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Abstract

Existing studies relate the puzzling low average returns on out-of-the-money (OTM) index
call and put options to nonstandard preferences. We argue the low option returns are
primarily due to the pricing of market volatility risk. When volatility risk is priced, expected
option returns match the realized average option returns. Moreover, consistent with its
theoretical effect on expected option returns, the volatility risk premium is positively related
to future index option returns and this relationship is stronger for OTM options and at-the-
money straddles. Finally, we find the jump risk premium contributes to some portion of OTM
put option returns.

I. Introduction

One of the most enduring puzzles of the asset pricing literature is that out-of-
the-money (OTM) index put options are associated with large negative average
returns (e.g., Jackwerth (2000), Santa-Clara and Saretto (2009), and Bondarenko
(2014)). While an index put option is a negative beta asset and thus is expected
to have a negative rate of return, the magnitudes in the data seem too large to be
consistent with standard models (Chambers, Foy, Liebner, and Lu (2014)). On the
other hand, Bakshi,Madan, and Panayotov (2010) document that the average returns
of OTM index call options are also negative and declining with the strike price. This
stylized fact is somewhat less known, but is perhaps even more puzzling because it
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contradicts the prediction from standard theories that expected call option returns
should be positive and increase with the strike price (Coval and Shumway (2001)).1

Previous research relates these large negativeOTMcall and put option returns to
models featuring nonstandard preferences. For instance, Polkovnichenko and Zhao
(2013) consider a rank-dependent utility model with a particular probability weight-
ing function to explain the data. Baele, Driessen, Ebert, Londono, and Spalt (2019)
show that amodel with cumulative prospect theory preferences is able to generate the
otherwise puzzling index option return patterns. The low returns onOTMcall and put
options can also be explained with theories of skewness/lottery preferences and
leverage constraints (Brunnermeier, Gollier, and Parker (2007), Mitton and Vorkink
(2007), Barberis andHuang (2008), and Frazzini and Pedersen (2012)). OTMoptions
are often associated with substantial skewness and embedded leverage, which make
them particularly attractive for investors who have skewness preferences or face
leverage constraints. Demand pressure will drive up prices and consequently lead to
low returns in equilibrium (Gârleanu, Pedersen, and Poteshman (2009)).

This article investigates whether the low returns on OTM index options can be
consistent with the pricing of market volatility and jump risks. Options are sensitive
to changes in volatility and price jumps, therefore their expected returns should
critically depend on investor’s attitudes toward volatility and jump risks. To study
how the pricing of volatility and jump risks affects the cross-section of index option
returns, we follow Broadie, Chernov, and Johannes (2009) and compare historical
realized option returns with the expected returns implied from option pricing
models. Figure 1 summarizes our results. First, we find that the large negative
OTM option returns cannot be explained by models involving the equity risk
premium alone, which include the classical Black–Scholes–Merton (BSM) model
as well as the stochastic volatility and jumpmodels (SVand SVJ) inwhich volatility
and jump risks are not priced. However, when market volatility risk is priced
(SVþ), the implied expected option returns match the average returns of call and
put options across all strikes. Consistent with the data, the pricing of volatility risk
implies not only a steep relationship between expected put returns and the strike
price with OTM puts earning large negative rates of return, but also an overall
decreasing relation between expected call returns and the strike price with OTM
calls earning negative expected returns. Additionally, we show that the presence of
a volatility risk premium (VRP) is consistent with the average returns of different
option portfolios. Finally, we find that the pricing of jump risk (SVJþ) implies that
OTM puts have large negative expected returns with magnitudes very close to the
data, but the jump risk premium also implies the expected call return is an increasing
function of the strike price and OTM calls should earn large positive expected
returns, which is contrary to the data. Our results are robust to different parame-
terizations of stochastic volatility and jumps.

Option pricing theory not only predicts that the pricing of volatility risk results
in lower expected option returns, but also predicts that the effect of the VRP varies
across moneyness with OTM options and at-the-money (ATM) straddles being
more sensitive to changes in theVRP. Confirming these predictions, we find that the

1Related,Constantinides and Jackwerth (2009) andConstantinides,Czerwonko, Jackwerth, andPerrakis
(2011) document widespread violations of stochastic dominance in OTM index and index futures options.
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VRP is positively related to future index option returns: A more negative VRP in a
given month is associated with low option returns in the subsequent month. More-
over, this relationship is indeed stronger for OTM options and ATM straddles.
Our findings cannot be explained by the underlying return predictability by the
VRP (Bollerslev, Tauchen, and Zhou (2009)), and are robust to different empirical
implementations and controlling for other variables. Finally, we find that the jump
risk premium is significantly related to future OTM index put returns, but its
relationship with call option and straddle returns is insignificant.

Taken together, our results suggest that the low returns on OTM index options
are primarily due to the pricing of market volatility risk, although the jump risk

FIGURE 1

Moneyness and Expected Option Returns

Figure 1plots expected option returns as a function of the strikeprice for the three optionpricingmodelswith only an equity risk
premium (BSM, SV, and SVJ), the SVþmodel in which volatility risk is priced, and the SVJþmodel in which jump risk is priced
but volatility risk is not. Graph A is for call options and Graph B is for put options. Expected option returns are computed
analytically based on parameters reported in Table 2. The realized average option returns are also included (Data).
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premium also accounts for some portion of OTM put option returns. The rest of the
article is organized as follows: Section II discusses related literature. Section III
compares expected option returns implied from option pricing models to historical
S&P 500 option returns, with a particular focus on the effect of volatility and jump
risk premiums. Section IV studies the time-series relationship between the vol-
atility and jump risk premiums and future index option returns. Section V contains
robustness results, and Section VI concludes the article.

II. Related Literature

Our article is most closely related to Broadie et al. (2009) and Chambers et al.
(2014), which compare historical returns of put options and a number of option
portfolios with those implied from option pricing models, finding that index option
returns can be explained by a jump risk premium.2 We extend their analysis to
include index call options. Studying index calls is important because any theory put
forward to explain the low returns on OTM puts should also fit OTM call returns.
Moreover, OTM calls, which are claims on the upside, are critical for disentangling
the VRP from the jump risk premium as these two risk premiums have drastically
different implications on expected OTM call returns. In contrast, separately iden-
tifying the volatility and jump risk premiums using only put returns can be chal-
lenging. We confirm the results of Broadie et al. (2009) and Chambers et al. (2014)
that the jump risk premium fits OTM put returns well, but we also show that the
jump risk premium fails to match OTM call returns. In contrast, the VRP is able to
match the low returns on OTM calls and OTM puts simultaneously. Bakshi et al.
(2010) relate the lowOTM option returns to a U-shaped pricing kernel that arises in
a model featuring short-selling and heterogeneity in investors’ beliefs about return
outcomes. In their model, there are two types of risk averse investors: long equity
investors and short equity investors. Just as long investors can hedge their positions
by purchasing OTM puts, short investors can hedge their positions by purchasing
OTM calls. In both cases, the demand for protection results in negative expected
returns for OTM call and put options. Our analysis suggests that investor hetero-
geneity and the U-shaped pricing kernel need not be necessary and the low returns
on OTM options are consistent with the pricing of market volatility risk.3 Driessen,
Maenhout, and Vilkov (2009) investigate the differential pricing of options on the
S&P 100 index and its component stocks, and find strong evidence of a large
correlation risk premium.While their focus is not on the low returns on OTM index
options, they report that OTM calls have larger correlation betas than ITM (in-the-
money) calls. Since correlation is negatively priced, exposure to the correlation risk
may explain the low returns on OTM calls. Our findings are thus consistent with

2The two papers have different conclusions aboutwhether index put returns are consistent with standard
option pricing models in which volatility and jump risks are not priced. Our analysis confirms the results in
Chambers et al. (2014) that the hypothesis of no additional risk premiums can be rejected in general.

