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Abstract. In this paper a new proof of a theorem of Ruelle about real Perron-
Frobenius type operators is given. This theorem is then extended to complex
Perron-Frobenius type operators in analogy with Wielandt's theorem for matrices.
Finally two questions raised by Ruelle and Bowen concerning analyticity properties
of zeta functions for flows are answered.

0. Introduction
The operator S£s we shall be studying has its origins in statistical mechanics. In this
context it is only necessary to consider its action on the space of real-valued functions
(or interactions) of exponentially decreasing variation ZFe. Ruelle showed that the
spectrum of i?/: ^ e -» 3Fe ( /e S'g) satisfies a Perron-Frobenius type theorem (theorem
1) [15]. Subsequently other proofs of this, and other related results, have been
developed [20], [4], ([17, p. 83]). In § 1, we present a new proof of the existence of
a maximal eigenvalue for ££j.

One major application of Ruelle's theorem is the construction of meromorphic
extensions for certain generalized zeta functions [16].

It is the purpose of this paper to present a generalization of this theorem to
describe the spectrum of i£f for complex functions of exponentially decreasing
variation (theorem 2). This subsumes a complex version of the Perron-Frobenius
theorem for matrices due to Wielandt (proposition 1). This new spectral theorem
provides a more natural setting for the ingenious techniques developed by Ruelle
([17, pp. 93-95]), and enables us to produce extension results for zeta functions
(theorem 3) subsuming those due to Ruelle [16] and Parry and the author ([12,
theorem 1]).

In the last two sections we give examples which answer negatively questions
raised by Ruelle ([17, p. 173]) and Bowen ([1, p. 31]). (During the writing of this
paper the author discovered that the example in § 4 was known to Ruelle [18].)

This paper is an offshoot of the joint work of Parry and the author concerning
asymptotic estimates for the number of closed orbits for Axiom A flows [12]. Parry
has since derived other interesting estimates as a result of applying ideas from
analytic number theory to the study of Axiom A flows [11].
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1. The Ruelle operator theorem
Let A be an aperiodic zero-one matrix of rank k and define

A\Xm xn+\) 1 j .eT\{l,2,...,
0

The space 2^ is compact and zero dimensional with respect to the topology with
basis consisting of sets of the form {x e 2^|x,, = z,, 0 < i s n - l } .

The (one-sided) shift of finite type cr:2^-»2^ is the continuous map given by
(crx)n = xn + |. Since A is aperiodic a is (topologically) mixing.

I f / :2^-»R is continuous, the pressure is defined by

\ h)i(o-)+ fdfj. /j, is o--invariant t.

This supremum is always attained and the measures for which P(f) — h^cr) +$fd(i
are called equilibrium states ([21, p. 224]).

Define var«/= sup{\f(x)-f(y)\|x,=yh 0 < i < / i - l } then f o r O < 0 < l let

= sup

In this section our main interest will be in the real Banach space

with norm |||/|||e = max {||/||a» \\f\\»}- Given fe ^e define an operator Z£f:2Fe^ 3FB

by

£fh(z)=Z^xp(f(y))h(y).

We now present a proof of the Ruelle operator theorem which does not involve
measures. The existence part was suggested by techniques employed by Krasnoselskii
in [9] for a different problem. The rest of the proof is a combination of Ruelle ([17,
p. 90]) and Walters [20].

THEOREM 1 (Ruelle). Let cr be a topologically mixing one-sided shift of finite type and
letfe 3Fe. The operator !£shas eP(f) as a simple eigenvalue (with a positive eigenvector).
Furthermore the rest of the spectrum is contained in a disc of radius strictly smaller
than enf\

Proof Let A denote the || || ̂ -closed set of positive continuous functions g: 2 \ -* U+

with Uglloo^ 1 and

g(x) £g(y)exp(6n | |/ | | „ /1 -0)

whenever x, = yh 0 < i < n - 1. Since
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A complex Ruelle-Perron-Frobenius theorem 137

for such x and y, A is equicontinuous and therefore || Hoc-compact by the Arzela-
* Ascoli theorem.

The continuous map Ln: A -* A given by

has a fixed point hn by the Schauder-Tychonoff theorem. If An denotes
+ l/n)|U then

and so An > e~ll/IL. If h is a limit point of {hn} then <£fh = A A, where A = \\<£fh \\oo> 0.
The eigenfunction h is strictly positive since if h(x) = 0 for some x then

= I cxp(f(y))h(y) = 0,

(where/"(y) =f(y) +f(ay)+- • • +f{o-" '>>))• This would make h zero on the dense
set {ylcr"^ = x for some n > 0} contradicting A > 0.

