pulse P = P0 + 
P sin(2πft) where P0 =
1 atm, 
P = 10 atm and f = 300 kHz (Maeda & Colonius 2018). The initial size of all
the bubbles is R0 = 10 μm and bubble to cell size ratio (R0/
x) is 1/10. The bubbles are
distributed randomly in a box with the following dimensions: −5 mm � x, y, z � 5 mm.

Figure 10(a– f ) shows the interaction between the pressure pulse and the bubbles. The
pressure pulse approaches the bubble cloud from the left (figure 10a). The small size of
the bubbles implies a small initial volume fraction (α0 ∼ 0.001) as seen in figure 10(b). As
the pulse impinges on the cloud (figure 10c), the exterior bubbles (close to the left edge of
the cloud) undergo acoustic cavitation first. A large value of 
p causes a strong collapse
and rebound of these bubbles, with the peak volume fraction reaching ten times the initial
volume fraction (α ∼ 0.015) as observed in figure 10(d). The pulse then passes through
the cloud, causing the bubbles in the interior to undergo acoustic cavitation (figure 10 f ).
Meanwhile, the acoustic pulse splits into transmitted and reflected components as it
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T = 21 µs
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–4.0–3.2–2.4–1.6–0.8 0 0.8 1.6 2.4 3.2 4.0

p:

p:

p:

α:

0 0.004 0.008 0.012 0.016α:

0 0.004 0.008 0.012 0.016α:

T = 21 µs

T = 17 µs T = 17 µs

Interior bubbles
undergoing
acoustic cavitation

Exterior bubbles
undergoing
acoustic cavitation

T = 12 µs T = 12 µs

(e)

(b)(a)

(c) (d )

Figure 10. The interaction between the acoustic pulse and a cluster of 1200 bubbles is shown via the
instantaneous pressure (p) and volume fraction (α) contour plots at three different instances. (a,b) The acoustic
pulse travelling towards the bubble cloud, (c,d) occurrence of acoustic cavitation as the pulse impinges on the
bubble cloud and (e, f ) reflection and transmission of the pulse by the bubble cloud.

interacts with the bubble cloud (figure 10e). As these pressure waves propagate away
from the cloud, the oscillations decay with time, and the bubbles will eventually come
to rest.

Figures 10(d) and 10( f ) show that the expansion of the exterior bubbles (α ∼ 0.015)
appear to be more intense than those in the interior (α ∼ 0.007). To understand this
difference, we compare the size (R) of a bubble lying at the edge of the cloud (z = −5L/10)
with the size of two bubbles lying in the interior of the cloud (z = −3L/10 and z = −L/10)
in figure 11(a). The amplitude of the oscillations is relatively smaller for the interior
bubbles implying that they are exposed to a weaker pressure pulse as compared with
the exterior bubble. This is the classic shielding phenomenon (Wang & Brennen 1999)
wherein the bubbles lying at the edge of the cloud dampen the pressure waves impinging
the cloud and thus shield the interior bubbles.

The initial strong expansion of the exterior bubble is followed by an intense collapse
where its size decreases almost by a factor of 10 (figure 11a). At such a large
collapse velocity, the liquid compressibility effects on the bubble can be significant. To
assess this impact, we perform the simulation with both the kR-RP equation and its
incompressible version (3.22). We compare the volume fraction of the cloud for these
two cases with the reference solution (Maeda & Colonius 2018) in figure 11(b). First,
we observe good agreement between the multi-scale model and the reference solution.
In addition, reasonable agreement is observed among the three curves for the first two
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z = −5L/10

z = −3L/10

z = −L/10

R α

(×10−3)
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(b)(a)

t (µs) t (µs)

Figure 11. (a) The shielding effect is shown for bubbles at three different locations. The outermost bubble is
located at z = −5L/10, and the other two bubbles are in the interior at z = −3L/10 and z = −L/10 (L – size
of the bubble cloud). (b) The volume fraction (α) of the bubble cloud estimated by the incompressible kR-RP
equation (− − −) and the kR-RP equation (——–) are compared with the reference solution (�).

oscillation cycles. For the subsequent oscillations, the incompressible version estimates
higher peaks for α than the kR-RP equation. This is because the latter accounts for
medium compressibility that dampens violent oscillations of the bubbles. As a result,
the incompressible version estimates the bubbles to oscillate longer, causing a slower
decay in α during the later stages. This difference in the solutions suggests the need to
account for medium compressibility to simulate such flows. Note that Maeda & Colonius
(2018) used an RP equation derived by Fuster & Colonius (2011) where they expressed
p∞ in terms of the local liquid pressure and velocity potential of the N neighbouring
bubbles to capture local flow effects. The velocity potential of the bubbles was modelled
separately using Bernoulli’s equation. Obtaining the velocity potential of these N bubbles
required solving a system of N additional equations which can become computationally
expensive. In contrast, the derivation of kR-RP equation in terms of p(kR) and the
near-field approximation of the velocity potential allows for the local flow effect and
the inter-bubble interactions to be taken into account without being computationally
expensive.

