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Abstract

We exhibit a sequence (un) which is not uniformly distributed modulo one even though for each
fixed integer k>2 the sequence (kun) isu.d. (mod 1). Within the set of all such sequences, we
characterize those with a well-behaved asymptotic distribution function. We exhibit a sequence
(un) which is u.d. (mod 1) even though no subsequence of the form {ukn+j) is u.d. (mod 1)
for any k > 2 . We prove that, if the subsequences (ukn) are u.d. (mod 1) for all squarefree
k which are products of primes in a fixed set & , then (un) is u.d. (mod 1) if the sum of the
reciprocals of the primes in & diverges. We show that this result is the best possible of its type.

1980 Mathematics subject classification {Amer. Math. Soc.) (1985 Revision): 11 K 06.

1. Introduction

We recall the rudiments of the theory of sequences uniformly distributed
modulo one (hereinafter abbreviated as u.d. (mod 1)). The standard refer-
ence for this material is [1].

By {x} we mean the fractional part of x (we use the same notation
for sets, but context should make the meaning clear). A sequence («„) =
(«[, u2, ...) of real numbers is said to be u.d. (mod 1) if

Iw^ jj#{n <N:a<{un}<fi} = p-a

for all a, P with 0 < a < fi < 1. Writing e(x) for e2nix we can state the
Weyl criterion as follows.
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[2] Notes on uniform distribution modulo one 265

THEOREM 1. The sequence {un) is u.d. (mod 1) if and only if

1 N

lim i-TYe{hun) = 0

for all non-zero integers h.

We conclude our review with some immediate consequences of the Weyl
criterion.

COROLLARY 1. If (un) is u.d. (mod 1) then so is (kun) for any non-zero
integer k.

COROLLARY 2. If for fixed k > 1 and for all j , 1 < j < k, the sequence
(ukn+j) is u.d. (mod 1) then (un) is u.d. (mod 1).

2. Multiples

In this section we first show by example that even a very weak converse of
Corollary 1 is false.

THEOREM 2. There exists a sequence (un) , not u.d. (mod 1), such that
(kun) is u.d. (mod 1) for all integers k > 2.

PROOF. Let g(x) = x + ^ sin 2nx. Note that g is a continuous, increas-
ing function on [0, 1], #(0) = 0, and g(l) = 1. Thus g has an inverse,
h, with these same properties. Let (xn) be any sequence u.d. (mod 1), and
let un = h({xn}), n = 1, 2, ... . We claim that (un) satisfies the conditions
of the theorem.

For any sequence (vn), and for 0 < a < ft < 1, let us write pr(a <v<fi)
for

^Hn < N : a < vn < 0},^Hn < vn

if the limit exists. Then

pr(a <u<p) = pr(a <
= Pr(g(a) < {x} < g{fi)) = g(0) - g(a)

since xn is u.d. (mod 1). But g{fi) - g(a) = ft - a + ^(sin27r/? - sin27ra)
which is, in general, not equal to /? - a, so (wn) is not u.d. (mod 1).
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266 G. Myerson and A. D. Pollington [3]

Now let k be any integer greater than 1. Then

pr(a < {ku} <P) = pr(a < {kh(x)} < p)
k-l

= J3 pr (a + r < kh(x) < P + r)
r=0

k-l

s ince J2*Io s i n 2 n ( z + r l ^ ) = ° f o r a11 r e a l z a n d k = 2 , 3 , ... .
We now show that all the "nice" examples of sequences with the prop-

erty given in Theorem 2 are essentially those produced in the proof of that
theorem.

THEOREM 3. Suppose (kun) is u.d. (mod 1) for k = 2 , 3, . . . . and
g{x) — pr(0 < {u} < x) exists and is continuous. Then

g(x) = x + cx (1 - cos 2nx) + c2 sin 2nx

for some constants cx, c2, and, if xn = g(un), then (xn) is u.d. (mod 1).

REMARK. In an earlier version of this paper the conclusion of this theorem
rested on the stronger hypothesis that g be differentiable. We thank Boping
Jin for showing us how to weaken the hypothesis.