3We also compare the confidence intervals on OTM call returns implied from the pricing of
volatility risk and the U-shaped pricing kernel. While both suggest that the confidence interval is
large for call returns and becomes increasingly wider for calls that are further out-of-the-money, the
pricing of volatility risk implies that the confidence interval widens symmetrically which is consistent
with the data.
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Driessen et al. (2009) in the sense that the pricing of aggregate volatility risk is
driven by the pricing of correlation risk.4

The bulk of the index option literature focuses on the behavior of option prices.
For example, Bates (1991) finds that OTMputs became unusually expensive during
the year preceding the 1987 market crash, but the prices were back to normal levels
during the 2 months immediately preceding the crash. It is also well-known that
since the 1987 market crash implied volatilities from OTM puts have been consis-
tently higher than their ATM counterparts (Rubinstein (1994)). This stylized fact is
often referred to as the implied volatility skew or volatility smirk, and contradicts
the prediction of the BSM model that the implied volatility is constant across
strikes. The presence of a pronounced volatility skew has inspiredmany subsequent
studies. For example, there is an extensive literature that demonstrates stochastic
volatility and jumps are needed in order to fit rich option price dynamics, although
the empirical evidence is somewhat mixed regarding the relative importance of
these additional factors as well as their pricing. For important contributions, see
Bakshi, Cao, and Chen (1997), Bates (2000), Chernov and Ghysels (2000), Pan
(2002), Jones (2003), Eraker (2004), Broadie, Chernov, and Johannes (2007), and
Andersen, Fusari, and Todorov (2015). Our article differs from this literature in that
we examine option returns rather than option prices. Understanding option returns
is also important because option returns contain additional information not spanned
by option prices. For example, the low returns onOTM calls and OTMputs suggest
that both are problematic, whereas one might wrongly conclude that only OTM
puts are problematic by observing the volatility skew only. We show that a simple
stochastic volatility model in which volatility risk is priced describes the average
option returns reasonably well.

There is a large body of literature on the pricing of volatility and jump risks
in financial markets. The pricing of aggregate volatility and jump risks in the
cross-section of stock returns has been examined extensively. See, among
others, Ang, Hodrick, Xing, and Zhang (2006), Adrian and Rosenberg (2008),
and Cremers, Halling, and Weinbaum (2015). Our article is more closely related to
studies that focus on the pricing of volatility and jump risks in optionsmarket. Index
options market, where stochastic volatility and jump risks play a prominent role,
contains rich economic information about the pricing of these risk factors. For
example, Coval and Shumway (2001) report that zero-beta ATM straddles produce
large losses and they interpret it as evidence that systematic stochastic volatility is
priced in option returns. Bakshi and Kapadia (2003) find that delta-hedged option
portfolios have negative average returns, which implies a negative VRP. Our results
are consistent with the findings of Coval and Shumway (2001) and Bakshi and
Kapadia (2003) that the VRP is negative in the index options market. The key
difference between the above studies and this article is that their emphasis is on
using option portfolios to infer the existence and sign of the VRP, while this article

4Related, Jones (2006), Cao and Huang (2007), and Constantinides, Jackwerth, and Savov (2013)
use factor models to gain a better understanding of index option returns. Israelov and Kelly (2017)
propose a method for constructing the conditional distribution for index option returns. Driessen and
Maenhout (2007) and Faias and Santa-Clara (2017) analyze index option returns from a portfolio
allocation perspective. Chaudhuri and Schroder (2015) develop model-free tests of stochastic discount
factor monotonicity based on option returns.
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aims to quantify the impact of the VRP on the cross-section of unhedged index
option returns.We also characterize the effect of the jump risk premium on expected
option returns.

III. The Volatility Risk Premium, the Jump Risk Premium, and
Expected Option Returns

In this section, we begin by examining historical returns of S&P 500 index
options across a wide range of strikes, as well as the returns of a number of option
portfolios. We then evaluate realized average option returns relative to what would
have been obtained in option pricing models. We investigate whether index option
returns are consistent with the pricing of volatility and jump risks.

A. Historical S&P 500 Index Option Returns

Following the existing literature, we construct time-series of monthly holding-
to-maturity returns for S&P 500 index options with a maturity of 1 month and fixed
moneyness ranging from 0.96 to 1.08 for calls and 0.92 to 1.04 for puts, with an
increment of 2%. Moneyness is defined as the strike price over the underlying
index: K=S. We do not investigate options that are beyond 8% OTM or 4% ITM in
light of potential data issues (e.g., low price, low trading volume, or missing
observations). We also compute returns on a number of option portfolios, including
ATM straddles (ATMS), put spreads (PSPs), crash-neutral spreads (CNS), call
spreads (CSPs), and strangles (STRN). ATMS involves the simultaneous purchase
of a call option and a put option with K=S = 1. PSP consists of a short position in a
6% OTM put and a long position in an ATM put. CNS consists of a long position
in an ATM straddle and a short position in a 6% OTM put. CSP combines a long
position in an ATM call with a short position in a 6% OTM call. Finally, STRN
involves the simultaneous purchase of a 6% OTM call and a 6% OTM put. When
computing option returns, we use the mid-point of bid–ask quotes as a proxy for
option price, and we calculate option payoff at maturity based on the index settle-
ment values. The sample period for our analysis is from Mar. 1998 to Aug. 2015.5

The Supplementary Material provides additional details about the data.
Table 1 reports the average monthly returns for the cross-section of index call

and put options with different strikes, as well as the average returns for different
option portfolios. Confirming the finding of Bakshi et al. (2010), Panel A of Table 1
shows that over our sample period the average call option returns tend to decline
with the strike price, with OTM calls earning negative returns. Specifically, the
average return for ATM calls is 6.5% per month, and it drops monotonically to –
25.05% for 8%OTM calls. The call option return pattern is puzzling because Coval
and Shumway (2001) show that under general conditions the expected call option
return is an increasing function of the strike price and OTM calls should have
positive returns.

5Our sample starts in Mar. 1998 because the settlement values (SET) for SPX options required to
compute holding-to-maturity returns are only available from Apr. 1998.
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Panel B of Table 1 presents the well-documented stylized fact that index put
options, especially OTM puts, have large negative average returns. For example,
over our sample period, buying a 6% OTM put and an 8% OTM put would, on
average, lose 45.02% and 52.07% per month, respectively. It is of course not
surprising that put options have negative average returns as they are negative beta
assets. However, as shown in the next section, the magnitudes of OTM put returns
are too large to be explained by standard option pricing models (e.g., the BSM
model).

Panel C of Table 1 reports the average returns for option portfolios. Consistent
with Coval and Shumway (2001), we find that ATM straddles on average lose
8.47% per month over our sample period. Also, notice that the average return for
CSPs is 13.56% per month. CSPs earn high returns because both the long position
in ATM calls and the short position in 6% OTM calls generate positive returns as
shown in Panel A of Table 1. Finally, the strangle has an average return of�38.64%
per month. The strangle earns a large negative average return because the under-
lying OTM call and OTM put are both associated with negative returns.

In summary, confirming existing studies, we show that OTM calls and puts are
both associated with low average returns. In the next section, we evaluate these
option returns in the context of option pricing models. We also examine if the
models can fit option portfolio returns. This is important because, as demonstrated
in Broadie et al. (2009), option portfolios are more informative than individual
option returns and therefore provide more powerful tests.

B. Analytical Framework for Expected Option Returns

Statistical inference on option returns is in general difficult because option
returns are highly nonnormal, which makes the standard linear models inappropri-
ate. To overcome these statistical difficulties, we apply the methodology developed

TABLE 1

Average Monthly Returns of S&P 500 Index Options

Table 1 reports the average monthly returns of S&P 500 call and put options with different moneyness (defined as the strike
price over the index: K=S), as well as the average monthly returns of several option portfolios. For option portfolios, we
consider an at-the-money straddle (ATMS) that consists of a long position in an ATM call and a long position in an ATM put, a
put spread (PSP) that consists of a short position in a 6% OTM put and a long position in an ATM put, a crash-neutral spread
(CNS) that consists of a longposition in anATMstraddle anda short position in a 6%OTMput, a call spread (CSP) that consists
of a longposition in anATMcall and a short position in a 6%OTMcall, and a strangle (STRN) that consists of a longposition in a
6% OTM call and a long position in a 6% OTM put. Returns are reported in percentage per month. The sample period is Mar.
1998 to Aug. 2015.

Panel A. Call Option

K=S 0.96 0.98 1.00 1.02 1.04 1.06 1.08
Ret 6.36 6.89 6.50 1.89 �1.47 �18.12 �25.05

Panel B. Put Option

K=S 0.92 0.94 0.96 0.98 1.00 1.02 1.04
Ret �52.07 �45.02 �37.86 �27.76 �22.36 �15.76 �13.15

Panel C. Option Portfolio

ATMS PSP CNS CSP STRN

Ret �8.47 �18.54 �3.93 13.56 �38.64
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by Broadie et al. (2009). In particular, we compare the average returns in the data
with expected option returns implied by various option pricing models estimated
over the same period.6 We also simulate each model to form a finite sample
distribution for testing statistical significance.

We consider a standard affine jump-diffusion framework with mean-reverting
stochastic volatility and jumps in stock price (Bates (1996)), which nests the BSM
model (Black and Scholes (1973), Merton (1973)), the Heston stochastic volatility
model (Heston (1993)), and the Merton jump diffusion model (Merton (1976)) as
special cases. The general model says the index level (St) and its spot variance (V t)
have the following dynamics under the physical measure (ℙ):

dSt = μþ r�dð ÞStdtþSt
ffiffiffiffiffi
V t

p
dW 1þ eZ �1

� �
StdNt� λμStdt,

dV t = κ θ�V tð Þdtþσ
ffiffiffiffiffi
V t

p
dW 2,

where μ is the equity risk premium, r is the risk-free rate, d is the dividend yield,Nt

is a ℙ-measure Poisson process with a constant intensity λ, Z�N μz,σ
2
z

� �
are the

jumps in price which can take both positive and negative values, μ is the mean jump
size with μ= exp μzþ 1

2σ
2
z

� ��1, θ is the long-run mean of variance, κ is the rate of
mean reversion, σ is the volatility of volatility, and W 1 and W 2 are two correlated
Brownian motions with E dW 1dW 2½ �= ρdt. The dynamics under the risk-neutral
measure (ℚ) are given by

dSt = r�dð ÞStþSt
ffiffiffiffiffi
V t

p
dWℚ

1 þ eZ
ℚ �1

� �
StdN

ℚ
t � λℚμℚStdt,

dV t = κ θ�V tð Þ�ηV t½ �dtþσ
ffiffiffiffiffi
V t

p
dWℚ

2 ,

where η is the price of volatility risk,Nℚ
t � Poisson (λℚt), Zℚ �N μℚz , σℚz

� �2� �
, and

μℚ = exp μℚz þ 1
2 σℚz
� �2� �

�1. Throughout the article, risk-neutral quantities will be

denoted withℚ and all other quantities are taken under the physical measure. Note
that there are three types of risk premiums in this model: the equity risk premium
(μ), the VRP (ηV t), and the jump risk premium (price jump has different distribu-
tions under ℙ and ℚ probability measures).

Expected option returns can be computed analytically within the above frame-
work.7 This analytical tractability is particularly useful as we can quantify the
impact of different risk premiums on expected option returns. We first compute
expected call and put option returns as well as expected returns on option portfolios
usingmodels with only an equity risk premium, including theBSMmodel (BSM), a
Heston model in which volatility risk is not priced (SV), and a stochastic volatility
jump model in which neither volatility risk nor jump risk is priced (SVJ). As we
will see, models involving equity risk premium alone are not able to fit index

6Realized option returns are highly dependent on the sample, and therefore it is necessary to estimate
a model over the same period for which a model is asked to explain option returns.

7The intuition is that since physical dynamics are also affine, expected option payoffs and conse-
quently expected returns can be computed analytically. For models with stochastic volatility and jumps,
the conditional expected option return is a function of spot variance which has a gamma distribution.We
take a numerical integration over gamma distribution to obtain unconditional expected option returns.
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option return data. In light of these results, we further investigate if option pricing
models with additional volatility and jump risk premiums can lead to a better fit.
In particular, we also examine a stochastic volatility model in which volatility risk is
priced (SVþ), but otherwise identical to the SV model. To study the effect of the
jump risk premium, we extend the SVJ model to incorporate a risk premium for
jump risk (SVJþ). Note that in the SVJþ model, volatility risk is not priced. By
setting the VRP to 0 (η= 0), we can isolate the effect of the jump risk premium. In
total, we calculate expected option returns for five different option pricing models:
Three with the equity risk premium only (BSM, SV, and SVJ), one with the
additional VRP (SVþ), and one with the additional jump risk premium (SVJþ).

Following Broadie et al. (2009) and Chambers et al. (2014), we also simulate
each model to form a finite sample distribution of average option returns, from
which we test the null hypothesis that the expected returns implied from various
models equal the realized average option returns in the data. Specifically, for each
model, we simulate 25,000 sample paths of the index, with each path having
210months (the length of our empirical sample). For each sample path, we compute
one set of average option returns using simulated data. The p-values are then
calculated as the percentile of the realized average option returns in the 25,000
simulated average options returns. If the percentile is higher than 0.5, we report the
p-value as 1 minus the percentile.

We estimatemodel parameters in two steps as in Broadie et al. (2009). First, we
calibrate the equity risk premium, the risk-free rate, and the dividend yield based on
those realized over our sample period and we use particle filtering to estimate the
remaining ℙ-measure parameters from the time-series of daily index returns. The
Supplementary Material describes the details of our particle filtering estimation.
Second, we obtain estimates of the volatility and jump risk premiums by observing
that in a standard power utility framework (see, e.g., Naik and Lee (1990), Bakshi
and Kapadia (2003), Broadie et al. (2009), and Christoffersen, Heston, and Jacobs
(2013)), the risk adjustment for volatility risk is given by

ηV t = cov γ
dSt
St

,dV t

� �
) η= γσρ(1)

and the risk adjustment for price jump risk is given by

λℚ = λexp �μzγþ
1

2
γ2σ2z

� �
,

μℚZ = μz� γσ2z ,

(2)

where γ is relative risk aversion of the agent.8 For our benchmark analysis, we
follow Broadie et al. (2009) and assume a risk aversion of 10.

Table 2 reports (annualized) parameter values that we use for computing
expected option returns and simulations. Our parameter estimates are within the

8If one ignores the equilibrium restrictions and allows the variance of jump size to take different
values under the physical and risk-neutral measures, expected option returns become even more
complicated and can exhibit different patterns. See Branger, Hansis, and Schlag (2010) for a related
discussion.
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reasonable range reported in the literature. For the BSM model, the constant
volatility parameter is set equal to the square root of the long run mean of stock
variance (θ) in the SV model (σBSM = 19:05%). For the SVþ model, given a risk
aversion of 10 and a negative ρ, equation (1) indicates that the VRP parameter η
must be negative and is equal to�4:347. Our calibration of the SVþmodel implies
the expected 1-month volatilities under ℙ and ℚ measures are 19.1% and 20.7%
(annualized), yielding a VRP (ℙ�ℚ) of –1.6%. Pan (2002) finds that the magni-
tudes of the VRP needed to reconcile time-series and option-based spot volatility
measures imply explosive risk-neutral volatility dynamics (κþη< 0). In contrast,
our calibration does not lead to explosive volatility process underℚ because themean
reversion parameter we estimate is large relative to the VRP parameter (κþη> 0).
This could be due to our sample period. For the SVJþ model, consistent with the
notion that investors fear large adverse price jumps, the risk corrections in equation
(2) indicate that price jumps occur more frequently and more severely under the risk-
neutral measure. Our estimates imply about 1.50 jumps per year on average
(λℚ = 1:4969) and a mean jump size of –6.67% (μℚz = �0:0667) underℚ probability
measure, and about 0.97 jumps per year on average (λ= 0:9658) with a mean jump
size of –2.09% (μz = �0:0209) under ℙ probability measure. We perform an exten-
sive sensitivity analysis with respect to model parameters in Section V.A.

TABLE 2

Parameters

Table 2 reports parameter values for the five option pricing models we use to compute expected option returns: the Black–
Scholes–Merton model (BSM), a stochastic volatility model in which volatility risk is not priced (SV), a stochastic volatility jump
model in which neither volatility nor jump risk is priced (SVJ), a stochastic volatility model in which volatility risk is priced (SVþ),
and a stochastic volatility jump model in which jump risk is priced but volatility risk is not (SVJþ). The equity risk premium (μ),
risk-free rate (r ), anddividend yield (d) are calibrated tomatch those observed in our sample. For theBSMmodel, the constant
volatility parameter (σBSM) is equal to the square root of the long-run variance (θ) in the SV model. We use particle filtering to
estimate the remaining ℙ-measure parameters for each model and report standard errors of those estimates in the
parentheses. The VRP (η) and ℚ-measure jump parameters (λℚ and μℚz ) are obtained according to equations (1) and (2)
with a risk aversion of 10. All parameters are reported in annual terms.