7. Summary

Cavitating flows possess a wide range of length scales of vapour, ranging from massive
vapour cavities to micro-bubbles. Both vapour cavities and micro-bubbles can display
highly compressible behaviour. Hence, we propose a compressible multi-scale model
that captures the dynamics of vapour cavities that can be resolved on the computational
grid alongside subgrid micro-bubbles. A key idea behind the model is to split the net
vapour mass, momentum and energy in the compressible homogeneous mixture equations
into constituent resolved and unresolved components (e.g. ρYv = ρYvres + ρYvun). Use of
the mixture equation allows the large-scale vapour dynamics to be captured, in contrast
to approaches that treat the liquid as a carrier fluid for subgrid bubbles. The explicit
splitting of variables enables independent treatment of the resolved and unresolved
vapour components. The resolved variables are tracked in an Eulerian sense using a
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transport equation. The subgrid variables are obtained from a Lagrangian representation
using a novel RP variant developed in this paper, termed the ‘kR-RP equation’. The impact
of the unresolved micro-bubbles on the resolved phase is explicitly modelled in terms of
the bubble radii, velocities and volume fraction.

The basic idea behind the kR-RP equation is that far-field pressure is easily defined
for a single bubble but is not as obvious for multiple bubbles. The kR − RP model is
therefore formally derived in terms of the pressure at a finite distance, kR from the bubble;
p(kR) may therefore be either a near-field or far-field pressure. Such choice is attractive
in our opinion for numerical simulations. We show that the model exactly recovers the
classical RP equations in the limits that k and sound speed c become very large. Also we
show that the results are independent of k for a single bubble for all k, and for multiple
bubbles when kR < d. Numerical results are discussed to demonstrate the robustness of
the model to the choice of k which can be different for each bubble if necessary. The
proposed multi-scale model reduces to HMM in the absence of unresolved bubbles and to a
purely EL model in the absence of resolved vapour cavities. The HMM has been validated
against experiment for sheet to cloud cavitation transition over wedges (Gnanaskandan &
Mahesh 2016; Bhatt & Mahesh 2020) and cylinders (Brandao et al. 2020). Hence, this
paper emphasizes the ability of the multi-scale model to predict other problems such as
the behaviour of single resolved and unresolved bubbles, inter-bubble interactions and the
mutual interaction between resolved cavities and unresolved bubbles.

The model is able to capture bubble collapse and oscillation for both unresolved and
resolved vapour and gas bubbles. The behaviour is independent of k for single bubbles.
Inter-bubble interactions are considered first for a pair of unresolved bubbles exposed to
an acoustic pulse, and then for a cloud of 16 bubbles. The interaction term, I is shown to
be negligible when kR < d (d being the inter-bubble separation distance), and comparable
to p(kR) when kR > d. This suggests that p(kR) alone can capture the inter-bubble
interactions for an appropriate k (kR < d). We also demonstrate the independence of
bubble dynamics from k when kR � d for bubble clusters. The model’s ability to
capture both resolved and unresolved vapour dynamics simultaneously is demonstrated
by simulating a problem where a resolved bubble interacts with an unresolved bubble. The
collapse of the resolved bubble generates compression waves that dampen the oscillations
of the unresolved bubble. Finally, the model is applied to a cluster of 1200 bubbles
exposed to an acoustic pulse. The rapid expansion and violent collapse of the bubbles, as
well as the bubble–bubble interactions, are captured accurately by the multi-scale model.
Furthermore, the shielding effect is observed where the incoming acoustic wave weakens
as it passes through the exterior bubbles.
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Appendix A. Derivation of the kR-RP equation

The key ideas of the derivation are discussed in § 3. The detailed derivation is shown
below. Substituting (3.5a,b) in (3.4) yields

−c
(

1
k
φou(kR) + Rφou

r (kR)

)
+ c(φou(R) + Rφou

r (R)) + 1
2

R
(
φou

r
2
(kR) − φou

r
2
(R)

)

= R
(

p(R) − p(kR)

ρ

)
+ I∗∗

where I∗∗ = −c
(

1
k
φin(kR) + Rφin

r (kR)

)
+ c(φin(R) + Rφin

r (R))

−1
2

R(φin
r

2
(kR) − φin

r
2
(R)) − R(φin

r (kR)φou
r (kR) − φin

r (R)φou
r (R)).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A1)

Substituting the kinematic boundary condition (φou
r (R) ≈ Ṙ, φin

r (R) ≈ 0) in (A1) and
taking its temporal derivative yields

RR̈
(

1 − Ṙ
c

)
+ Ṙ2

(
1 − Ṙ

2c

)
− 1

k
d
dt

φou(kR) −
(

Ṙ + R
d
dt

)
φou

r (kR)

+1
2

(
Ṙ
c

+ R
c

d
dt

)
φou

r
2
(kR) + d

dt
φou(R) = 1

ρ

(
Ṙ
c

+ R
c

d
dt

)
( p(R) − p(kR)) + I

where = dI
dt

∗∗
= −1

k
d
dt

φin(kR) −
(

Ṙ + R
d
dt

)
φin

r (kR)

−1
2

(
Ṙ
c

+ R
c

d
dt

) (
φin

r
2
(kR) + 2φin

r (kR)φou
r (kR)

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(A2)

The expressions for (d/dt)φou(kR) and (d/dt)φou
r (kR) are obtained as shown below

d
dt

φou(kR) = d
dt

(
1

kR
f (t − kR/c)

)
,

= − Ṙ
kR2 f (t − kR/c) + 1

kR

(
1 − kṘ

c

)
f ′(t − kR/c),

= −kṘ
(

1
k2R2 f (t − kR/c) + 1

kRc
f ′(t − kR/c)

)
+ 1

kR
f ′(t − kR/c),

= kṘφou
r (kR) + φou

t (kR). (A3)

d
dt

φou(kR) = d
dt

(
− 1

k2R2 f (t − kR/c) − 1
kRc

f ′(t − kR/c)
)

= 2Ṙ
k2R3 f (t − kR/c) − 1

k2R2 (1 − kṘ/c)f ′ (t − kR/c)

+ Ṙ
kR2c

f ′(t − kR/c) − 1
kRc

(1 − kṘ/c)f ′′(t − kR/c)
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= 2Ṙ
R

(
1

k2R2 f (t − kR/c) + 1
kRc

f ′(t − kR/c)
)

− 1
k2R2 f ′(t − kR/c)

− 1
kRc

(1 − kṘ/c)f ′′(t − kR/c)

= −2Ṙ
R

φou
r (kR) − 1

kR
φou

t (kR) − 1
c

(
1 − kṘ

c

)
φou

tt (kR). (A4)

The same approach can be used to obtain (d/dt)φin(kR) and (d/dt)φin
r (kR). The final

expressions are shown below
d
dt

φin(kR) = kṘφin
r (kR) + φin

t (kR),

d
dt

φin
r (kR) = −2Ṙ

R
φin

r (kR) − 1
kR

φin
t (kR) + 1

c

(
1 + kṘ

c

)
φin

tt (kR).

⎫⎪⎪⎬
⎪⎪⎭ (A5)

From (A3), (A4) and (A5)

1
k

d
dt

φou(kR) +
(

Ṙ + R
d
dt

)
φou

r (kR) = −R
c

(
1 − kṘ

c

)
φou

tt (kR)

1
k

d
dt

φin(kR) +
(

Ṙ + R
d
dt

)
φin

r (kR) = R
c

(
1 + kṘ

c

)
φin

tt (kR)

R
(

1 + Ṙ
c

)
d
dt

φin
r (R) + d

dt
φin(R) = R

c
φin

tt (R) − Ṙ
c
φin

t (R) (neglecting c−2 terms)

d
dt

φou(R) = Ṙ2 + φou
t (R).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A6)

Substituting φou
t (R) from (3.4) yields

d
dt

φou(R) = (φou
t (kR) + φin

t (kR) − φin
t (R))

+ 1
2

(
φou

r
2
(kR) + φin

r
2
(kR) + 2φin

r (kR)φou
r (kR)

)
+ p(R) − p(kR)

ρ
+ Ṙ2

2
.

(A7)

Substituting p(R) = pb − 2σ/R − 4μṘ/R, (A6) and (A7) in (A2) yields

RR̈
(

1 − Ṙ
c

)
+ 3

2
Ṙ2

(
1 − Ṙ

3c

)
= 1

ρ

(
1 + Ṙ

c
+ R

c
∂

∂t

)(
pb − 2σ

R
− 4μ

Ṙ
R

− p(kR)

)

−1
2

(
1 + Ṙ

c
+ R

c
∂

∂t

)
φou

r
2
(kR) − φou

t (kR) − R(kṘ − c)
c2 φou

tt (kR) + I

where I = −1
2

(
1 + Ṙ

c
+ R

c
∂

∂t

) (
φin

r
2
(kR) + 2φin

r (kR)φou
r (kR)

)
− φin

t (kR)

−R(kṘ + c)
c2 φin

tt (kR) + φin
t (R).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A8)
Equation (A8) is referred to as the kR-RP equation.
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Appendix B. Obtaining an expression for the potential of the incoming wave

In § 3.1, the velocity potential of the incoming wave (φj) from a neighbouring bubble is
not uniform over the kR surface, i.e. φj ≡ φj(kR, θ). Hence it needs to be integrated over
the kR surface to obtain an average value. The integration process is shown below

φj(P) = −
ṘjR2

j√
d2

ij + k2R2 − 2kRdij cos θ
(B1)

φin(kR) = 1
4π(kR)2

�
kR

φj dS = 1
4π(kR)2

∫ π

θ=0

∫ 2π

Θ=0
φj(kR sin θ dθ) (kR dΘ)

= 1
4π

∫ π

θ=0

∫ 2π

Θ=0
−

R2
j Ṙj√

d2
ij + k2R2 − 2kRd cos θ

sin θ dθ dΘ

=
R2

j Ṙj

2kRd
(dij + kR − |dij − kR|). (B2)

The other terms (φin
t (kR), φou

r (kR)φin
r (kR), φin

r
2
(kR) and φin

tt (kR)) are obtained in a similar
way.
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