PROOF. By hypothesis we have, for k = 2,3, ... , and 0 < a < /? < 1,

p - a = pr(a < {ku} < p)
k-\

r=0

k-l

https://doi.org/10.1017/S1446788700030548 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030548


[4] Notes on uniform distribution modulo one 267

Let Q = 0, P = x; then £ r g((x + r)/k) -x = ^r g(r/k), a constant. Thus
for m > 1 we have

/ e(-mx)y2g[—T—)dx= xe(-mx)dx.
Jo r \ k ) Jo

The right side of this equation is simply -i/2nm . Call the left side am ; we
get

k-\

Ar+l)/k
e(-m(ky-r))g(y)dy

= k e(-mky)g(y)dy.
Jo

Thus,
/"' i
/ e{—ny)g(y)dy = —-z— f o r « = A:,2K:,

Jo 2nn

But k = 2 , 3 , . . . , so
fl i
/ e(-ny)g(y)dy = -•=— forn = 2 , 3 ,

Jo 2nn
Thus, the Fourier coefficients of g(x) and of x are identical for n > 2, so

g(jc) = x + cx + c2 sin 2nx + c3 cos 2nx

for some constants c , , c2 , c3. Since #(0) = 0 we have cl + c3 = 0, and we
have established the form of g.

Now let xn = g(un). Note that g is increasing, so h = g~x is defined.
Then

pr(a <x<p) = pr(a < g(u) < fi)

= PT(h(a)<u<h(p))

= g(h{fi))-g(h(a)) = fi-a,

so (xn) is u.d. (mod 1).

3. Subsequences

In this section we first show by example that even a very weak converse
of Corollary 2 is false. We use p only for primes, we write n (mod p)
for the least non-negative residue of n modulo p, and we write P(M) for
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268 G. Myerson and A. D. Pollington [5]

THEOREM 4. The sequence (un) given by

^ n (mod p)
n Z . P{p)

is u.d. (mod 1) , but for fixed k, j , k > 2, no subsequence of the form ukn+j

is u.d. (mod 1).

Our proof uses some simple facts about the Cantor expansion of a real
number. We collect these facts in a lemma.

LEMMA. Every a w [fl, 1) has an expansion of the form
°° a

a = ^2 -pf~\ > where ap are integers, 0 < ap < p - 1.
p ^p'

If we exclude expansions in which ap = p - 1 for all p sufficiently large, the
expansion is unique. The expansion of a terminates {that is, a = 0 for all
p sufficiently large) if and only if a = c/P(M) for some M and some integer
c, 0<c< P(M). Let

If p is the largest prime not exceeding M, then c = fip (mod p); if

c c+l
< a <P(M) ~ P(M) '

then ap = fip for p < M.

PROOF OF THEOREM. We first prove that (un) is u.d. (mod 1). Given
a and P with 0 < a < fi < 1, and given e > 0, let M be such that
P{M) > e"1 , let a = [aP(M)], and let b = [pP{M)\. Then

c=a

b

<N:n = 0p(c) (mod p), p < M}

b
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where
c _ v fip(c)

Thus

—#{n <N:a<un <p}<P-a + 3e

for N sufficiently large. A similar argument shows that

—#{« < N : a < un < P) > P - a - 3e

for iV sufficiently large, whence (un) is u.d. (mod 1).
Now consider (ukn+j) , k and j fixed, k >2, n = 1, 2, . . . . Let p be

any prime dividing k, so (ukn+j) is a subsequence of (upn+j) . Let / be
any integer with / ^ j (mod p), and 0 < / < P(p). Then

P(p) ~ -P"+J ^ P{p)

is impossible, so

is impossible, and {ukn+j) is not u.d. (mod 1).
Our final result can be seen as complementary to Corollary 2.

THEOREM 5. Let 9s be a set of primes such that Z ) p 6 ^ } diverges. Let Jf
denote the set ofsquarefree integers divisible only by primes in 9". If (ukn)
is u.d. (mod 1) for every k > 1 in JT then (un) is u.d. (mod 1).

REMARK. If 9° is a set of primes such that J2Pe&> } converges then given
any irrational a the sequence (un) given by

na, if p\n for some p €9°,

0, otherwise

has the property that (ukn) is u.d. (mod 1) for any k divisible by some
prime in 9s, but (un) is not u.d. (mod 1) since un = 0 on a set of positive
density.

PROOF. We put

" p.

p
p<M
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By the Weyl criterion, we have

1 N

lim -n^ e{mu.n) = 0

[7]

for all non-zero integers m and all k € 3?, k > 1. Thus given M > 0
there is an No = NQ(m, M) such that if N > No then

N/fc

(1) £

for all k\P{3°, M), k > 1. Now

1 N 1
N/k

by (1). The first term on the right goes to 0 as M goes to infinity:

n
( l + - ) < exp J ] - = O(logAf).= exp 2^ log

p<M N r ' p<M'

Since ^Zpe3s j diverges, the second term on the right also goes to zero as M
goes to infinity. Hence, (un) is u.d. (mod 1), by Weyl's criterion.

4. Multiples in higher dimensions

We conclude with a discussion of uniform distribution in higher dimen-
sions, where the statement analogous to Theorem 2 goes badly wrong. A
sequence (un) of real w-tuples is said to be u.d. (mod 1) if

lim —# {n < N :a < u,, < B\ = \B — a\
N-> oo N K ~ " '

for all a , fi with 0 < a < fi < 1; here, and below, (un) means ({wj,1'}, •.. ,
{"(

n
m)» ; (xl,...,xm)<(yl,...,ym) means xj<yj for j = 1, . . . , m;

| ( x , , . . . , xm)\ means xlx2---xm; 0 means ( 0 , . . . , 0 ) , and 1 means
( ! , . . . , ! ) . The Weyl criterion is
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THEOREM l ' . The sequence (un) is u.d. (mod 1) if and only if

1 N

lim — y^e(h-u_) = 0

./or all non-zero integer m-tuples h.

An immediate consequence is

COROLLARY l ' . If (un) is u.d. (mod 1) then so is (Aun) for any non-
singular integer matrix A.

Another simple consequence is

COROLLARY 3. If A is an integer matrix with determinant ±1 and (Aun)
is u.d. (mod 1) then (un) is u.d. (mod 1).

PROOF. Under the hypotheses, A~l has integer entries, so, by the previous
corollary, (A~xAun) is u.d. (mod 1).

A statement analogous to Theorem 2 would be, "there exists a sequence
( u j , not u.d. (mod 1) , such that (Aun) is u.d. (mod 1) for all integer
matrices A with det^4 > 2." However, this statement is far from being
true. Instead we have

THEOREM 6. Let S be a set of m x m integer matrices, and suppose that
for every integer row m-vector h there exists a matrix A in S and an integer
row m-vector k such that ILA = h. Then if (Aun) is u.d. (mod 1) for all A
in S, then (<an) is u.d. (mod 1).

PROOF. Given a non-zero integer w-tuple h , considered as a row vector,
let A in S and k an integer row-vector be such that kA = h . Then

N

n=\

since (Aun) is u.d. (mod 1). Thus, (un) is u.d. (mod 1).
EXAMPLE. Let m — 2. One easily verifies that

has the property required. If c is even, then (c d) = ( c /2 d)(l^);ifd
is even, then (c d) — (c dll){\ °2); if c and d are both odd (or both even),
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then (cd) = ((c-d)/2(c + d)/2)(\-l
i). Thus if {Aun) is u.d. (modi) for

all A in S, then (un) is u.d. (mod 1).

Note added in proof

Peter Sarnak has pointed out that Theorem 3 holds under the weaker hy-
pothesis that g(x) exists as a measure. Also, Michel Mendes France has
pointed out to us that Theorem 2 is a special case of the main theorem of F.
Dress and M. Mendes France, 'Caracterisation des ensembles normaux dans
Z, ' Ada Arith. 17(1970), 115-120.
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