BSM SV SVJ SVþ SVJþ
μ 0.0506 0.0506 0.0506 0.0506 0.0506
r 0.0201 0.0201 0.0201 0.0201 0.0201
d 0.0174 0.0174 0.0174 0.0174 0.0174

σBSM 0.1905
κ 6.4130 5.9859 6.4130 5.9859

(0.923) (0.909) (0.923) (0.909)

θ 0.0363 0.0358 0.0363 0.0358
(0.004) (0.004) (0.004) (0.004)

σ 0.5472 0.5423 0.5472 0.5423
(0.033) (0.035) (0.033) (0.035)

ρ �0.7944 �0.8015 �0.7944 �0.8015
(0.026) (0.028) (0.026) (0.028)

λ 0.9658 0.9658
(0.114) (0.114)

μz �0.0209 �0.0209
(0.007) (0.007)

σz 0.0677 0.0677
(0.009) (0.009)

η 0.0000 0.0000 �4.3470 0.0000
λℚ 0.9658 1.4969

μℚz �0.0209 �0.0667
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C. The Effects of the Volatility and Jump Risk Premiums

Before presenting our findings, we discuss the role of various risk premiums
in determining expected option returns. Taking a call option as an example, the
expected gross return is given by

E Cð Þ= Eℙ max S�K,0ð Þ½ �
e�rTEℚ max S�K,0ð Þ½ � ,(3)

where the denominator is the price of the option and the numerator is the expected
option payoff. Equation (3) suggests that the expected option return is determined
by the gap between the ℙ and ℚ probability measures, which arises due to the
presence of various risk premiums. If there were no risk premium (e.g., theℙ andℚ
probability measures are identical), the expected option return would be equal to the
risk-free rate.

In models involving the equity risk premium alone (BSM, SV, and SVJ), a call
option is a leveraged long position in the underlying asset. As such, the expected
return of an index call option exceeds the expected return of the underlying index
and OTM calls should have positive expected returns, which is contrary to the data.
On the other hand, these models imply that expected index put returns are negative
because puts represent leveraged short positions in the underlying. However,
Section III.D shows the expected put returns implied from these models are in
general too small to be consistent with the data.

The pricing of volatility and jump risks leads to more interesting patterns of
expected option returns. First, notice that the volatility and jump risk premiums
do not affect expected option payoff, but they affect expected option returns by
inducing changes in the risk-neutral index return distribution under which option
prices are determined. In other words, considering the expected call return in
equation (3), the volatility and jump risk premiums affect the denominator of this
expression but not the numerator.

Specifically, the pricing of volatility risk lowers the expected returns of OTM
calls and OTM puts. Increasing the VRP, namely a more negative η, adds proba-
bility mass to both tails of the risk-neutral distribution (e.g., a higher risk-neutral
volatility) and therefore increases the prices of OTM calls and OTM puts. As the
numerator of the expected return expression is not affected, this means that
expected returns of OTM calls and OTM puts decrease. The next section shows
that consistent with the data, the SVþ model in which volatility risk is priced
produces large negative expected returns for both OTM calls and OTM puts.

On the other hand, the jump risk premium has different implications for OTM
option returns. The pricing of jump risk implies a larger jump intensity (λℚ > λℙ)
and a more negative mean jump size (μℚz < μℙz ) under the risk-neutral measure, and
these two elements have different impacts on the risk-neutral distribution. A more
negative mean jump size primarily adds left skewness, resulting in a more nega-
tively skewed risk-neutral distribution. This, in turn, increases the prices of OTM
puts and decreases the prices of OTM calls. In contrast, a larger jump intensity
fattens both tails, which increases the prices of both OTM calls and OTM puts. For
OTM puts, both effects lead to a higher valuation and thus expected put option
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returns are much more negative in the presence of a jump risk premium. On the
other hand, for OTM calls, the two effects offset each other and the overall impact
is somewhat ambiguous. Below we show that under plausible parameterizations,
the presence of the jump risk premium results in positive expected returns for
OTM calls.

D. Results

Tables 3–5 report the results of comparing realized option returns with the
expected option returns implied from the five option pricing models discussed in
Section III.B. Realized historical option returns are taken from Table 1, denoted by
“Data.”Expected option returns computed analytically are labeled as “Ep.”We also
report the average simulated option returns, denoted by “Simulation.” Not surpris-
ingly, these two measures of expected returns are very close to each other.

Table 3 shows that option pricing models involving the equity risk premium
only (BSM, SV, and SVJ) have difficulties in fitting index option returns. First of all,
Panel B of Table 3 suggests that these models in general can be rejected by OTM
put option returns, although not for all moneyness levels, confirming the results of
Chambers et al. (2014). For example, a 4% OTM put has an average return of
–37.86% in the data, which is much larger than the expected returns implied from
the three models: –12.24% (BSM), –10.20% (SV), and –9.16% (SVJ).9 The return
differences are also statistically significant at 10% with a p-value of 0.04, 0.08, and
0.07, respectively. A p-value of 0.04 for the BSM model means that only 4% of
the 25,000 simulated average put returns from the BSM model are less than the
–37.86% realized return. Panel A of Table 3 shows that models involving the equity
risk premium only are also inconsistent with index call option returns. Specifically,
these models predict an overall increasing relationship between expected call
option returns and the strike price with OTM calls earning large positive returns,
which is contrary to the data. Interestingly, despite the large return difference
between data and the models, p-values indicate that only the BSM model can be
rejected (based on 6% and 8% OTM calls). This is because OTM call returns have
very large standard deviations, which makes a model difficult to reject even if the
model is wrong. Broadie et al. (2009) demonstrate that the statistical uncertainty is
substantial for put returns. Our analysis further suggests that the statistical uncer-
tainty is even greater for call returns. Panel C of Table 3 reports the results based on
option portfolio returns. The BSM, SV, and SVJ models are all rejected by straddle
and strangle returns.

Table 4 compares realized option returns with the expected option returns
implied from the SVþ model in which volatility risk is priced. When a VRP is
incorporated, expected option returns match the average returns of call and put
options across all strikes as well as the average returns of option portfolios. In
particular, consistent with the data, the pricing of volatility risk implies that

9Expected put option returns in the SVand SVJ models are actually less negative than those in the
BSMmodel, despite the fact that the twomodels are able to generate a volatility skew. In other words, the
volatility skew per se does not imply large negative returns unless the skew is driven by risk premiums
(e.g., volatility and jump risks are priced).
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the expected call option return tends to decrease with the strike price, especially
over the OTM range. For example, the expected return drops monotonically from
5.14% per month for ATM calls to –22.54% for 8% OTM calls. This result sharply
contrasts with other models in which the expected call option return is an increasing
function of the strike price. On the put option side, we find that expected put returns
are more negative in the presence of the VRP, which again is consistent with the
data. Finally, Panel C of Table 4 shows that the pricing of volatility risk is also
consistent with option portfolio returns. The p-values suggest that in all cases
realized historical average option returns are not statistically significantly different

TABLE 3

Expected Option Returns: BSM, SV, and SVJ Models

Table 3 compares realized average index option returns in Table 1with expected option returns implied frommodels involving
the equity risk premium only (BSM, SV, and SVJ). “Ep ” represents expected option returns computed analytically using
parameters from Table 2. We also simulate 25,000 sample paths of the index from which we report the average simulated
option returns (denoted by “Simulation”) and p-values. The p-values are calculated based on the percentile of realized option
returns relative to the 25,000 simulated options returns. Sample paths are simulated based on the same parameters used for
computing expected option returns. Returns are reported in percentage per month.

Panel A. Call Option

K / S 0.96 0.98 1.00 1.02 1.04 1.06 1.08

Data 6.36 6.89 6.50 1.89 �1.47 �18.12 �25.05

BSM Ep 7.25 8.67 10.30 12.13 14.12 16.27 18.54
Simulation 7.18 8.58 10.19 12.00 14.01 16.18 18.53
p-value (0.45) (0.42) (0.37) (0.23) (0.19) (0.07) (0.08)

SV Ep 7.51 9.78 13.46 20.06 31.11 43.26 53.63
Simulation 7.52 9.81 13.53 20.22 31.64 44.39 52.50
p-value (0.42) (0.35) (0.24) (0.10) (0.11) (0.16) (0.38)

SVJ Ep 7.32 9.45 12.80 18.10 22.14 21.35 19.62
Simulation 7.28 9.41 12.78 18.15 22.36 21.61 19.76
p-value (0.44) (0.37) (0.27) (0.14) (0.20) (0.22) (0.33)

Panel B. Put Option

K / S 0.92 0.94 0.96 0.98 1.00 1.02 1.04

Data �52.07 �45.02 �37.86 �27.76 �22.36 �15.76 �13.15

BSM Ep �16.01 �14.07 �12.24 �10.54 �8.99 �7.61 �6.40
Simulation �15.92 �13.99 �12.19 �10.49 �8.94 �7.56 �6.35
p-value (0.10) (0.05) (0.04) (0.06) (0.06) (0.12) (0.12)

SV Ep �11.08 �10.67 �10.20 �9.66 �9.02 �8.20 �7.08
Simulation �11.34 �10.76 �10.23 �9.67 �9.02 �8.20 �7.09
p-value (0.13) (0.09) (0.08) (0.11) (0.12) (0.20) (0.19)

SVJ Ep �9.65 �9.41 �9.16 �8.85 �8.44 �7.84 �6.88
Simulation �9.53 �9.29 �9.06 �8.76 �8.37 �7.78 �6.83
p-value (0.09) (0.07) (0.07) (0.10) (0.11) (0.19) (0.19)

Panel C. Option Portfolio

Portfolio ATMS PSP CNS CSP STRN

Data �8.47 �18.54 �3.93 13.56 �38.64

BSM Ep 0.71 �8.03 1.97 8.88 2.65
Simulation 0.67 �7.99 1.93 8.77 2.69
p-value (0.03) (0.09) (0.11) (0.29) (0.00)

SV Ep 2.30 �8.56 3.70 12.11 �2.01
Simulation 2.33 �8.56 3.73 12.16 �2.25
p-value (0.02) (0.16) (0.05) (0.44) (0.00)

SVJ Ep 2.24 �8.08 3.74 11.59 �0.54
Simulation 2.27 �8.02 3.74 11.58 �0.44
p-value (0.03) (0.14) (0.06) (0.41) (0.00)
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TABLE 4

Expected Option Returns: SVþ Model

Table 4 compares realized average index option returns in Table 1with expected option returns implied from the SVþmodel in
which volatility risk is priced. “Ep ” represents expected option returns computed analytically using parameters reported in
Table 2. We also simulate 25,000 sample paths of the index from which we report the average simulated option returns
(denoted by “Simulation”) andp-values. Thep-values are calculated basedon the percentile of realized option returns relative
to the 25,000 simulated options returns. Sample paths are simulated based on the same parameters used for computing
expected option returns. Returns are reported in percentage per month.

Panel A. Call Option

K=S 0.96 0.98 1.00 1.02 1.04 1.06 1.08

Data 6.36 6.89 6.50 1.89 �1.47 �18.12 �25.05
Ep 4.82 5.10 5.14 4.50 1.12 �8.53 �22.54
Simulation 4.90 5.24 5.38 4.94 1.78 �7.99 �21.34
p-value (0.40) (0.40) (0.44) (0.41) (0.48) (0.50) (0.30)

Panel B. Put Option

K=S 0.92 0.94 0.96 0.98 1.00 1.02 1.04

Data �52.07 �45.02 �37.86 �27.76 �22.36 �15.76 �13.15
Ep �30.43 �26.69 �22.96 �19.29 �15.74 �12.39 �9.40
Simulation �30.54 �26.77 �23.03 �19.33 �15.76 �12.42 �9.42
p-value (0.22) (0.19) (0.18) (0.26) (0.26) (0.34) (0.28)

Panel C. Option Portfolio

Portfolio ATMS PSP CNS CSP STRN

Data �8.47 �18.54 �3.93 13.56 �38.64
Ep �5.24 �12.33 �2.52 6.74 �22.43
Simulation �5.13 �12.37 �2.41 6.94 �22.60
p-value (0.24) (0.25) (0.36) (0.20) (0.20)

TABLE 5

Expected Option Returns: SVJþ Model

Table 5 compares realized average index option returns in Table 1 with expected option returns implied from the SVJþmodel
in which jump risk is priced, but volatility risk is not. “Ep ” represents expected option returns computed analytically using
parameters reported in Table 2. We also simulate 25,000 sample paths of the index from which we report the average
simulated option returns (denoted by “Simulation”) and p-values. The p-values are calculated based on the percentile of
realized option returns relative to the 25,000 simulated options returns. Sample paths are simulated based on the same
parameters used for computing expected option returns. Returns are reported in percentage per month.

Panel A. Call Option

K=S 0.96 0.98 1.00 1.02 1.04 1.06 1.08

Data 6.36 6.89 6.50 1.89 �1.47 �18.12 �25.05
Ep 2.96 2.70 2.32 2.34 7.31 29.39 64.09
Simulation 3.01 2.74 2.35 2.39 7.63 29.65 64.05
p-value (0.26) (0.26) (0.30) (0.50) (0.40) (0.25) (0.29)

Panel B. Put Option

K=S 0.92 0.94 0.96 0.98 1.00 1.02 1.04

Data �52.07 �45.02 �37.86 �27.76 �22.36 �15.76 �13.15
Ep �41.93 �35.61 �29.10 �22.71 �16.85 �11.95 �8.38
Simulation �42.22 �35.93 �29.40 �22.98 �17.05 �12.09 �8.46
p-value (0.32) (0.31) (0.29) (0.35) (0.30) (0.33) (0.24)

Panel C. Option Portfolio

Portfolio ATMS PSP CNS CSP STRN

Data �8.47 �18.54 �3.93 13.56 �38.64
Ep �7.21 �9.30 �2.45 1.46 �25.35
Simulation �7.30 �9.47 �2.50 1.49 �25.44
p-value (0.41) (0.16) (0.38) (0.04) (0.20)
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from those generated by the SVþ model. Note that our calibration of the SVþ
model, which is based on a risk version of 10, implies a monthly VRP of –1.6%.
This is close to but somewhat smaller (inmagnitude) than the realizedVRP over our
sample period, which is –2%. We can match the realized VRP by setting risk
aversion to 13 and Section V.A shows that this does not affect the conclusion.

Table 5 compares realized option returns with the expected option returns
implied from the SVJþmodel in which jump risk is priced but volatility risk is not.
Confirming the findings of Broadie et al. (2009) and Chambers et al. (2014), Panel
B of Table 5 shows that the pricing of jump risk implies put options have large
negative expected returns, which is consistent with the data. While the jump risk
premium matches put returns very well, it fails to explain index call option returns.
Specifically, Panel A of Table 5 shows that when jump risk is priced, there is an
increasing relation between expected call option returns and the strike price with
OTM calls earning large positive returns, which is contrary to the data. Because
OTM call returns in the SVJþ model are associated with even larger variation, the
model cannot be rejected despite the fact that it generates a wrong return pattern.
However, portfolio-based evidence in Panel C of Table 5 shows that the SVJþ
model is rejected by CSP returns. The average monthly return of CSPs is 13.56% in
the data, significantly higher than the model-implied return of 1.46%. Specifically,
the 13.56% realized average return is greater than 96% of the 25,000 simulated
average returns from SVJþ model, yielding a p-value of 0.04.

Comparing Tables 4 and 5 shows that the volatility and jump risk premiums
generate similar expected returns for the strangle (�22:43% vs.�25:35%), but the
underlying mechanisms are different. In the presence of a volatility risk premium,
the underlying OTM call and OTM put both have large negative expected returns
and hence the strangle also has a negative expected return. In contrast, the jump risk
premium implies that the OTM call has a large positive expected return and the
OTM put has a large negative expected return. However, because the OTM put is
more expensive than the OTM call and therefore contributes more to the expected
return of the strangle, a strangle is similar to an OTM put option in the presence of
the jump risk premium and earns a negative expected return.

Figure 1 summarizes our findings by plotting expected option returns in
Tables 3–5 against the strike price. For comparison, we also include realized
average returns, denoted by “Data.” Graph A shows that the volatility and jump
risk premiums have drastically different implications on expected call option
returns. The jump risk premium implies that expected returns of OTM call options
are positive and increasing with the strike price, similar to models with the equity
risk premium only. In contrast, the volatility risk premium predicts a decreasing
relationship between expected call returns and the strike price, with OTM calls
earning large negative expected returns. Graph B shows that all models have
qualitatively similar predictions for puts: Expected put option returns should be
negative and increasing with the strike price, with the jump risk premium yielding
the most negative estimates, followed by the volatility risk premium.

Our analysis shows that a simple stochastic volatility model in which volatility
risk is priced describes the average option returns reasonably well. This result is
somewhat surprising because we know the stochastic volatility model is not rich
enough and additional factors are required to capture the behavior of option prices.
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Our results are nevertheless consistent with the findings of Cochrane and Piazzesi
(2005) for the bond market that although multiple factors are needed to describe
empirical patterns in bond prices, a single factor summarizes nearly all information
about risk premium/returns. Johnson (2017) also reports similar results in the VIX
market.

E. The Effect of the Volatility Risk Premium: Further Investigation

In this section, we analyze how expected option returns vary with respect to
changes in the volatility risk premium. Based on the parameter values reported in
Table 2, Figure 2 plots expected returns on call options, put options, and straddles in
the SVþmodel as a function of risk aversion γ for different moneyness. A higher γ
implies a larger volatility risk premium (more negative) as shown in equation (1).

Figure 2 shows that a more negative volatility risk premium lowers expected
option returns and this effect varies significantly acrossmoneyness. GraphsA andB
indicate that the relation between the volatility risk premium and the expected
option return is much stronger for OTM calls and OTM puts with the steepest
slope. As options move toward the in-the-money direction, the slope flattens out as
expected option returns become less sensitive to the changes in the volatility risk
premium. Specifically, our analysis suggests that a 1% decrease (in absolute term)
in the volatility risk premium results in 32.37%, 5.19%, and 0.97%drop (in absolute
term) in the expected return for 6%OTM call, ATM call, and 6% ITM call, yielding
a slope of 32.37, 5.19, and 0.97, respectively.10 On the put side, a 1% drop in the
volatility risk premium is associated with 10.01%, 4.19%, and 0.73% drop in the
expected return for 6%OTMput, ATMput, and 6% ITMput, respectively. Graph C
shows that straddles have their own unique pattern. ATM straddle returns are more
sensitive to changes in the volatility risk premium as compared to their ITM and
OTM counterparts. Our estimates imply that the expected return will drop by
1.74%, 4.71%, and 1.35% for straddles with K=S = 0:94, 1:00, and 1:06, respec-
tively, given a 1% decrease in the volatility risk premium. We test the differential
impact of the volatility risk premium on expected option returns in Section IV.

Figure 2 also helps understand why the volatility risk premium fits index
option returns well. As discussed, a negative volatility risk premium increases
option value, which then leads to a lower expected return. Moreover, this effect
is disproportionately stronger for OTM options. As a result, the pricing of volatility
risk is able to generate not only a steeper relation between expected put option
returns and the strike price, with OTM put options earning large negative returns,
but also a decreasing relation between expected call option returns and the strike
price, with OTM calls having negative expected returns.

IV. Time-Series Analysis

Section III.E shows that the presence of a negative volatility risk premium
decreases expected option returns. Moreover, the effect of the volatility risk

10Taking the 6%OTMcall as an example, Figure 2 shows that as γ increases from 0 to 10 (namely the
volatility risk premium changes from 0 to�0.016), the expected return of the 6% OTM call drops from
43.26% to �8.53%, yielding a slope of (0.4326 � (�0.0853))/(0 � (�0.016)) = 32.37.
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FIGURE 2

The Volatility Risk Premium and Expected Option Returns

Figure 2 plots expected option returns against risk aversion coefficient (γ) in the SVþ model: Graph A for calls, Graph B for
puts, andGraph C for straddles. A higher γ corresponds to a more negative volatility risk premium. The remaining parameters
required for computing expected returns are based on Table 2.

Graph A. Expected Call Option Returns

0 2 4 6 8 10
–0.1

0

0.1

0.2

0.3

0.4

0.5
E

xp
ec

te
d 

R
et

ur
n

K/S=0.94

K/S=1

K/S=1.06

Graph B. Expected Put Option Returns

–0.3

–0.25

–0.2

–0.15

–0.1

–0.05 

E
xp

ec
te

d 
R

et
ur

n

K/S=1.06

K/S=1

K/S=0.94

Graph C. Expected Straddle Returns

0 2 4 6 8 10

0 2 4 6 8 10
–0.08

–0.06

–0.04

–0.02

0

0.02

0.04

0.06

E
xp

ec
te

d 
R

et
ur

n K/S=0.94

K/S=1

K/S=1.06

Hu and Liu 2401

https://doi.org/10.1017/S0022109022000333  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109022000333


premium is stronger for OTM options and ATM straddles. We formally test these
predictions by investigating the time-series relationship between the volatility
risk premium and future index option returns.We also examine how the jump risk
premium is related to future option returns.

A. The Volatility Risk Premium and Future Option Returns

To test the differential impact of the volatility risk premium on expected option
returns, we estimate the following time-series predictive regressions at monthly
frequency:

OPTION_RETi
t,tþ1 = α

iþβiVRPtþ ϵ, i∈ call,put,straddlef g,(4)

where the dependent variable OPTION_RETt,tþ1 is the returns from holding call
options, put options and straddles from month t to month tþ1. The analysis in
Section III.E suggests that options with different moneyness have different
sensitivities with respect to the volatility risk premium and therefore we estimate
the above regressions separately for different moneyness groups. In particular,
for call options, we consider the following three groups: 0:96 ≤K=S< 1:00,
1:00 ≤K=S< 1:04, and 1:04 ≤K=S< 1:08. For put options, we consider
0:92 ≤K=S< 0:96, 0:96 ≤K=S< 1:00, and 1:00 ≤K=S< 1:04. Again we do not
investigate options that are beyond 8% OTM or 4% ITM in light of potential
data issues. For straddles, we consider the following three moneyness groups:
0:94 ≤K=S< 0:98, 0:98 ≤K=S< 1:02, and 1:02 ≤K=S< 1:06.

Following the definition of the equity risk premium, we define the volatility
risk premium as the difference between physical and risk-neutral expectations of
future realized volatility:

VRPt =Et RVt,tþ1ð Þ�Eℚ
t RVt,tþ1ð Þ:

The volatility risk premium is constructed each month on the option selection
date and will be used to forecast option returns over the following month. For the
baseline results, we follow Bollerslev et al. (2009) and measure the volatility risk
premium as the difference between realized volatility and the VIX index:

VRPt =RVt�1,t�VIXt,

where realized volatility is computed based on 5-min log returns on S&P500 futures
over the past 30 days (see, e.g., Andersen, Bollerslev, Diebold, and Ebens (2001),
Barndorff-Nielsen and Shephard (2002)). The VIX index is published by the
Chicago Board Options Exchange (CBOE), and it tracks 30-day risk-neutral
expectation of future realized volatility. Consistent with the findings in Carr
and Wu (2009) and Todorov (2010), Figure A1 in the Supplementary Material
shows that the volatility risk premium, like volatility itself, is also time varying.
In the robustness analysis, we show that our empirical results are robust to the
measurement of the volatility risk premium.

Panel A of Table 6 reports regression results for index call options. For calls
that are between 4% and 8% OTM, the volatility risk premium is positively related
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to future returns with a statistically significant coefficient. The t-statistic is 2.11 and
the adjusted R2 of the regression is 0.99%. Throughout the article, t-statistics are
computed using Newey–West standard errors with four lags (Newey and West
(1987), (1994)). Interestingly, this relationship between the volatility risk premium
and call returns weakens as call options move toward the in-the-money direction.
The slope coefficient, t-stat, and R2 all decrease monotonically.

Panel B of Table 6 shows that there is a positive relationship between the
volatility risk premium and future index put option returns. Similar to calls, this
relation becomes increasingly weak as put options move toward the in-the-money
direction, judging by the slope coefficient, statistical significance, andR2. For example,
for put options that are between 4% OTM and 8% OTM, the slope coefficient is
estimated to be 8.37 with a Newey–West t-statistic of 2.21 and an adjusted R2 of
2.04%. In contrast, for put options that are between ATM and 4% ITM, the slope
coefficient is only 2.70 and is not statistically significant.

TABLE 6

The Volatility Risk Premium and Future Option Returns

Table 6 reports results of the following monthly predictive regression:

OPTION_RETit ,tþ1 = αi þβiVRPt þ ϵ, i∈ call,put,straddlef g,
where OPTION_RET is monthly holding-to-maturity returns on call options (Panel A), put options (Panel B), and straddles
(Panel C). Each month VRPt is computed as the difference between realized volatility and the VIX. Realized volatility is
constructed based on 5-min log returns on S&P 500 futures over the past 30 calendar days. We run predictive regressions
for different moneyness groups as indicated by different columns. Newey–West t-statistics with 4 lags are reported in the
parentheses. Thep-values, reported in squarebrackets, are calculatedbasedon thepercentile of empirical slopecoefficients
in the finite sample distribution of 25,000 simulated slopes from the SVþ model. The sample period is Mar. 1998 to Aug.
2015.

Panel A. Call Option

0:96≤K=S < 1:00 1:00≤K=S < 1:04 1:04≤K=S < 1:08

INTERCEPT 0.11 0.27 1.28
(1.66) (1.57) (1.50)

VRP �0.06 4.35 24.44
(�0.04) (1.70) (2.11)
[0.47] [0.45] [0.50]

Adj. R2 �0.06% 0.37% 0.99%

Panel B. Put Option

0:92≤K=S < 0:96 0:96≤K=S < 1:00 1:00≤K=S < 1:04

INTERCEPT �0.23 �0.12 �0.09
(�1.21) (�0.83) (�0.72)

VRP 8.37 4.38 2.70
(2.21) (1.53) (1.21)
[0.46] [0.49] [0.50]

Adj. R2 2.04% 0.64% 0.55%

Panel C. Straddle

0:94≤K=S < 0:98 0:98≤K=S < 1:02 1:02≤K=S < 1:06

INTERCEPT 0.08 0.04 �0.04
(1.91) (0.83) (�0.50)

VRP 1.47 2.63 2.39
(1.84) (2.83) (1.76)
[0.45] [0.43] [0.48]

Adj.R2 0.87% 1.59% 1.41%

Hu and Liu 2403

https://doi.org/10.1017/S0022109022000333  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109022000333


Panel C of Table 6 shows that the volatility risk premium also exhibits a
positive relation with future straddle returns, but with a different pattern. In partic-
ular, the relationship between the volatility risk premium and future returns is
stronger for ATM straddles. As straddles move away from the money, this relation
is only marginally significant.

In summary, we find that the volatility risk premium is positively related to
future index option returns:Amore negative volatility risk premium in a givenmonth
is associated with lower option returns in the subsequent month. This positive
relationship is consistent with the theoretical prediction that a negative volatility
risk premium leads to lower expected option returns. We also find that the rela-
tionship between the volatility risk premium and future option returns is stronger
for OTM calls, OTM puts, and ATM straddles. This pattern is consistent with the
differential impact of the volatility risk premium on expected option returns dis-
cussed in Section III.E. Following the general approach we take in the paper, we
also test whether the empirical relationship between the volatility risk premium
and future option returns is consistent with what is implied by the SVþ model.
Specifically, we use the simulated data from the SVþ model to estimate the same
predictive regression in (4) and store the slope coefficient of theVRP.We repeat this
exercise 25,000 times to form a finite sample distribution of the slope, from which
we calculate p-values. As before, p-value is calculated as min[L, 1-L], where L
denotes the percentile of the realized slope in the 25,000 simulated slopes. Table 6
shows that p-values, reported in square brackets, are large and in the range of 0.4
to 0.5, which suggests that the realized slope of the VRP is not statistically
different from what is implied by the model. Lastly, the Supplementary Material
shows that the positive relationship between the volatility risk premium and future
option returns is also economically significant and can be translated into large
economic gains.

Bollerslev et al. (2009), among others, document that the volatility risk
premium predicts future index returns at short horizons. Therefore, a natural
interpretation of our finding is that it is merely a manifestation of the underlying
index return predictability afforded by the volatility risk premium. While this
explanation appears plausible, it can be ruled out based on the fact that the
volatility risk premium forecasts future option returns with the same sign: A
more negative volatility risk premium this month is associated with lower option
returns in the subsequent month. If option return predictability were caused by
stock return predictability, then one would observe opposite signs for calls and
puts because the expected call (put) option return increases (decreases) with the
expected stock return. Instead, we argue that the economic source of option
return predictability is due to the time-varying volatility risk premium embedded
in index options, because both the sign and pattern of index option return pre-
dictability are consistent with the theoretical impact of the volatility risk premium
on expected option returns.

B. The Jump Risk Premium and Future Option Returns

This section investigates how the jump risk premium is related to future option
returns. The presence of a jump risk premium will lead to a steeper slope of the
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implied volatility curve, and therefore we use the difference in average implied
volatilities (IVOL) between OTM andATMput options as a proxy for the jump risk
premium11:

JUMPt = IVOLOTM,t� IVOLATM,t,(5)

where OTM and ATM refer to put options with 0:90 ≤K=S ≤ 0:94 and
0:98 ≤K=S ≤ 1:02, respectively.

The predictive regression results for the jump risk premium are included in the
Supplementary Material. We find that the jump risk premium significantly predicts
future OTM put option returns: A larger jump risk premium in a given month is
associated with lower OTM put returns in the subsequent month. However, the
jump risk premium does not contain predictive information about future call and
straddle returns.

V. Robustness

This section includes several robustness checks. We study how different
parameterizations might affect expected option returns. We also investigate the
robustness of the empirical relationship between the volatility risk premium and
future option returns to a number of implementation choices. Lastly, we assess the
impact of bid–ask spreads on computing option returns.

A. Parameters

Our main analysis shows that the presence of the volatility risk premium
implies that both OTM calls and OTM puts have large negative expected returns.
On the other hand, the jump risk premium implies that OTM puts earn large
negative expected returns, whereas OTM calls are associated with large positive
expected returns. In this section, we assess how these conclusions might be affected
by different parameterizations with respect to both physical measure parameters
and the risk premia.

Table 7 recalculates expected option returns in the SVþmodel by increasing/
decreasing each ℙ-measure stochastic volatility parameter by 3 standard errors,
which covers a wide range of parameter values.We keep the volatility risk premium
parameter (η) unchanged when computing expected option returns. The results
suggest that alternative parameterizations of the stochastic volatility process under
the physical measure generate different expected option returns, but the overall
return patterns are similar to those obtained with our baseline parameterization.
For example, it is well-known that the mean reverting parameter κ is notoriously
difficult to pin down precisely and different estimates can have dramatically different
implications on the term structure of volatilities, but its impact on expected option
returns turns out to be quite consistent: Decreasing or increasing κ by 3 standard
errors produces similar expected return patterns.

11This proxy is likely to be noisy because it also captures the asymmetric distribution (physical) of
index returns, which may be generated from the leverage effect and the presence of negative jumps.
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Table 8 reports the effect of the volatility risk premium on expected option
returns in the SVþmodel by changing the risk aversion parameter from 0 to 20. For
ℙ-measure parameters, we continue to use our baseline estimates reported in
Table 2. Table 8 shows that risk aversion (and therefore the volatility risk premium)
has a much larger effect on expected option returns, especially for OTM options.
When risk aversion is equal to 0 (e.g., volatility risk is not priced), the SVþmodel
collapses to the SV model and expected call and put returns both increase with the
strike price. As risk aversion increases, namely the volatility risk premium becomes
more negative, expected option returns decrease. Note that the low returns on OTM
index options can be eventually matched by considering a large risk aversion, it is
therefore important to examine the plausibility of the estimated volatility risk
premium magnitude. As discussed in Section III.B, our baseline parameterization
considers a risk aversion of 10 and the implied volatility risk premium is econom-
ically reasonable.

The Supplementary Material includes the corresponding results for the SVJþ
model and shows that our conclusion about the effects of the jump risk premium on
expected option returns is robust to different parameterizations.

TABLE 7

Sensitivity Analysis: Stochastic Volatility Parameters

Table 7 reports expected option returns for the SVþ model by increasing (þ) and decreasing (–) each stochastic volatility
parameter under the physical measure by 3 standard errors. Expected option returns based on our baseline parameterization
are also included for comparison. Returns are in percentage per month.

Panel A. Call Option

K=S 0.96 0.98 1 1.02 1.04 1.06 1.08

Baseline 4.82 5.10 5.14 4.50 1.12 �8.53 �22.54
κþ 4.77 4.92 4.70 3.73 1.11 �4.98 �15.61
κ� 5.13 5.94 7.38 9.59 �0.02 �16.30 �32.27
θþ 3.83 3.63 3.00 1.55 �1.47 �7.43 �16.89
θ� 6.39 7.84 10.26 14.27 6.05 �14.24 �34.46
σþ 4.96 5.52 6.20 6.80 2.67 �9.90 �25.05
σ� 4.72 4.78 4.37 3.03 �0.36 �7.83 �19.70
ρþ 4.96 5.28 5.32 4.50 0.67 �8.12 �19.92
ρ� 4.77 5.08 5.24 5.07 2.64 �9.28 �27.65

Panel B. Put Option

K=S 0.92 0.94 0.96 0.98 1 1.02 1.04

Baseline �30.43 �26.69 �22.96 �19.29 �15.74 �12.39 �9.40
κþ �29.54 �25.79 �22.08 �18.47 �15.04 �11.88 �9.12
κ� �31.82 �28.13 �24.41 �20.70 �17.04 �13.41 �9.75
θþ �28.24 �24.69 �21.20 �17.84 �14.65 �11.71 �9.13
θ� �33.90 �29.97 �25.97 �21.93 �17.90 �13.85 �9.83
σþ �29.22 �25.83 �22.44 �19.07 �15.76 �12.55 �9.48
σ� �31.85 �27.68 �23.56 �19.55 �15.77 �12.31 �9.34
ρþ �31.24 �27.35 �23.47 �19.65 �15.96 �12.48 �9.40
ρ� �29.83 �26.21 �22.60 �19.06 �15.62 �12.36 �9.41

Panel C. Option Portfolio

ATMS PSP CNS CSP STRN

Baseline �5.24 �12.33 �2.52 6.74 �22.43
κþ �5.11 �11.64 �2.40 6.16 �19.99
κ� �4.73 �13.78 �2.12 9.07 �25.28
θþ �5.78 �10.74 �2.83 5.17 �19.18
θ� �3.70 �15.33 �1.43 11.12 �27.62
σþ �4.71 �12.46 �1.98 7.67 �22.51
σ� �5.64 �12.27 �2.94 6.13 �21.89
ρþ �5.25 �12.63 �2.61 6.98 �22.31
ρ� �5.13 �12.18 �2.37 6.75 �22.53
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B. The Measurement of the Volatility Risk Premium

In the main analysis, we measure the volatility risk premium as the difference
between realized volatility and the VIX. In other words, we assume that volatility
follows a random walk and lagged realized volatility is an unbiased estimate of
expected volatility. To ensure our empirical results are not driven by this assump-
tion, we also estimate expected physical volatility using the heterogeneous auto-
regressive model (the HAR model) proposed by Corsi (2009). In particular, we
obtain conditional forecasts of future volatility by projecting realized volatility onto
lagged realized volatilities computed over difference frequencies:

logRVt,tþ1 = δ0þδ1 logRVt�1,tþδ2 logRV
W
t þδ3 logRV

D
t þ ϵ,

TABLE 8

Sensitivity Analysis: Risk Aversion

Table 8 reports expected option returns for the SVþmodel using different values of risk aversion (γ) ranging from 0 to 20. The
remaining parameters are based on Table 2. Returns are in percentage per month.

Panel A. Call Option

γ= K=Sð Þ 0.96 0.98 1.00 1.02 1.04 1.06 1.08

0 7.51 9.78 13.46 20.06 31.11 43.26 53.63
2 6.99 8.86 11.76 16.66 24.06 30.17 32.46
4 6.55 8.08 10.36 14.03 18.66 19.58 15.45
6 5.98 7.09 8.60 10.75 12.36 8.94 0.35
8 5.49 6.24 7.11 8.00 7.06 �0.14 �12.30
10 4.82 5.10 5.14 4.50 1.12 �8.53 �22.54
12 4.25 4.15 3.54 1.75 �3.73 �15.87 �31.44
14 3.80 3.38 2.18 �0.72 �8.24 �22.77 �39.74
16 3.01 2.14 0.22 �3.85 �12.88 �28.33 �45.40
18 2.40 1.15 �1.40 �6.53 �17.08 �33.73 �51.12
20 1.87 0.25 �2.90 �9.04 �21.06 �38.81 �56.33

Panel B. Put Option

γ= K=Sð Þ 0.92 0.94 0.96 0.98 1.00 1.02 1.04

0 �11.08 �10.67 �10.20 �9.66 �9.02 �8.20 �7.08
2 �15.34 �14.12 �12.88 �11.63 �10.35 �9.00 �7.52
4 �19.58 �17.61 �15.66 �13.73 �11.83 �9.93 �8.02
6 �23.37 �20.74 �18.15 �15.60 �13.12 �10.72 �8.45
8 �27.16 �23.93 �20.73 �17.58 �14.52 �11.62 �8.94
10 �30.43 �26.69 �22.96 �19.29 �15.74 �12.39 �9.40
12 �33.77 �29.55 �25.32 �21.14 �17.09 �13.28 �9.90
14 �37.16 �32.49 �27.78 �23.09 �18.51 �14.20 �10.42
16 �39.85 �34.85 �29.77 �24.69 �19.73 �15.05 �10.97
18 �42.71 �37.39 �31.94 �26.45 �21.05 �15.96 �11.52
20 �45.56 �39.94 �34.14 �28.24 �22.41 �16.88 �12.06

Panel C. Option Portfolio

γ=Portfolio ATMS PSP CNS CSP STRN

0 2.30 �8.56 3.70 12.11 �2.01
2 0.78 �9.30 2.45 10.97 �6.45
4 �0.66 �10.22 1.25 10.14 �10.68
6 �2.19 �10.91 0.00 8.97 �14.80
8 �3.64 �11.76 �1.21 8.05 �18.67
10 �5.24 �12.33 �2.52 6.74 �22.43
12 �6.71 �13.09 �3.74 5.78 �26.01
14 �8.10 �14.01 �4.92 4.96 �29.45
16 �9.70 �14.53 �6.22 3.80 �32.70
18 �11.17 �15.27 �7.46 2.84 �35.82
20 �12.60 �16.10 �8.66 1.95 �38.77
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where RVt�1,t is realized volatility over the past month, and RVW
t and RVD

t denote
realized volatilities over the past week and day, respectively. Because realized
volatilities are approximately log-normally distributed (Andersen, Bollerslev,
Diebold, and Labys (2003)), it is more appropriate to forecast the logarithmic
of realized volatilities with linear models. The log specification also ensures that
volatility forecasts always remain positive. We estimate the above model based
on the full sample and take the fitted values as expectations of future realized
volatility:

Et RVt,tþ1ð Þ= exp δ0þδ1 logRVt�1,tþδ2 logRV
W
t þδ3 logRV

D
t þ

1

2
σ2ϵ

� �
:

Finally, we compute the difference betweenEt RVt,tþ1ð Þ and the VIX to obtain
the volatility risk premium estimates.

The results for this newmeasure of the volatility risk premium are contained in
the SupplementaryMaterial. Consistent with our benchmark findings, the volatility
risk premium is positively related to future option returns, and this relationship is
stronger for OTM options and ATM straddles. The Supplementary Material also
shows that the positive relationship between the volatility risk premium and option
returns is robust to controlling for other variables and persists to other holding
periods.

C. The Effect of Bid–Ask Spreads

The average option returns reported in Table 1 are based on the assumption that
options are transacted at the mid-point of the bid–ask spread; in other words, the
effective spread is 0. The bid–ask spreads are large in option markets and spreads
can also vary sharply depending on moneyness. To assess if the index option return
patterns documented in Table 1 are robust to the effect of transaction costs, we also
compute option returns by using different ratios of effective spreads to quoted
spreads. In particular, we consider trading options at an effective spread equal to
25%, 50%, and 100% of the quoted spread. Note that when the effective spread is
equal to 100% of the quoted spread, options are bought at the ask price and sold at
the bid price.12

The results are contained in the Supplementary Material. We find that a larger
effective spread, not surprisingly, lowers option returns and this impact is more
pronounced for OTM calls and option portfolios. More importantly, the results
confirm that the index option return patterns documented in Table 1 are robust to
alternative measurements of option returns. Regardless of the assumption on the
effective spread, the average call option returns tend to decreasewith the strike price
with OTMcalls earning large negative average returns, while the average put option
returns increase with the strike price, and OTM puts are associated with large
negative average returns.

12Muravyev and Pearson (2020) show that effective spreads are much lower than conventional
estimates because option prices are predictable at high frequency and traders can exploit this in timing
their executions.
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VI. Conclusion

OTM S&P 500 index call and put options are both associated with large
negative average returns. Existing studies relate the low returns on OTM index
options to behavioral factors or nonstandard preferences. We argue that the low
returns on OTM options are primarily due to the pricing of market volatility risk.
When volatility risk is priced, expected option returns are consistent with realized
historical index option returns across all strikes as well as the returns of a number
of option portfolios. Further corroborating the volatility risk premium hypothesis,
we document that the volatility risk premium is positively related to future option
returns, and this relationship is stronger for OTM options and ATM straddles.
These findings are consistent with the differential effect of the volatility risk
premium on expected option returns. Overall, our results suggest that the pricing
of volatility risk has a first-order effect on the cross-section of index option
returns. On the jump risk premium side, we find that the pricing of jump risk is
also important and some portion of OTMput option returns are related to the jump
risk premium.

This article can be extended in several ways. First, in our theoretical analysis,
we assume there is only one factor that drives time-varying stochastic volatility.
In the data, volatility dynamics are much more complex and our analysis can be
extended to take this into account. Second, we have focused on the 1-month
maturity and unconditional average returns, and extensions to investigating the
term structure and conditional risk premium would be useful. Third, we consider
option pricing models as a benchmark, and it may prove interesting to study index
option returns against a structural framework with economic fundamentals (e.g.,
consumption). We plan to address these in future research.

Supplementary Material

To view supplementary material for this article, please visit http://doi.org/
10.1017/S0022109022000333.
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