The eigenvalue A is simple since if Z£fg = Ag and t = inf {g/f} then ( / / - g)(x) = 0
for some x. The preceding argument applied to f / - g > 0 shows that tf=g.

By replacing / b y / + log / i - log / i °e r - log A we may assume that £ES 1 = 1. The
general effect of this change is to scale the spectrum of t£f by A.

Since A is aperiodic, AM > 0 for some M. Given z, x choose y e {a~"~Mz} with
X; = yh 0 < i s n - l . Then

and

I exp(/"(x))<fc- I exp(/"+M(y)) = fc-l (fe>0)

Thus P( / ) = limn^0O (1/n) logXo."x=xexp (f(x)) = 0, by use of the variational prin-
ciple ([21, p. 218]). Thus for our original/ log A = P(f). It is easy to show that (for
some constant C > 0)

for all g e ^e , n > 0. This means that {-2/g}ls equicontinuous with respect to || ||oo
and there exists a limit point /. If we write a(g) = sup {g(x)} and j8(g) = inf {g(x)} then

a(g)>a(J2>g)>-••><*(/)= a(i?;/) n > 0

and

Since cr is mixing the equalities show / is a constant. Furthermore since a(/) = y3(/)
the sequence i?"g converges uniformly to /.

To remove the maximal eigenvalue consider i£f acting on the quotient space
&e/R. On this space (1.1) becomes

Since var0 if "g converges to zero we have for large n

+ fllglU] (1.2)
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By the uniform compactness of {g||||g|||eS 1} we may choose n so that (1.2) holds
for all g in this ball. Thus the spectral radius of £{: &e/U -> ^«/R, denoted
satisfies

This completes the proof. D

2. A complex Ruelle operator theorem
A continuous function/: 2^-» C is called locally constant if there exists n>0 such
that/(x) depends on only the first n places of x, i.e. f(x)=f(y) whenever x, = yh

0 < i < n - l .
The operator Z£f leaves invariant the finite dimensional subspace of C(LX, C)

with base vectors

1

l x, = z , ,0<i<n-2

0 otherwise.

It is always possible to reduce locally constant functions to the case n = 2 by
considering xeiX as the sequence (xm,. . . , xm+n_2)m=o in a shift space whose
symbols are words of length n - 1.

For n = 2, SEf can be represented by a matrix

M = [A(x0, x,) • exp/(x0, x,)].

When / is real-valued the eigenvalues of M are described by the Perron-Frobenius
theorem. More generally define M+ to be the positive matrix with entries |M(x0, x,)|.
The following result is due to Wielandt ([6, p. 57]).

PROPOSITION 1. The eigenvalues ofM have moduli less than or equal to the maximal
eigenvalue P for M+. If fie'" is an eigenvalue of M (for some 0^a<2v) then M
takes the form M = e'aDM+D~' where D is a diagonal matrix with diagonal entries
of unit modulus.

Ruelle's theorem (theorem 1) can be viewed as a generalization of the Perron-
Frobenius theorem. In this section we present an analogous extension of Wielandt's
result.

The space 9^ = {/e C(2^, C)| | | / | | e <oo} is a complex Banach space with norm
|||/H|e = max {Il/He, ||/||a,}. (Here || • ||e has the same definition as in § 1.) I f /= u+ive
^e then H,iiefe and we freely assume that i£u 1 = 1, as in the proof of theorem 1.

For g € C(lX) let Fg be the multiplicative group generated by (exp g"(x)|o-"x = x)
(where g"(x) = g(x)+g(<7x) + - • •+g(o-'-1x)), [13], [12].

PROPOSITION 2. For / = u+ive ^ and 0< a <2IT the following are equivalent:

(i) F,,.,, is generated by a power ofe2ir;
(ii) Aa = e

[ ia+p<u) ] is an eigenvalue for Sef;
(iii) there exists a> e C(S^) such that

v-a+(o° o--a>e C(ZX, 2TTZ).
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Proof. (i)=>(ii) Choose xeiX with a dense orbit and define h on {o-"x\n>0} by
h(o-"x) = exp i(v-a)"(x). This extends to an element of &f, [10]. Furthermore h
satisfies h(az) = h(z) exp i(w - a)(z) and consequently if/A = e'"h.

(ii)=»(iii) Since Z£fh = e'ah may be expressed as

I exp«0')expi(»-fl)0')/i(y) = fc(x) (2.1)
uy = x

if \h(x)\ is maximal then so is \h(y)\ when <ry = x. Because a is mixing ft is of
constant modulus. Thus (2.1) represents a convex combination of points on a circle
which also lies on the circle. From this we deduce

exp i(v - a)(y)h(y) = Kay),

or equivalently v - a +arg h -arg h ° a e C(LX, 2TTZ).

(iii)=>(i) This is immediate. •

I f / e 9^ satisfies one, and hence all, of the above conditions we call it an a-function.
For example, the functions in &„ are all a-functions with a = 0. If / is not an
a-function (for any a) then we call it regular.

If / = u +iv where v — a+w ° a — toe C(S^, 2TT-Z) then

where A(ft) denotes the operator that multiplies functions by h. Therefore the
spectrum of ££f is precisely the spectrum of 3?u rotated through an angle a. By
theorem 1:

PROPOSITION 3. / / / = w +iv is an a-function then \a is a simple eigenvalue for J£f and
the rest of the spectrum is contained in a disc of radius strictly smaller than \\a\ = eP(u\

An immediate corollary is that / e &% can be an a-function for at most one a
(0<a<27r).

For a n y / = u +iv (with i?ui = 1) the following extension of (1.1) is true:

^}h\\esC-\\h\\co + e"\\He n>0,he&%. (2.2)

The operator norm satisfies M /̂Hle — C +1 and we have an upper bound on the
spectral radius

We now show that when / is regular the spectrum of Z£{ (denoted sp (i?/)) is disjoint
from the unit circle.

Choose a point e" on the circle, then for |||li|||e < 1 write

By (2.2) hN is contained in the uniformly compact set {g | |||g|||e < C +1}. When / is
regular ||/ijv||oo must tend to zero since any non-zero limit point of {hN} would be
an eigenvector for SEf with eigenvalue e". For fc>0,
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where we have estimates

<(2fc/N)(C-

and

If we take fc = [JV*] then these bounds show that lim | |/iN| |e = 0. By the uniform
compactness of {h \\\\h\\\e < 1} we can choose TV such that |||/ijv|||6 < 1 for all h in this
ball. Since the spectral radius of an operator is smaller than its norm

Thus 1 is not an element of sp (( l /JV)£^lo Z£}-it). However we know from the
spectral mapping theorem ([19, p. 263]) that

/ j N-I \ r i N-i I
sp - I #/-„)= T̂  S A" Aesp^.,,) .

\iV»=o - / lJVn=0 J

Thus 1 cannot be an element of sp (=£}_„) = e~" s p ^ / ) , or equivalently e" is not
in the spectrum of Z£f. Since e" was chosen arbitrarily and sp (if/) is closed we have
the following.

THEOREM 2. Let cr be a topologically mixing one-sided shift of finite type and let

(i) Iff is an a-function then Aa = e[ia+P(I')] is a simple eigenvalue for 3!f and the rest
of the spectrum is contained in a disc of radius strictly smaller than \\a\ = eP(-u\

(ii) Iff is regular then the spectrum of Z£f is contained in a disc of radius strictly
smaller than eP(u).

It is possible to formulate a proof of part (ii) closer to the proof of theorem 1 by
proceeding along the lines of propositions 13 and 14 in [12].

An important feature of the above theorem is that the type of spectrum for Z£f is
determined by ^ ( / ) and the size of the spectrum is given by i%(/).

We can obtain a lower bound for the spectral radius p(i?/) in the regular case. If
f=u + iv then i?C = -2'/A(e~i"") and

It is simple to show lim|||A(e~/1)")|||e/n< 1/0 and so p(Sef)>0- eP(u).
Proposition 2(i) shows that a necessary condition for u + iv to be an a-function

(for some a) is that Tv should be of rank at most two. But functions satisfying this
condition can easily be approximated by functions which do not. This makes the
family of regular functions dense in &%. Furthermore, by theorem 2 and upper
semicontinuity of f^>p(££f) this family is also open.
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3. Extending the zeta function
Given fe 3?% define a zeta function by

I - I exp/m(x)
m = 1 "* tr mx = x

where fm(x)=f(x)+f(<rx) + - • •+f(o-m'[x). Iff=u + iv with P(w)<0then

lim
tT X = X

\/m

I expum(x)
1/m

= eP ( u )<l .
Since convergence is uniform in a neighbourhood of/ it follows that £ is non-zero
and analytic on {f\9l(f) < 0} ([17, p. 100]). We now consider the cases where P(u) = 0.

PROPOSITION 4. Iff=u+iv&^ is regular with P(w) = 0 then £ is analytic and
non-zero in a neighbourhood off.

Proof. Choose 0'> 6, then fe 9^ c &%,. For n > 0 define locally constant functions

and let/„(*) = un(x) + ivn(x). This enables us to write

" 1

°° 1
xexp I -

exp/m(x)-exp/n
m(x)

exp/:(x). (3.1)

By applying theorem 2 to i?r: ̂ - » ^ , there exists 0</8<l such that spectral
radius p(if/)</3. Since gi-»p(ifg) is upper semicontinuous on &£• and

it follows that p(J£fn)<l3 for large enough n. If e is chosen sufficiently small then
P(JZgJ < 0 holds uniformly on D = {g \ \\\g -f\\\e <e}.

Let A|, . . . , AN(n) be the eigenvalues of if/n acting on the finite dimensional
invariant subspace of § 2 then |Aj| </6, 1 < j < N(n). Furthermore

1 ^ = trace 2£ = \T + • • • +A^(B)

where N(n)< k", (k is the dimension of A). Choose a satisfying /3/c" < 1 and take
n = [ma]. Then

l/m

mI exp/?(x) <(pmk"y/m<pka<\

for sufficiently large m. Since this holds uniformly on D

I - mI expg™(x)

is analytic for ge D. From the definitions of un and f„

I K - M ^ U S m||Un - M|U< m0nH!e

||»:-i;"1||0Osiiifl-||w||». (3.2)
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Since

= J. [exp «™(x)-exp iC(x)]exp ivm(x)
m

it follows from (3.2) that
l/m

HrH £ exp/m(x)-exp/™(x)
a-mx = x

If we choose d" <3>< 1 and e sufficiently small then for large m
\/m

I e x p g m ( x ) - e x p g : ( x ) <<J>
rmx = x

uniformly on D and so

I - I expgm(x)-expg™(x)
m = 1 'W <rmx = x

is analytic on this disc. This completes the proof. •

When / is an a-function then p(i?/) = eP(9?(/)). However the isolated eigenvalue Aa

can be dealt with using perturbation theory. In a neighbourhood of/ the operator
i?g still has an isolated eigenvalue (3 ([3, p. 587]). This leads to a natural definition
of the complex pressure (in a neighbourhood of an a-function) as P(g) = log /3.

By developing an approach due to Ruelle ([17, pp. 93-95]), Parry has proved the
following result ([11, proposition 3]).

PROPOSITION 5. //"/e 9e and P(/) = 0 then there exists e > 0 such that P extends to
an analytic function in

D = {g\if-g\\\e<e}
and

I {eiam/m)( I e x p g m ( x ) - e m P ( g ) )
m = \ \<rmx = x /

converges uniformly in D.

Propositions 4 and 5 together give the following result; (the version for two-sided
shifts is theorem 1 in [11]).

THEOREM 3. Letf=u + iu e ^ # .

(i) If P(u)<0 or f is regular with P(u) = O then £ is non-zero and analytic in a
neighbourhood off.

(ii) Iff is an a-function with P(u) = 0 then £ has a non-zero analytic extension to
a set {g ||||g - / | | | 9 < e, P(g) * 0} given by

C(g)=-\ p(7)exP I ~~( I e x p g m ( x ) - (

The above theorem extends a result of Ruelle [16], ([17, pp. 100-101]).
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4. A counter-example to Ruelle's question
Let 1A = {x G n ^ {1, • • •, k) I A(xm xn+i) = 1} then a:ZA -> ZA given by (ax)n = xn+1

is a (two-sided) shift of finite type. Let/:2A-»R+ be a strictly positive continuous
function for which there exists O<0<1 , C > 0 satisfying \f(x)-f(y)\<C0"
whenever x, = yh \i\ < n — 1. Define

where (x, f(x)) and (o-x, 0) are identified. The /suspension cr{:1f
A^ 1f

A is the flow
defined by a{(x, s) = (x, t+s) with appropriate identifications. Thus o-f can be
interpreted as flowing vertically under the graph of/ The flow o~f is (topologically)
weak mixing if the rank of r / = <exp/"(x)|cr"x = x) is greater than one [12]. The
topological entropy of af is the unique heU+ satisfying P ( - / J / ) = 0[12] . The zeta
function associated with af is

z(s) = l(~sf) = exP Z — Z exP ~sfm(x)-
m = \ m crmx = x

In [12] Parry and the author partially answered a question of Ruelle ([17, p. 173])
by showing that Z(s) has an analytic extension to a neighbourhood of{s\0l(s) s h},
except for a simple pole at s = h. We shall now complete this analysis by presenting
a flow for which Z(s) is not analytic on any strip h — S < 0l(s) < h.

Let o-:SA-»SA be a full shift on two symbols {1,2}. Choose 0<p<^, p + q = l,
and define a locally constant function / by

logg ifxo = 2.
If

\P*
where .seC, then

I exp - s/m(x) = trace (P*)m = (/>s + q")m.
<T X = X

Thus

and the poles for Z(s) are the solutions to ps +qs = 1. In particular the first part of
the question shows h = 1 and for o~f to be weak mixing we require logp/log q to
be irrational.

Let £>Osatisfyp~e -q~e = 1, then the poles are contained in the strip -£<£%($)<
1. If - e < o-< 1, then zero is a limit point of {ps + qs - l|$(s) = a). Sirce ps + qs - 1
is an analytic almost periodic function it has a zero in every vertical strip containing
cr([2, p. 75]). We conclude that the poles {crn +itn} for Z are distributed with {crn}
dense in the interval [-e, 1]. (In fact sharper estimates about the distribution of
poles are possible (cf. [8])).
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5. A counter-example to Bowen's question
In [5] Gallovotti gave an example of a suspension for which the corresponding zeta
function has an essential singularity at s, < 0. Bowen asked whether the zeta function
for flows could always be extended to 5 = 0 ([1, p. 31]). In this section we give an
example where this is not the case. In fact it is possible to construct a suspension
with an essential singularity at s0 > 0.

Let an: Sn -» £„ be a full shift on w-symbols and let {fik} be a convergent sequence
with limit (5. For n = 3 define g e C(23) by

*(*) =
= 2,z,e{l ,3},0<«sfc-l

Let amz = z and assume the cycle (z0 , . . . , zm_,) contains disjoint blocks of l's and
3's of lengths ku ..., kr with /c, + • • • + kr = N. Then

p = i

Thus gm(z) is independent of the 2N possible combinations of l's and 3's.
For n = 2 define / e C(X2) by

0<i<fc-l, (fc^O)
f(x)=<

•o if^0 = 2

(.0+log2 ifx,- = l , iaO.

The functions / and g are related by

I exp/m(x)= I expg""(z)
o-mx — x <T'"Z = Z

andsof ( / ) = «g).
The function / is similar to the Fisher potential used by Gallovotti [5].
Define a locally constant function fN by replacing j8k by /8 for k > N. The zeta

function £(/N) can be calculated simply. Define

0

\o
then by ([14, p. 82])

fN) = det(I-PN)

= (1 -2ep)(\ - Y 2nep'+

\ n=O

-2N• e
p+fl
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Assume that g e ^ e and g>0. By replacing j3fc by -sfik (and fi by -s/3) we have
from (5.1) and § 3

(5.2)

(for m(s) large). In particular, for 2e"s?(sW < 1 we have limJv^oo2JVI"J°+'' +/3~-|) = 0.
Following Gallovotti we set

C m=0

and /3 = C (where C > 0 is chosen to make flm>0). From (5.2)

m = l

Thus the entropy of ag is the solution h > 0 to

1=3 I (l+em/m)\2e-hC)m+[+e-hC.

Z{s) has a meromorphic extension to 5 = ft given by

F(s)= I {2e-sC)m[{\+em/m)s-\l
m = \

For 0< s< /i there exist B, D>0 such that

B-s- 6»m/m<(l+6>m/w)s-l<D- s- 0m/m.

Thus
B-log(l-2e ^ ) s F ( 5 ) / s < D - l o g ( l - 2 e ~ s C e ) .

Consider so= \/C log20. If so>0 (or equivalently 8>\) then as s approaches s0

from above \F(s)\ is unbounded but (s - *0)^(*) tends to zero. If s0 = 0 (or equivalently
0 = 5) then as s approaches zero from above |sF(s)| is unbounded but s2F(s) tends
to zero. We conclude that in either case s0 is an essential singularity.

Remark. Hofbauer used the Fisher potential to produce examples of functions with
two equilibrium states (one a single atom) [7]. The type of functions studied in this
section give examples with two non-atomic equilibrium states (one with support a
Cantor set).

Remark.' Our example extends in a natural way to suspensions over 1n, n > 3. This
enables us to give an example with an essential singularity s0 arbitrarily close to
h(ag)=\.
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