THE SYMMETRIC GENUS OF 2-GROUPS

COY L. MAY AND JAY ZIMMERMAN

Department of Mathematics, Towson University, Baltimore, MD 21252, USA

e-mail: cmay@towson.edu, jzimmerman@towson.edu

(Received 13 July 2010; revised 28 March 2011; accepted 17 April 2012; first published online 2 August 2012)

Abstract. Let G be a finite group. The symmetric genus $\sigma(G)$ is the minimum genus of any Riemann surface on which G acts faithfully. We show that if G is a group of order 2^m that has symmetric genus congruent to 3 (mod 4), then either G has exponent 2^{m-3} and a dihedral subgroup of index 4 or else the exponent of G is 2^{m-2}. We then prove that there are at most 52 isomorphism types of these 2-groups; this bound is independent of the size of the 2-group G. A consequence of this bound is that almost all positive integers that are the symmetric genus of a 2-group are congruent to 1 (mod 4).

2010 Mathematics Subject Classification. Primary 20F38, Secondary 20D15, 20H10, 30F99, 57M60.

1. Introduction. A finite group G can be represented as a group of automorphisms of a compact Riemann surface. In other words, G acts on a Riemann surface. The symmetric genus $\sigma(G)$ is the minimum genus of any compact Riemann surface on which G acts faithfully.

The origins of this parameter can be traced back over a century to the work of Hurwitz, Poincare, Burnside and others. We use the modern terminology introduced in [16]. There is now a substantial body of work on the symmetric genus parameter.

A natural problem is to determine the positive integers that occur as the symmetric genus of a group (or a particular type of group). Indeed, whether or not there is a group of symmetric genus n for each value of the integer n remains a challenging open question; see the recent, important article [4]. Here, we restrict our attention to 2-groups. The 2-groups are interesting in this context because of the well-known conjecture that, among the finite groups, almost all groups are 2-groups.

The only 2-groups of even genus are the classical 2-groups of genus 0 [11, Theorem 9]. In other words, if G is a 2-group with positive symmetric genus, then $\sigma(G)$ is odd. The 2-groups with positive genus are our focus here, and we show that the 2-groups with symmetric genus congruent to 3 modulo 4 are special indeed. In particular, we show that a group G of order 2^m acting on a Riemann surface of genus $g \equiv 3 \pmod{4}$ must contain an element of order 2^{m-3} or larger. Further, if $\text{Exp}(G) = 2^{m-3}$, then G contains a dihedral subgroup of index 4. This yields the following result.

Theorem 1. Let G be a group of order 2^m. If $\sigma(G) \equiv 3 \pmod{4}$, then either $\text{Exp}(G) = 2^{m-3}$ and G has a dihedral subgroup of index 4 or else $\text{Exp}(G) = 2^{m-2}$.

Thus, if the symmetric genus $\sigma(G) \equiv 3 \pmod{4}$, then G is a group of one of two types. First, it may be that G has exponent $\text{Exp}(G) = 2^{m-2}$, that is, G has a cyclic subgroup of index 4 but no cyclic subgroup of index 2. The families of 2-groups with
this property were classified, long ago, by Burnside [3] and Miller [13, 14]. There are two abelian groups and 25 non-abelian groups of this type of order 2^m, as long as $m \geq 6$. It is easy to see that the two abelian groups have symmetric genus 1.

The other possibility for a group G with $\sigma(G) \equiv 3 \pmod{4}$ is that $\text{Exp}(G) = 2^{m-3}$, and further, G has a dihedral subgroup of index 4. These 2-groups are our main focus here, and we obtain a complete classification of the 2-groups of this type. We show that if $m \geq 7$, there are exactly 27 isomorphism types of these 2-groups (There are fewer for small orders.). The important thing here is that this number of isomorphism types is independent of the size of the 2-group G.

With this classification and the earlier one of Burnside and Miller, our Theorem 1 gives the following.

Theorem 2. Let G be a group of order 2^m. If $\sigma(G) \equiv 3 \pmod{4}$, then there are at most 52 possible isomorphism types for the group G.

Of the 52 possible groups of each order, relatively few actually have genus congruent to 3 (mod 4). We do not attempt to classify those families with genus congruent to 3 (mod 4), but such infinite families exist. A consequence of [4, Theorem 3.1] is that every group in Miller’s family M_5 (see [12, Table 2]) has genus congruent to 3 (mod 4). Also, each group in the infinite family H_6 (defined in Table 2) has genus congruent to 3 (mod 4).

The upper bound of Theorem 2 allows us to establish some interesting results using the standard notion of density. We consider the general problem of determining whether there is a 2-group of symmetric genus g, for each value of g. Let T be the set of integers $g \geq 2$ for which there is a 2-group of symmetric genus g; we know that T only contains odd integers. Suppose T_3 is the subset of T consisting of the integers congruent to 3 (mod 4). Then T_3 is infinite, due to the genus formulas for the families $M_5(m)$ and $H_6(m)$. Our main results concerning density are the following.

Theorem 3. The set T_3 has density 0 in the set of positive integers.

Theorem 4. Almost all positive integers that are the symmetric genus of a 2-group are congruent to 1 (mod 4). Further, the density $\delta(T)$ is at most $1/4$.

Theorem 4 has an interesting interpretation in connection with the conjecture that among the finite groups, almost all groups are 2-groups. If this conjecture holds (as it almost certainly does), then our results would imply that almost all groups have symmetric genus congruent to 1 (mod 4).

Not surprisingly, Theorems 3 and 4 agree with the companion results [12] about the strong symmetric genus, a closely related parameter. The general approach in [12] is along similar lines, but, in fact, the proofs there are easier. This is, however, one instance where work on one parameter suggests the companion results about a related parameter.

2. Preliminaries. The groups of symmetric genus 0 are the classical, well-known groups that act on the Riemann sphere (possibly reversing orientation) [8, Section 6.3.2]. The groups of symmetric genus 1 have also been classified, at least in a sense. These groups act on the torus and fall into 17 classes, corresponding to quotients of the 17 Euclidean space groups [8, Section 6.3.3]. Each class is characterized by a presentation, typically a partial one.
For each value of the genus $g \geq 2$, there are only a finite number of groups with symmetric genus g. This is essentially Hurwitz’s classical bound for the size of the automorphism group of a Riemann surface. We use the standard well-known approach to group actions on surfaces of genus $g \geq 2$. Let the finite group G act on the (compact) Riemann surface X of genus $g \geq 2$. Then represent $X = U/K$, where K is a Fuchsian surface group and obtain an non-Euclidean crystallographic (NEC) group Γ and a homomorphism $\phi : \Gamma \rightarrow G$ onto G such that $K = \text{kernel } \phi$. Associated with the NEC group Γ are its signature and canonical presentation. It is basic that each period and each link period of Γ divide $|G|$. Further, the non-Euclidean area $\mu(\Gamma)$ of a fundamental region for Γ can be calculated directly from its signature [15, p. 235]. Then the genus of the surface X on which G acts is given by

$$g = 1 + |G| \cdot \mu(\Gamma)/4\pi. \quad (1)$$

There are four families of non-abelian 2-groups that possess a cyclic subgroup of index 2. A good reference for these groups is [7, Section 5.4]. These families can be constructed using the non-trivial automorphisms of a cyclic 2-group. The automorphism group is well-known; for $n \geq 3$, we have

$$\text{Aut}(\mathbb{Z}_{2^n}) = \langle -1 \rangle \times \langle 5 \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_{2^n-2}. \quad (2)$$

These power automorphisms are detailed in [7, Lemma 4.1, p. 189]. Three of these families of 2-groups will be needed here, and we describe these three.

For $m \geq 2$, let $D(m)$ be the group with generators x, y and defining relations

$$x^{2^{m-1}} = y^2 = 1, yxy = x^{-1}. \quad (3)$$

The group $D(m)$ is the dihedral group of order 2^m. Each dihedral group has symmetric genus 0.

For $m \geq 4$, let $QD(m)$ be the group with generators x, y and defining relations

$$x^{2^{m-1}} = y^2 = 1, yxy = x^{-1+2^{m-2}}. \quad (4)$$

The group $QD(m)$ of order 2^m is called a quasi-dihedral group (or semi-dihedral group) [7, p. 191]. This group has symmetric genus 1 [10, Theorem 2].

For $m \geq 4$, let $QA(m)$ be the group with generators x, y and defining relations

$$x^{2^{m-1}} = y^2 = 1, y^{-1}xy = x^{1+2^{m-2}}. \quad (5)$$

The group $QA(m)$ is a non-abelian group of order 2^m [7, p. 190]; we call this group quasi-abelian [10, p. 237]. This group also has symmetric genus 1 [10, Theorem 3].

The fourth family consists of the dicyclic groups [6, pp. 7, 8]; each dicyclic group has symmetric genus 1 [10, p. 236].

The three automorphisms of order 2 of the maximal cyclic group will be called inversion, the quasi-dihedral action and the quasi-abelian action; these actions are given in (3), (4) and (5), respectively. Inversion is also used to construct a dicyclic group, but the element of the group that gives rise to the inner automorphism which is inversion has order 4.

Two additional families of 2-groups will be important here. Each of these groups has a dihedral subgroup of index 2. First, for $m \geq 4$, let $CD(m)$ be the group with
generators x, y, z and defining relations

$$x^{2^{m-2}} = y^2 = z^4 = (xy)^2 = 1, xz = zx, yz = zy, z^2 = x^{2^{m-3}}.$$ (6)

This group is the central product of the dihedral group $D(m - 1)$ and a cyclic group of order 4. We call $CD(m)$ a CD group. Each of these groups is also toroidal, and $\sigma(CD(m)) = 1$ [11, Theorem 5].

For $m \geq 5$, let $HD(m)$ be the group with generators x, y, z and defining relations

$$x^{2^{m-2}} = y^2 = z^2 = (xy)^2 = (yz)^2 = 1, yz = z^{-1} + 2^{m-3}.$$ (7)

This interesting group of order 2^m has a dihedral subgroup $\langle x, y \rangle$ of index 2 as well as a quasi-dihedral subgroup $\langle x, z \rangle$ of index 2. We call $HD(m)$ a *hyperdihedral* group [9, p. 113]. Each group in this family acts on the torus, that is, $\sigma(HD(m)) = 1$ [11, Theorem 4].

Each of the groups $HD(m)$ and $CD(m)$ contains a dihedral subgroup of index 2 and has exponent 2^{m-2}. Among the 2-groups with exponent 2^{m-2}, the only other group with a dihedral subgroup of index 2 is the direct product $\mathbb{Z}_2 \times D(m - 1)$. For $m \geq 4$, this group has generators x, y, z and defining relations

$$x^{2^{m-2}} = y^2 = z^2 = (xy)^2 = 1, xz = z, yz = zy.$$ (8)

The following classification is in [9, Theorem 9]; this result will be important here.

Theorem A. Let G be a group of order 2^m with a dihedral subgroup M of index 2, with $m \geq 5$. If G has no element of order 2^{m-1}, then G is isomorphic to $\mathbb{Z}_2 \times M$, $HD(m)$ or $CD(m)$.

We established in [11, Theorem 9] that the only 2-groups of even genus are those that act on a Riemann sphere and have genus 0. Important in the proof of the following are the 2-groups with a maximal cyclic subgroup as well as the groups $HD(m)$ and $CD(m)$.

Theorem B. Let G be a 2-group with positive symmetric genus. Then $\sigma(G)$ is odd.

3. 2-groups of odd genus.

Here, we consider a 2-group G acting on a Riemann surface of genus $g \equiv 3 \pmod{4}$ and obtain a refinement of [11, Theorem 7] in this case.

Theorem 5. Let G be a group of order 2^m that acts on a Riemann surface X of genus $g \equiv 3 \pmod{4}$. Then G contains an element of order 2^{m-3} or larger. If $\text{Exp}(G) = 2^{m-3}$, then, further, G contains a dihedral subgroup of index 4.

Proof. Suppose G acts on the Riemann surface X of genus $g \geq 2$ where $g \equiv 3 \pmod{4}$. Represent $X = U/K$, where K is a Fuchsian surface group and obtain an NEC group Γ and a homomorphism $\phi : \Gamma \to G$ onto G such that $K = \text{kernel } \phi$. The NEC group Γ has signature

$$(\rho; \pm; [\lambda_1, \cdots, \lambda_r]; \{C_1, \cdots, C_k\}),$$

where each period cycle C_i is either empty or contains the link periods n_{i1}, \cdots, n_{ik}.

Each link period is the order of a product of involutions in the presentation for Γ. For more information about signatures, see [15].
Since K is a surface group, each period λ_i and each link period n_j must be the order of an element of G. The non-Euclidean area is given by

$$
\mu(\Gamma)/2\pi = \varepsilon p - 2 + k + \sum \left(1 - \frac{1}{\lambda_i}\right) + \frac{1}{2} \sum \left(1 - \frac{1}{n_j}\right),
$$

where $\varepsilon = 1$ or 2 [15, p. 235]. Now write $g = 4t + 3$ for some integer t. Then using (1), we have

$$
3 + 4t = 1 + 2^{m-1} \left(\varepsilon p - 2 + k + \sum \left(1 - \frac{1}{\lambda_i}\right) + \frac{1}{2} \sum \left(1 - \frac{1}{n_j}\right)\right),
$$

$$
1 + 2t = 2^{m-2} \left(\varepsilon p - 2 + k + \sum \left(1 - \frac{1}{\lambda_i}\right) + \frac{1}{2} \sum (1 - \frac{1}{n_j})\right).
$$

It follows that the sum

$$
\sum \left(\frac{2^{m-2}}{\lambda_i}\right) (\lambda_i - 1) + \sum \left(\frac{2^{m-3}}{n_j}\right) (n_j - 1)
$$

must be an odd integer. But this clearly would not be the case if $\text{Exp}(G) \leq 2^{m-4}$. Hence, $\text{Exp}(G) \geq 2^{m-3}$.

Suppose that $\text{Exp}(G) = 2^{m-3}$. In this case, an odd number of the link periods must equal to 2^{m-3}. Then suppose that the specific link period $n_j = 2^{m-3}$. Now in the group G, there are generating reflections $c_{i,j-1}$ and $c_{i,j}$ with $n_{i,j} = o(c_{i,j-1} \cdot c_{i,j})$. It follows that $\langle c_{i,j}, c_{i,j-1} \rangle \cong D(m - 2)$ in G, and hence, G has a dihedral subgroup of index 4 in this case.

Proof of Theorem 1. By the previous result, $\text{Exp}(G)$ must be at least 2^{m-3}. First, G is not cyclic, since a cyclic group has symmetric genus 0. Suppose then that G contained an element of order 2^{m-1}. If G were abelian, then G would be isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_{2m-1}$, a group of genus 0. Thus, G must be non-abelian and either dihedral, dicyclic, quasi-dihedral or quasi-abelian [7, Theorem 4.4, p. 193]; but each of these groups has genus 0 or 1. Hence, $\text{Exp}(G)$ is either 2^{m-2} or 2^{m-3}.

Thus, if $\sigma(G) \equiv 3 \pmod{4}$, then G is a group of one of two types. First, the families of 2-groups with exponent 2^{m-2} were classified, about a century ago, by Burnside [3] and Miller [13, 14]. There are exactly 27 groups of this type of order 2^m, as long as $m \geq 6$; two of these are abelian. First, if G is abelian, then G is isomorphic to $\mathbb{Z}_4 \times \mathbb{Z}_{2m-2}$ or $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_{2m-2}$. But each of these groups has symmetric genus 1 [8, pp. 291, 292]; these groups are in classes (a) and (h), respectively. The non-abelian groups of this type were studied in [12]. In particular, Table 1 of [12] gives a presentation for each of the 25 non-abelian groups.

4. Groups with dihedral subgroups of index 4. Here, we study the families of 2-groups that have dihedral subgroups of index 4 but no cyclic subgroups of index 4. There are 27 groups of this type of order 2^m, for each $m \geq 7$.

We use the following notation in all cases. Let G be a group of order 2^m with a dihedral subgroup of index 4 such that $\text{Exp}(G) = 2^{m-3}$. Assume that the dihedral subgroup $M \cong D(m - 2)$ has generators x and y satisfying the relations (3), with $H = \langle x \rangle$ a cyclic subgroup of index 8. Then, G has a subgroup L of index 2 that
contains the dihedral subgroup M. By Theorem A, L is isomorphic to $CD(m - 1)$, $HD(m - 1)$ or $\mathbb{Z}_2 \times M$. For each of these three possibilities for the subgroup L, we determine the number of isomorphism types for G.

To construct each group G, we use a standard, well-known technique [6, p. 5]. To the group L, we adjoin a new element s, with conjugation by s transforming the elements of L according to an automorphism of order 2. We identify s^2 with a central element u of order j. Then the larger group G has order $2|L|$. The defining relations for G consist of the relations for L, the relations defining the action of s on each generator of L and the relation $s^2 = u$. This general construction suffices in almost all cases.

PROPOSITION 1. Let G be a group of order 2^m, with $m \geq 7$ and $\text{Exp}(G) = 2^{m-3}$. If G contains a subgroup $L \cong CD(m - 1)$, then G is isomorphic to one of seven groups; each group is an extension of L with an added generator s and added relations listed in Table 1.

Proof. The subgroup $L \cong CD(m - 1)$ has generators x, y and z satisfying (6). Then the centre $Z(L) = \langle z \rangle$ and M is the unique dihedral subgroup of L with index 2. The group L contains two cyclic subgroups of maximal order. These subgroups are $\langle x \rangle$, which is contained in M, and $\langle xz \rangle$, which is contained in the quasi-dihedral subgroup $\langle xz, y \rangle$. Thus, $\langle z \rangle$, H and M are characteristic in L, and these three subgroups are normal in G. Let C be the centralizer of H in G. Clearly, $\langle x, z \rangle \subseteq C$, but $C \neq G$, since y is not in C. Hence, $\langle G : C \rangle$ is 2 or 4. In either case, G/C is isomorphic to a subgroup of the automorphism group $\text{Aut}(H)$, and $\text{Aut}(H)$ is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_{2^{m-5}}$, where the \mathbb{Z}_2 factor is generated by the inversion $\alpha(x) = x^{-1}$ [7, p. 189].

CASE I. Suppose first that $\langle G : C \rangle = 4$. Then we must have $C = \langle x, z \rangle$. In this case, $G/C \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, with one \mathbb{Z}_2 factor generated by inversion and the other \mathbb{Z}_2 factor generated by the automorphism $\beta(x) = x^{-1+2^{m-4}}$ (the quasi-dihedral action) [7, p. 189]. Hence, there is an element $s \in G - L$ such that $s^{-1}xs = \beta(x) = x^{-1+2^{m-4}}$. Then, easily, $s^{-2}xz^2 = x$, so that s^2 is in the centralizer C. Now we have $G = \langle x, y, z, s \rangle$.

Since $\langle z \rangle$ is normal in G, we must have either $s^{-1}zs = z$ or $s^{-1}zs = z^{-1}$. Also, since the dihedral subgroup $M = \langle x, y \rangle$ is normal, $s^{-1}ys = x^\ell y$ for some integer ℓ.

Assume first that $s^{-1}zs = z$. Then s^2 commutes with z so that s^2 is in $Z((s, x, z)) = \langle x^{2^{m-4}}, z \rangle = \langle z \rangle$. By replacing s with sz, if necessary, we may assume that either $s^2 = 1$ or $s^2 = z$. In either case, s^2 commutes with y. Since M is normal, $s^{-1}ys = x^\ell y$ for some integer ℓ. Now $y = s^{-2}ys^2 = s^{-1}x^\ell y = x^{2^{m-4}\ell}y$ and so ℓ is even. Write $\ell = 2k$, and then replace y by $x^{k}y$, and we get the same relations with either $s^{-1}ys = y$ or $s^{-1}ys = x^{2^{m-4}}y$. In the latter case, replace y by $x^{2^{m-5}}y$ and we get the relation $s^{-1}ys = y$. This gives the two groups J_1 and J_2, with $s^2 = 1$ and $s^2 = z$, respectively.

Next, assume that $s^{-1}zs = z^{-1}$. Now $s^2 \in Z((s, x, z)) = \langle z^2 \rangle$ and so $s^2 = 1$ or $s^2 = z^2$. In both cases, by the same argument as before, $s^{-1}ys = y$. Then with $s^2 = 1$,
we have the group J_3. The group G with $s^2 = z^2$ is isomorphic to J_3 by the map $\psi : G \to J_3$ defined by $x \mapsto x$, $y \mapsto x^{-1}y$, $z \mapsto z$ and $s \mapsto sx^{1+2m-5}z$.

Case II. Suppose that $[G : C] = 2$. Since inversion is the only non-trivial action on H by any element of G, we may choose $s \in G - L$ so that $s \in C$ and $sx = xs$. Now $s^2 \in \langle x, z \rangle$, since $s^2 \in L \cap C$. It is clear that $s^2 = x^{2k}$ or $s^2 = x^{2k}z$, since $o(s) \leq o(x)$. We can replace s by $(x^{-k}s)$ and assume without loss of generality that $s^2 = 1$ or $s^2 = z$. Furthermore, since $\langle z \rangle$ is normal in G, we know that $s^{-1}z = z$ or $s^{-1}z = z^{-1}$. Finally, since M is normal in G, we have $s^{-1}ys = x^t y$ for some integer t. Now $y = s^{-1}ys^2 = s^{-1}x^ty = x^{2t}y$, and $t = 0$ or $t = 2m-4$.

Suppose that $s^{-1}z = z$. There are two possibilities for s^2 and two possibilities for the action of s on y. Assume first that $s^{-1}ys = y$. Then with $s^2 = 1$ and $s^2 = z$, we obtain the groups J_4 and J_5, respectively. The group G with $s^2 = 1$ and $s^{-1}ys = x^{2m-4}y$ is isomorphic to J_4 by the map $\theta : G \to J_4$ defined by $x \mapsto x$, $y \mapsto y$, $z \mapsto z$ and $s \mapsto sxy^{2m-5}$. The group G with $s^2 = z$ and $s^{-1}ys = x^{2m-4}y$ is isomorphic to J_5 by the map $\phi : G \to J_5$ defined by $x \mapsto x$, $y \mapsto y$, $z \mapsto z^{-1}$ and $s \mapsto sx^{2m-5}$.

Suppose that $s^{-1}z = z^{-1}$. It is easy to see that this forces $s^2 = 1$, and we have two groups, J_6 with $s^{-1}ys = y$ and J_7 with $s^{-1}ys = x^{2m-4}y$. These are the final two groups of this type.

It is not hard to check that in each of the seven presentations, the action of s does define an automorphism of L, and it follows that G is a group of order $2m$ by the general construction of [6, p. 5].

No two of these seven groups are isomorphic. These groups can be distinguished using three group invariants. First, the centre and the abelian quotient invariants suffice to distinguish all but J_3, J_6 and J_7; these two invariants agree for these three groups. These groups have different numbers of involutions; these counts are not difficult, just from the presentations.

Next, we consider the second type of group, one with a hyperdihedral subgroup of index 2. We omit some details.

Proposition 2. Let G be a group of order $2m$, with $m \geq 7$ and $\text{Exp}(G) = 2^{m-3}$. If G contains a subgroup $L \cong \text{HD}(m - 1)$, then G is isomorphic to one of 10 groups; each group is an extension of L with an added generator s and added relations listed in Table 2.
Proof. The subgroup L has generators x, y and z satisfying (7). Then L has two cyclic subgroups of maximal order, namely, $\langle x \rangle$ and $\langle xyz \rangle$. The proof splits into two cases, depending upon whether or not these subgroups are normal in G.

CASE I. Suppose $\langle x \rangle$ is normal in G. Thus, $G/C_G(x)$ has order 4 or 8.
Assume first that $|G/C_G(x)| = 4$. We can find an element s in $G - L$ that centralizes x. Since $s^2 \in C_L(x)$, we see that $s^2 \in \langle x \rangle$ and k must be even. Since $\langle x, s \rangle$ is abelian, choose s so that $s^2 = 1$. A consideration of the possible actions of s on y and of s on z gives four possible presentations and the groups H_1 to H_4 in Table 2.

Suppose that $|G/C_G(x)| = 8$, and let s be any element of $G - L$. Then the automorphism of $\langle x \rangle$ given by conjugation by s has order 4. By multiplying s by the appropriate element of L, we may suppose that $s^{-1}xs = x^{1 + 2m - 3}$. It follows that we must have $s^{-1}ys = xy^k$ and also $s^{-1}zs = zy^k$, with $k = 0$ or $k = 2m - 4$. The two choices for k yield two presentations, but both lead to the group H_5.

CASE II. Suppose that $\langle x \rangle$ is not normal in G. Any element s in $G - L$ must intercalate the subgroups $\langle x \rangle$ and $\langle xyz \rangle$, and hence $s^{-1}xs = x^{k}yz$, where k is odd. Therefore, $s^{-1}x^2s = (xyz)^2 = (x^2)^{(1 + 2m - 5)}$ and $\langle x^2 \rangle$ is normal in G. It follows that $k \equiv 1, -1, 1 + 2m - 5$ or $-1 + 2m - 5 \pmod{2m - 4}$. By choosing a suitable element s in $G - L$, we have either $s^{-1}xs = xy^z$ or $s^{-1}xs = x^{1 + 2m - 5}yz$. Either way, we may assume that $s^2 = x^{2\ell}$, where $\ell = 1$ or ℓ is even, and also that $s^{-1}ys = zy^{2\ell}$.

Suppose that $s^{-1}xs = xy^z$. If $s^2 = x^2$, we can derive a contradiction. Therefore, $s^2 = x^{4k}$ for some integer k. By replacing s with the appropriate element, we have $s^2 = 1$ and $1 = x^{-4r + 12m - 4}$. Consequently, G either has relations $s^{-1}ys = zy^{2m - 4}$ and $s^{-1}zs = yx^{2m - 4}$ or else $s^{-1}ys = z$ and $s^{-1}zs = y$. We now have two complete presentations; each defines the group H_6 in Table 2.

Suppose that $s^{-1}xs = x^{1 + 2m - 5}yz$. We also know that $s^{-1}ys = zy^{2\ell}$ and $s^2 = x^{2\ell}$, where $\ell = 1$ or ℓ is even. In either case, we have $s^{-1}zs = yx^{2\ell - 2m - 4}$.

First, suppose that $s^2 = x^2$. It can be shown that $s^{-1}ys = zy^{2 + 2m - 5}$ and $s^{-1}zs = yx^{2 + 2m - 5}$. This leads to groups H_7 and H_8 in Table 2. Finally, if $s^2 = x^{4k}$, the same type of calculation gives the final two groups, H_9 and H_{10}, in Table 2.

In seven of the presentations, the action of s defines an automorphism of L, and the general construction of [6, p. 5] shows that we have a group of order 2^m. The general construction will also handle the groups H_7 and H_8, if we first replace s by $s_1 = sxy$. This gives alternate presentations of H_7 and H_8. Finally, by eliminating the redundant generator z from the presentation for H_5, we see that H_5 is isomorphic to a semi-direct product of $D(m - 2)$ by \mathbb{Z}_4.

No two of these 10 groups are isomorphic. The first five groups can be distinguished using the centre, the abelian quotient invariants and the fact that H_2 and H_3 are isomorphic to J_6 and J_3, respectively. These invariants also distinguish the first five groups from the second five groups. Among the remaining five groups, H_7 is the only one not generated by involutions and only $H_9(m)$ has a subgroup isomorphic to $\mathbb{Z}_2 \times D(m - 2)$. The groups H_6 and H_{10} can be distinguished from H_8 because the quotients of each by $\langle x \rangle$ are different groups of order 32. The group $\langle x \rangle$ is contained in the intersection of all of the cyclic subgroups of maximal order. Finally, the third centre of H_6 is an abelian subgroup of order 32, and the third centre of H_{10} is a non-abelian subgroup of order 32.
Now we consider the third type of index 2 subgroup. Again, we provide an outline of the proof but omit quite a few details.

Proposition 3. Let G be a group of order 2^m, with $m \geq 7$ and $\text{Exp}(G) = 2^{m-3}$. If G contains a subgroup $L \cong \mathbb{Z}_2 \times D(m-2)$, then G is isomorphic to one of 17 groups; each group is an extension of L with an added generator s and added relations listed in Table 3.

Proof. The subgroup L has generators x, y, and z satisfying (8). The centre $Z(L) = \langle x^{2^{m-4}}, z \rangle$ is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$. There are two maximal cyclic subgroups of L, namely $\langle x \rangle$ and $\langle zx \rangle$. The proof splits into two cases, depending upon whether or not these subgroups are normal in G.

Case I. Suppose that $\langle x \rangle$ is normal in G. Now $C_L(x) = \langle x, z \rangle$ and it follows that $G/C_L(x)$ has order 2 or order 4. We consider these two possibilities in two subcases.

Subcase a. Suppose that $G/C_L(x)$ has order 4. Then we can find an element s in G/L such that $s^{-1}xs = x^{1+2^{m-4}}$. It is easy to see that either $s^{-1}zs = z$ or $s^{-1}zs = zx^{2^{m-4}}$. Further, by replacing s by an element of the form $x^{-i}s$ if necessary, we may assume that either $s^2 = 1$ or $s^2 = z$.

Now suppose that $s^{-1}zs = z$. First, it is clear that $s^2 = z$ is not possible and so $s^2 = 1$. Again, it follows that $s^{-1}ys = x^ky$ or $s^{-1}ys = x^kyz$. These two relations (with appropriate values for k) lead to groups isomorphic to one of these four.

Subcase b. Suppose that $G/C_L(x)$ has order 2. Then we can find an element s in G/L that $s^{-1}xs = x$. Also, $s \in C_L(x) = \langle x, z \rangle$, and therefore $s^2 = x^4$ or $s^2 = x^4z$ for

<table>
<thead>
<tr>
<th>Name</th>
<th>$s^{-1}xs =</th>
<th>$s^{-1}ys =</th>
<th>$s^{-1}zs =</th>
<th>$s^2 =</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>$x^{1+2^{m-4}}$</td>
<td>y</td>
<td>z</td>
<td>1</td>
</tr>
<tr>
<td>A_2</td>
<td>$x^{1+2^{m-4}}$</td>
<td>y</td>
<td>z</td>
<td>z</td>
</tr>
<tr>
<td>A_3</td>
<td>$x^{1+2^{m-4}}$</td>
<td>zy</td>
<td>z</td>
<td>1</td>
</tr>
<tr>
<td>A_4</td>
<td>$x^{1+2^{m-4}}$</td>
<td>zy</td>
<td>z</td>
<td>z</td>
</tr>
<tr>
<td>A_5</td>
<td>$x^{1+2^{m-4}}$</td>
<td>y</td>
<td>$z^{x^{2^{m-4}}}$</td>
<td>1</td>
</tr>
<tr>
<td>A_6</td>
<td>$x^{1+2^{m-4}}$</td>
<td>$x^{2^{m-5}}zy$</td>
<td>$z^{x^{2^{m-4}}}$</td>
<td>1</td>
</tr>
<tr>
<td>A_7</td>
<td>x</td>
<td>y</td>
<td>z</td>
<td>1</td>
</tr>
<tr>
<td>A_8</td>
<td>x</td>
<td>y</td>
<td>z</td>
<td>z</td>
</tr>
<tr>
<td>A_9</td>
<td>x</td>
<td>yz</td>
<td>z</td>
<td>1</td>
</tr>
<tr>
<td>A_{10}</td>
<td>x</td>
<td>yz</td>
<td>z</td>
<td>z</td>
</tr>
<tr>
<td>A_{11}</td>
<td>x</td>
<td>$x^{2^{m-4}}y$</td>
<td>z</td>
<td>1</td>
</tr>
<tr>
<td>A_{12}</td>
<td>x</td>
<td>$x^{2^{m-4}}yz$</td>
<td>z</td>
<td>z</td>
</tr>
<tr>
<td>A_{13}</td>
<td>$x^{-1}z$</td>
<td>y</td>
<td>z</td>
<td>1</td>
</tr>
<tr>
<td>A_{14}</td>
<td>$x^{-1}z$</td>
<td>y</td>
<td>z</td>
<td>$x^{2^{m-4}}$</td>
</tr>
<tr>
<td>A_{15}</td>
<td>$x^{-1}z$</td>
<td>y</td>
<td>z</td>
<td>z</td>
</tr>
<tr>
<td>A_{16}</td>
<td>$x^{-1}z$</td>
<td>y</td>
<td>z</td>
<td>$x^{2^{m-4}}$</td>
</tr>
<tr>
<td>A_{17}</td>
<td>$x^{-1}z^{2^{m-5}}$</td>
<td>y</td>
<td>$z^{x^{2^{m-4}}}$</td>
<td>1</td>
</tr>
</tbody>
</table>
some integer ℓ. As before, we can get $s^2 = 1$ or $s^2 = z$. It is also easy to see that either $s^{-1}zs = z$ or $s^{-1}zs = z\chi^{2m-4}$. If $s^{-1}zs = z\chi^{2m-4}$, then with some work, we are back in subcase (a) and so $s^{-1}zs = z$.

As before, $s^{-1}ys = x^ky$ or $s^{-1}ys = x^kyz$ and $k = 0$ or $k = 2m-4$. So, there are four possible actions of s on y and with the two possibilities for s^2, again there are eight presentations. In this subcase, there are six different groups, the groups A_7–A_{12}.

Case II. