A Fritz John theorem in complex space

B.D. Craven and B. Mond

Necessary conditions of the Fritz John type are given for a class of nonlinear programming problems over polyhedral cones in finite dimensional complex space.

Consider the problem to

$$
\text { MINIMIZE } f(z, \bar{z}) \text { SUBJECT TO } g(z, \bar{z}) \in S
$$

where S is a polyhedral cone in C^{m}, and $f: C^{2 n} \rightarrow C$, $g: C^{2 n} \rightarrow C^{m}$ are differentiable functions. A necessary condition for a feasible point z_{0} to be optimal is that there exist $\tau \geq 0, v \in S^{*},(\tau, v) \neq 0$, such that

$$
\tau \bar{\tau} \bar{z} f(z, \bar{z})+\tau \nabla_{z} f\left(z_{0}, \bar{z}_{0}\right)=v^{T} \overline{\nabla_{z} g\left(z_{0}, \bar{z}_{0}\right)}+v v_{\bar{z}} g\left(z_{0}, \bar{z}_{0}\right)
$$

and

$$
\operatorname{Rev}{ }^{H} g\left(z_{0}, \bar{z}_{0}\right)=0
$$

Introduction

In [1], Abrams and Ben-Israel gave a complex version of the well-known [6] Kuhn and Tucker necessary conditions for the existence of an optimal solution to the problem of minimizing a function subject to inequality constraints. Here we give a complex version of the Fritz John necessary conditions [5].

Notation and preliminaries

Denote by $C^{n}\left(R^{n}\right) n$-dimensional complex (real) space, with hermitian (euclidean) norm | | . If A is a matrix or vector, then A^{T}, \bar{A}, and A^{H} denote its transpose, complex conjugate, and conjugate transpose. R_{+}denotes the half line $[0, \infty) \cdot S \subset C^{m}$ is a polyhedral cone if it is the finite intersection of closed half-spaces in C^{m}, each containing 0 in its boundary. The polar S^{*} of S is defined by

$$
S^{*}=\left\{y \in C^{m}: x \in S \Rightarrow \operatorname{Re}\left(y^{H} x\right) \geq 0\right\} .
$$

We shall make use of the following [1], [2]: If S and T are polyhedral cones in C^{m}, then

```
(S\timesT)* = S* × T* ,
(S\capT)* = cl( }\mp@subsup{S}{}{*}+\mp@subsup{T}{}{*})\mathrm{ , where cl denotes closure.
```

If $S=R_{+}$, then $S^{*}=R_{+}$. If $S=C^{m}$, then $S^{*}=\{0\}$.

Define the set

$$
Q=\left\{\binom{w^{1}}{w^{2}} \in c^{2 n}: w^{2}=\bar{w}^{-1}\right\}
$$

Then Q is the polyhedral cone in $C^{2 n}$ generated by the vectors

$$
\binom{e_{j}}{e_{j}},\binom{-e_{j}}{-e_{j}},\binom{i e_{j}}{-i e_{j}},\binom{-i e_{j}}{i e_{j}}(j=1,2, \ldots, n)
$$

where e_{j} is the j-th unit vector in R^{n}. The polar of Q is easily seen [1] to be the cone

$$
Q^{*}=\left\{\binom{w^{1}}{w^{2}} \in C^{2 n}: w^{2}=-\bar{w}^{1}\right\}
$$

The functions $f: Q \rightarrow C$ and $g: Q \rightarrow C^{m}$ are differentiable at $\left(z_{0}, \bar{z}_{0}\right) \in Q$ if

$$
f(z, \bar{z})-f\left(z_{0}, \bar{z}_{0}\right)=\nabla_{z} f\left(z_{0}, \bar{z}_{0}\right)\left(z-z_{0}\right)+\nabla_{z} f\left(z_{0}, \bar{z}_{0}\right)\left(\bar{z}-\bar{z}_{0}\right)+o\left(\left|z-z_{0}\right|\right)
$$

and

$$
g(z, \bar{z})-g\left(z_{0}, \bar{z}_{0}\right)=\nabla_{z} g\left(z_{0}, \bar{z}_{0}\right)\left(z-z_{0}\right)+\nabla_{z} g\left(z_{0}, \bar{z}_{0}\right)\left(\bar{z}-\bar{z}_{0}\right)+o\left(\left|z-z_{0}\right|\right)
$$

where $\nabla_{z} f\left(z_{\eta}, \bar{z}_{0}\right)$ and $\nabla_{z} f\left(z_{0}, \bar{z}_{0}\right)$ denote, respectively, the row vectors of partial derivatives

$$
\frac{\partial f\left(z_{0}, \bar{z}_{0}\right)}{\partial \omega_{i}^{1}} \text { and } \frac{\partial f\left(z_{0}, \bar{z}_{0}\right)}{\partial \omega_{i}^{2}} .
$$

$\nabla_{z} g\left(z_{0}, \bar{z}_{0}\right)$ and $\nabla_{z^{g}}\left(z_{0}, \bar{z}_{0}\right)$ denote, respectively, the $m \times n$ matrices whose i, j-th elements are

$$
\frac{\partial g_{i}\left(z_{0}, \bar{z}_{0}\right)}{\partial w_{j}^{I}} \text { and } \frac{\partial g_{i}\left(z_{0}, \bar{z}_{0}\right)}{\partial w_{j}^{2}}
$$

and $o\left(\left|z-z_{0}\right|\right) /\left|z-z_{0}\right| \rightarrow 0$ as $z+z_{0}$.

Results

We make use of the complex version of Gordan's Transposition Theorem [4] given by Ben-Israel [3].

LEMMA. Let $B \in c^{p \times q}, v \in c^{p}, w \in C^{q}$, and $s \subset C^{q}$ a convex polyhedral cone with non-empty interior. Then exactly one of the following two systems has a solution:
(i) $-B \omega \in$ intS,
(ii) $B^{H} v=0, \quad v \in S^{*}, \quad v \neq 0$.

THEOREM (Complex Fritz John). Let $f: c^{2 n} \rightarrow c$ and $g: c^{2 n} \rightarrow c^{m}$ be differentiable mappings, and let $S \subset C^{m}$ be a polyhedral convex cone with nonempty intemior. Let (P) denote the problem
(P): MINIMIZE $\operatorname{Ref}(z, \bar{z})$ SUBJECT TO $g(z, \bar{z}) \in S$. A necessary condition for z_{0} to he a local minimum of (P) is that there exist $\tau \in R$ and $v \in S^{*}$, not both zero, such that
(2) $\overline{\tau \nabla_{z} f\left(z_{0}, \bar{z}_{0}\right)}+\tau \nabla_{\bar{z}} f\left(z_{0}, \bar{z}_{0}\right)-v^{T} \overline{\nabla_{z} g\left(z_{0}, \bar{z}_{0}\right)}-v^{H} \nabla_{\bar{z}} g\left(z_{0}, \bar{z}_{0}\right)=0$,

$$
\begin{equation*}
\operatorname{Rev}^{H}{ }_{g}\left(z_{0}, \bar{z}_{0}\right)=0 . \tag{3}
\end{equation*}
$$

Proof. Equation (3) can be written as

$$
\frac{z}{v} v^{T} g\left(z_{0}, \bar{z}_{0}\right)+\frac{z}{v} v^{H} g\left(z_{0}, \bar{z}_{0}\right)=0 .
$$

If there is no non-zero. (τ, v), $\tau \in R_{+}, v \in S^{*}$ satisfying (2) and (3), it follows that there is no solution to the system

$$
\begin{gathered}
\left(\begin{array}{cc}
\nabla_{z} f\left(z_{0}, \bar{z}_{0}\right)+\overline{\nabla_{\bar{z}} f\left(z_{0}, \bar{z}_{0}\right)} & 0 \\
\frac{-\nabla_{z} g\left(z_{0}, \bar{z}_{0}\right)}{-\overline{-}_{z}^{g}\left(z_{0}, \bar{z}_{0}\right)} & \frac{g\left(z_{0}, \bar{z}_{0}\right)}{g\left(z_{0}, \bar{z}_{0}\right)}
\end{array}\right)^{H}\left(\begin{array}{c}
\tau \\
v_{1} \\
v_{2}
\end{array}\right)=0, \\
0 \neq\left(\begin{array}{l}
\tau \\
v_{1} \\
v_{2}
\end{array}\right) \in R_{+} \times\left[\left(S^{\left.\left.* \times \bar{S}^{*}\right) n a\right]}\right.\right.
\end{gathered}
$$

where $\bar{s}^{*}=\left\{\bar{w}: w \in S^{*}\right\}$, and Q is defined by (1).
By the lemma, there exist $p \in C^{n}, q \in C$ such that

$$
\begin{array}{r}
-\left(\begin{array}{cc}
\nabla_{z} f\left(z_{0}, \bar{z}_{0}\right)+\overline{\nabla_{z} f\left(z_{0}, \bar{z}_{0}\right)} & 0 \\
-\frac{\nabla_{z} g\left(z_{0}, \bar{z}_{0}\right)}{-\nabla_{z} g\left(z_{0}, \bar{z}_{0}\right)} & \frac{g\left(z_{0}, \bar{z}_{0}\right)}{g\left(z_{0}, \bar{z}_{0}\right)}
\end{array}\right)\binom{p}{q} \in \operatorname{int}\left\{R_{+} \times \operatorname{cl}\left\{\left[(S \times \bar{S})+Q^{*}\right]\right\}\right\} \\
=\operatorname{int} R_{+} \times \operatorname{int}\left[(S \times \bar{S})+Q^{*}\right] .
\end{array}
$$

Thus

$$
\nabla_{z} f\left(z_{0}, \bar{z}_{0}\right) p+\overline{\nabla_{z} f\left(z_{0}, \bar{z}_{0}\right)} p<0
$$

or
(4)

$$
\operatorname{Re}\left[\nabla_{z} f\left(z_{0}, \bar{z}_{0}\right) p+\nabla_{z} f\left(z_{0}, \bar{z}_{0}\right) \bar{p}\right]<0
$$

Also, any vector in $\operatorname{int}\left[(S \times \bar{S})+Q^{*}\right]$ is of the form $\left[\begin{array}{l}s+\lambda \\ \bar{n} \bar{\lambda}\end{array}\right]$, where
$s, r \in$ intS and $\lambda \in C^{m}$. Hence

$$
\begin{align*}
& \nabla_{z} g\left(z_{0}, \bar{z}_{0}\right) p-g\left(z_{0}, \bar{z}_{0}\right) q=s+\lambda \tag{5}\\
& \overline{\nabla_{\bar{z}} g\left(z_{0}, \bar{z}_{0}\right) p}-\overline{g\left(z_{0}, \bar{z}_{0}\right) q}=\bar{r}-\bar{\lambda} \tag{6}
\end{align*}
$$

Conjugating (6) and adding to (5) yields

$$
\nabla_{z} g\left(z_{0}, \bar{z}_{0}\right) p+\nabla_{\bar{z}} g\left(z_{0}, \bar{z}_{0}\right) \bar{p}-g\left(z_{0}, \bar{z}_{0}\right)(q+\bar{q})=s+r \in \operatorname{intS}
$$

```
Now, since f}\mathrm{ and }g\mathrm{ .are differentiable, for sufficiently small t,
```

$\theta<t \in R_{+}$,
$g\left(z_{0}+t p, \bar{z}_{0}+t \bar{p}\right)=g\left(z_{0}, \bar{z}_{0}\right)+t \nabla_{z} g\left(z_{0}, \bar{z}_{0}\right) p+t \nabla_{\bar{z}} g\left(z_{0}, \bar{z}_{0}\right) \bar{p}+o(t)=$
$=[1+t(q+\bar{q})] g\left(z_{0}, \bar{z}_{0}\right)+t(s+r)+o(t) \in S+\operatorname{int} S \subset S$.

Also, noting (4),
$\operatorname{Ref}\left(z_{0}+t p, \bar{z}_{0}+t \bar{p}\right)=$

$$
=\operatorname{Re}\left[f\left(z_{0}, \bar{z}_{0}\right)+t \nabla_{z} f\left(z_{0}, \bar{z}_{0}\right) p+t \nabla-f\left(z_{z}, \bar{z}_{0}\right) \bar{p}+o(t)\right]<\operatorname{Re} f\left(z_{0}, \bar{z}_{0}\right) .
$$

This contradicts the assumption that z_{0} is a local minimum of (P).

References

[1] Robert A. Abrams and Adi Ben-lsrael, "Nonlinear programming in complex space: necessary conditions", SIAM J. Control 9 (1971), 606-620.
[2] Adi Ben-Israel, "Linear equations and inequalities on finite dimensional, real or complex, vector spaces: a unified theory", J. Math. Anal. Appl. 27 (1969), 367-389.
[3] A. Ben-lsrael, "Theorems of the alternative for complex linear inequalities", Israel J. Math. 7 (1969), 129-136.
[4] P. Gordan, "Ueber die Auflösungen linearer Gleichungen mit reellen Coefficienten", Math. Ann. 6 (1873), 23-28.
[5] Fritz John, "Extremum problems with inequalities as subsidiary conditions", Studies and essays presented to R. Courant on his 60th birthday, January 8, 1948, 187-204 (Interscience, New York, 1948).
[6] H.W. Kuhn and A.W. Tucker, "Nonlinear programming", Proceedings of the Second Berkeley Symposizon on Mathematical Statistics and Probability, 481-492 (University of California Press, Berkeley and Los Angeles, 1951).

Department of Mathematics,
University of Melbourne,
Parkville,
Victoria;
Department of Mathematics,
La Trobe University,
Bundoora,
Victoria.

