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Abstract

In this paper, solubility of groups factorised as a product of two subgroups which are connected by certain
permutability properties is studied.

2010 Mathematics subject classification: primary 20D10.

Keywords and phrases: factorised group, mutually m-permutable product, soluble group.

1. Introduction and statement of results

All groups considered in this paper are finite.
Groups which are factorised as a product of two subgroups have been the subject

of many investigations in group theory. Let the group G = AB be the product of two
subgroups A and B. It is quite clear that not many properties carry over from A and
B to G, and so a natural problem is: suppose that A and B belong to a certain class of
groups, what can be said about G? This question has been extensively studied, with
many results available spread over many papers (see [1, 3]). The fact that the product
of two supersoluble groups is not supersoluble in general, even when both factors are
normal, has opened the door to the study of groups which are factorised as a product
of two subgroups connected by some permutability properties. The cases when A and
B are totally permutable, that is, every subgroup of A permutes with every subgroup
of B, or A and B are mutually permutable, that is, every subgroup of A permutes with
B and every subgroup of B permutes with A, have produced many surprising and nice
results (see [3]).

Sometimes it is interesting to impose permutability of one factor not with the family
of all subgroups of the other, but with a smaller relevant family of subgroups, for
instance, the family of all maximal subgroups. Then mutually m-permutable products,
that is, groups G = AB factorised as a product of two subgroups A and B such that
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A permutes with every maximal subgroup of B and B permutes with every maximal
subgroup of A, appear. A first example of these products was studied by Maier [9], who
investigated subgroups H of a group G which permute with all maximal subgroups
of G. In this case, G is the mutually m-permutable product of H and G. The second
author, Guo and Pedraza-Aguilera have studied in [4] the behaviour of mutually m-
permutable products with respect to saturated formations containing the class of all
supersoluble groups.

T 1.1 [4, Theorems 1 and 2]. Let the soluble group G = G1G2 · · ·Gr be the
product of the pairwise mutually m-permutable subgroups G1, G2, . . . , Gr. Suppose
also that G′ is nilpotent.

(1) Suppose thatF is a saturated formation containing the classU of all supersoluble
groups. If Gi is an F-group for each i ∈ {1, 2, . . . , r}, then G belongs to F.

(2) Suppose that F is a saturated formation and that G is an F-group. Then Gi ∈ F

for all i ∈ {1, 2, . . . , r}.

The second author, Cossey and Pedraza-Aguilera have proved the following result.

T 1.2 [2, Theorem 2]. Let the group G = AB be the mutually m-permutable
product of its subgroups A and B. If A and B are supersoluble, then G is soluble.

Ezquerro and Soler-Escrivà have extended Theorem 1.2 to mutually m-permutable
products of soluble groups.

T 1.3 [7, Theorem 1.2]. Let the group G = AB be the product of the mutually
m-permutable subgroups A and B. If A and B are soluble, then G is soluble.

The main aim of this paper is to analyse the solubility of factorised groups whose
factors are connected by more general permutability conditions. Our first result can be
seen as a generalisation of Theorem 1.3 for factors of coprime orders.

T 1.4. Assume that a group G = AB is the product of the soluble subgroups A
and B and let p be the smallest prime dividing the order of G. If gcd(|A|, |B|) = 1, p
divides the order of A, and B permutes with every maximal subgroup of A, then G is
soluble.

The following result can be regarded as a generalisation of Theorem 1.2 in which
permutability is required only for the maximal subgroups whose index is not divisible
by the smallest prime dividing the order of the group.

T 1.5. Let the group G = AB be the product of the supersoluble subgroups A
and B and let p be the smallest prime dividing the order of G. If A permutes with every
maximal subgroup B1 of B such that p does not divide |B : B1| and B permutes with
every maximal subgroup A1 of A such that p does not divide |A : A1|, then G is soluble.

Finally, if in Theorem 1.5 one of the factors, B say, is nilpotent, the conclusion
is achieved without requiring A to permute with the maximal subgroups of B whose
index is not divisible by p.
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T 1.6. Let the group G = AB be the product of the subgroups A and B and let
p be the smallest prime dividing the order of G. Assume that A is supersoluble and B
is nilpotent. If B permutes with every maximal subgroup A1 of A such that p does not
divide the index |A : A1|, then G is soluble.

The notation is standard and can be found in books such as [6] or [8].

2. Preliminary results

Let p be a prime number and let G be a group. Deskins [5], see also [8, Ch. III,
Aufgabe 12], defined the subgroup Φp(G) as the intersection of all maximal subgroups
of G with index not divisible by p. He proved the following theorem.

T 2.1. Let p be a prime number and let G be a group. Then Φp(G) has a
normal Sylow p-subgroup P such that Φp(G)/P is nilpotent.

The following results of Ezquerro and Soler-Escrivà are needed in our proofs. The
first one follows from the arguments contained in [7, proof of Lemma 2.2].

L 2.2. Let the group G = AB be the product of its subgroups A and B and let
D = A ∩ B. Assume that B permutes with each maximal subgroup A1 of A such that
D ≤ A1. Then(⋂

{A1 | A1 maximal in A, D ≤ A1}

)
B =

⋂
{BA1 | A1 maximal in A, D ≤ A1}

is a subgroup of G.

The second one is useful in proofs by minimal counterexample.

L 2.3 [7, Lemma 2.3]. Let G be a primitive group with a unique minimal normal
subgroup and suppose that G = AB, where A and B are nontrivial subgroups of G such
that B permutes with all maximal subgroups of A. Let A1 be a maximal subgroup of A
such that BA1 is a core-free maximal subgroup of G. Then:

(1) H is a Sylow p-subgroup of G of order p, where p is the greatest prime dividing
|G|; and

(2) B is a core-free maximal subgroup of G such that |G : B| = p.

The following result was proved by Maier.

L 2.4 [9, Lemma 2.10]. Let G be a group and let X be a subgroup of G. If X
permutes with all maximal subgroups of G whose index is coprime with the order of
the Fitting subgroup F(X), then F(X) ≤ F(G).

Our proof of Theorem 1.5 is based on the following lemma.

L 2.5. Let the group G = AB be the product of its nontrivial subgroups A and B
and suppose that A ∩ B = 1. Assume that G has a unique minimal normal subgroup,
N say. If A1 is a maximal subgroup of A such that B permutes with Aa

1 for all a ∈ A
and CoreG(A1B) = 1, then A has prime order or N ≤ A.
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P. We prove first that B centralises A1. By hypothesis Aa
1B is a subgroup of

G for each a ∈ A. Consider g ∈G, then g = ab, where a ∈ A and b ∈ B. Hence
(Aa

1B)b = Aab
1 Bb = Ag

1B ≤G. This implies that B permutes with Ag
1 for every g ∈G.

By [1, Lemma 2.5.1] we have that [B, A1] is subnormal in G. Hence N normalises
[B, A1] by [1, Lemma 7.5.5]. On the other hand, since A ∩ B = 1, A1B is a maximal
subgroup of G and CoreG(A1B) = 1. Therefore G = (A1B)N and [B, A1] is a normal
subgroup of G contained in A1B. Thus [B, A1] = 1 and B centralises A1. Consider
now the normal closure 〈AG

1 〉 of A1 in G, which is contained in A. Then AG
1 = A1 or

〈AG
1 〉 = A and so A has prime order or N ≤ AG

1 = A. �

3. Proofs of the main theorems

P  T 1.4. Suppose that the result is not true. Let G be a counterexample
of minimal order. We may assume that p = 2. Otherwise, by the well-known Feit–
Thompson theorem, G would be soluble, which would contradict the choice of G. Let
N be a minimal normal subgroup of G. If 2 divides the order of AN/N, the minimal
choice of G implies that G/N is soluble. Moreover, if 2 does not divide the order of
AN/N, then 2 does not divide the order of G/N and, as above, G/N is soluble. Thus
any proper quotient group of G is soluble. Since the class of all soluble groups is
a saturated formation, it follows that Φ(G) = 1 and G has a unique minimal normal
subgroup N = Soc(G), N is nonabelian, and CG(N) = 1.

On the other hand, we may suppose that |A| , 2 because otherwise G would be
2-nilpotent and hence soluble, in contradiction to the choice of G. Let A1 be a
maximal subgroup of A. Then, by hypothesis, A1B is a maximal subgroup of G. If
CoreG(A1B) = 1, the application of Lemma 2.3 yields that A is a Sylow p-subgroup
of G of order p for the largest prime p dividing |G|. This contradicts the hypothesis
that 2 divides |A|. Therefore CoreG(A1B) , 1 for every maximal subgroup A1 of A.
Consequently, N is contained in A1B for every maximal subgroup A1 of A. By
Lemma 2.2, N ≤ BΦ(A) and so A ∩ N ≤ A ∩ BΦ(A) = Φ(A). Let π denote the set of
primes dividing |A ∩ N|. Since gcd(|A ∩ N|, |G : A|) = 1, by [8, Ch. IV, Satz 4.6] there
exists a normal subgroup R of N such that N/R is a π-group, R ∩ A = 1, and |N ∩ A|
divides |N : R|. Moreover, |N : A ∩ N| divides |G : A|, which is a π′-number. Hence
N = R(A ∩ N). On the other hand, since gcd(|A|, |B|) = 1, it follows that N ∩ A is a Hall
π-subgroup of N and N ∩ B is a Hall π′-subgroup of N. Thus N = (N ∩ A)(N ∩ B). By
order considerations, bearing in mind that R ∩ A = 1, we obtain that |R| = |N ∩ B|. Now
R is a normal π′-subgroup of N and N ∩ B is a Hall π′-subgroup of N, so R = N ∩ B.
But then R and N/R � N ∩ A are soluble. This leads to the solubility of N, the final
contradiction which completes the proof of the theorem. �

P  T 1.5. Assume that the result is not true and let G be a minimal
counterexample. Let 1 , N be a normal subgroup of G. If p does not divide |G/N|,
then, by hypothesis, AN/N permutes with every maximal subgroup of BN/N and
BN/N permutes with every maximal subgroup of AN/N. Applying Theorem 1.2,
we have that G/N is soluble. On the other hand, if p divides the order of G/N, the
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hypotheses of the theorem hold in G/N. Therefore the minimal choice of G implies
that G/N is soluble. Consequently, Soc(G) = N is the unique minimal normal subgroup
of G, N is nonabelian, and CG(N) = 1.

By the fact that B permutes with every maximal subgroup A1 of A such that p does
not divide |A : A1|, it follows that A ∩ B permutes with every maximal subgroup A1

of A such that p does not divide |A : A1|. Assume that A1 is a maximal subgroup of
A such that p divides |A : A1|. Since A is supersoluble, it is clear that |A : A1| = p.
Moreover, the fact that p is the smallest prime dividing the order of G yields that
A1 is a normal subgroup of A. Consequently, A ∩ B permutes with A1 and so A ∩ B
permutes with all maximal subgroups of A. With the same arguments, A ∩ B permutes
with every maximal subgroup of B of index p. By Lemma 2.4, F(A ∩ B) ≤ F(A) and
F(A ∩ B) ≤ F(B). Thus F(A ∩ B) is a subnormal subgroup of A and B, respectively.
Now an application of [3, Theorem 1.1.7] yields that F(A ∩ B) is a subnormal subgroup
of G. Moreover, F(A ∩ B) is nilpotent. Consequently, F(A ∩ B) ≤ F(G) = 1. Hence the
solubility of A ∩ B implies that A ∩ B = 1.

We will prove now that p divides the orders of A and B. It is clear that we may
assume that p divides |A|. Assume that p does not divide |B|. Thus, by hypothesis, A
permutes with every maximal subgroup of B. We may suppose that A is not nilpotent,
otherwise G is soluble by [2, Theorem 1]. Let B1 be a maximal subgroup of B. Then
AB1 is a maximal subgroup of G.

Assume that CoreG(AB1) = 1. By Lemma 2.5, N ≤ B, which contradicts the
solubility of B, or B has prime order. Suppose that |B| = q, where q , p is a prime
number. Then |G : A| = q and CoreG(A) = 1. This means that G is isomorphic to
a subgroup of the symmetric group of degree q. Consequently, q is the largest
prime dividing the order of G and B is a Sylow q-subgroup of G. Let M(A) be
the set of all maximal subgroups of A with index in A not divisible by p. Since
A is not nilpotent, it is clear that M(A) is not empty. Consider A1 ∈M(A). By
hypothesis, BA1 is a subgroup of G. Moreover, the fact that A ∩ B = 1 implies that
BA1 is a maximal subgroup of G. By Lemma 2.5 we obtain that CoreG(BA1) , 1
for all A1 ∈M(A). In particular, N ≤ BA1 for all A1 ∈M(A). By Lemma 2.2, we
have that N ≤ B [

⋂
{A1 | A1 ∈M(A)}] = BΦp(A). Since Φp(A) ≤ A, it follows that it is

supersoluble. In particular, Φp(A) is p-nilpotent. On the other hand, by Theorem 2.1,
Φp(A) has a normal Sylow p-subgroup, P say, such that Φp(A)/P is nilpotent. Hence
Φp(A) is the direct product of two nilpotent subgroups and thus it is nilpotent. Since
|B| = q, BΦp(A) is soluble by [8, Ch. VI, Hauptsatz 4.3] and so N is soluble, a
contradiction.

Thus CoreG(AB1) , 1 for all maximal subgroups B1 of B. (Recall that A permutes
with every maximal subgroup of B because p does not divide |B|.) Furthermore,
if CoreG(BA1) = 1 for some A1 ∈M(A), it follows from Lemma 2.5 that A has
prime order, which contradicts the fact that A cannot be nilpotent, or N ≤ A, which
contradicts the fact that N is not soluble. So we may assume that CoreG(BA1) , 1
for all A1 ∈M(A). Arguing as above and applying Lemma 2.2 again, we obtain
that N ≤ AΦ(B) ∩ BΦp(A) = Φ(B)Φp(A). As above, Φp(A) is nilpotent. Then, by [8,
Ch. VI, Hauptsatz 4.3], Φ(B)Φp(A) is soluble and so N is soluble, a contradiction.
Consequently, p divides the order of A and B.
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We now prove that A and B are nonnilpotent subgroups of G. Suppose that A is
nilpotent. If B is nilpotent, then G would be soluble by [8, Ch. VI, Hauptsatz 4.3],
a contradiction. Thus we may assume that B is not nilpotent and, in particular,
that the number of distinct prime numbers dividing the order of B is at least two.
Moreover, p divides the order of B as we have proved before. Consider B1 ∈M(B).
By hypothesis and the fact that A ∩ B = 1, we have that AB1 is a maximal subgroup
of G. Arguing as above, we obtain that if CoreG(AB1) = 1, then B has prime order,
against the fact that B is not nilpotent, or N ≤ B, which contradicts the fact that N is
not soluble. Consequently, we may assume that N ≤ CoreG(AB1) for every B1 ∈M(B).
With analogous arguments to those used before, we have N ≤ AΦp(B) and Φp(B) is
nilpotent. Therefore N is soluble, a contradiction. Hence A and, similarly, B are
nonnilpotent subgroups of G.

Finally, note that if N is contained in all maximal subgroups of G of the form AB1

and BA1, where B1 ∈M(B) and A1 ∈M(A) (the fact that A and B are nonnilpotent
yields thatM(B) andM(A) are nonempty sets), then we would obtain N ≤ AΦp(B) ∩
BΦp(A) = Φp(A)Φp(B). But Φp(A)Φp(B) is a product of two nilpotent groups by the
above arguments. Hence N is soluble by [8, Ch. VI, Hauptsatz 4.3], a contradiction.
Consequently, we may assume that there exists A1 ∈M(A) such that BA1 is a maximal
subgroup of G with CoreG(BA1) = 1. Now Lemma 2.5 implies that A has prime order
or N ≤ A, the final contradiction. �

P  T 1.6. Assume that the result is false and let G be a counterexample
of minimal order. We argue that every proper quotient G/N, where 1 , N is a
normal subgroup of G, is soluble. If p does not divide |G : N|, then G/N is
soluble by the Feit–Thompson theorem. If p divides |G : N|, it is clear that the
hypotheses of the theorem hold in G/N. By minimality of G, we have that G/N is
soluble. Consequently, Soc(G) = N is the unique minimal normal subgroup of G,
N is nonabelian, and CG(N) = 1. Arguing as in Theorem 1.5, we obtain that A ∩ B
permutes with every maximal subgroup of A. Moreover, since B is nilpotent, every
maximal subgroup of B is a normal subgroup of B. Hence A ∩ B permutes with every
maximal subgroup of B. Now a similar argument to that in used Theorem 1.5 yields
A ∩ B = 1.

Note that A is not nilpotent, otherwise G would be soluble by [8, Ch. VI,
Hauptsatz 4.3], which contradicts the choice of G. Furthermore, if p does not divide
the order of A, then B permutes with every maximal subgroup of A and so G is
soluble by [2, Theorem 1], against the choice of G. Thus we may assume that A
is not nilpotent and p divides the order of A. Consider now the set M(A) of all
maximal subgroups of A whose index in A is not divisible by p. Since A is not
nilpotent, M(A) is not empty. If N is contained in BA1 for all A1 ∈M(A), then,
arguing as in Theorem 1.5, we obtain that N ≤ BΦp(A) and Φp(A) is nilpotent. Thus
by [8, Ch. VI, Hauptsatz 4.3] N is soluble, against the choice of G. Therefore
there exists a maximal subgroup A1 of A such that BA1 is a maximal subgroup of
G with CoreG(BA1) = 1. By Lemma 2.5, A has prime order or N ≤ A, the final
contradiction. �
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4. Final remarks

The result of Theorem 1.4 does not hold when p is not the smallest prime dividing
the order of G. For instance, the alternating group G = A5 of degree five can be
expressed as the product of a cyclic group A �C5 of order five and the alternating
group B = A4 of degree four. In this case, gcd(|A|, |B|) = 1, 5 divides |A|, and B
permutes with the unique maximal subgroup of A, but G is not soluble.

In Theorem 1.6, the nilpotency of B is required for the proof. The group G =

PSL2(7) can be factorised as the product of a dihedral group A of order eight and a
nonabelian group B of order 21. Trivially, B permutes with every maximal subgroup
A1 of A such that 2 does not divide |A : A1|, but G is not soluble.

We do not know whether the hypothesis on p in Theorem 1.5 is necessary.
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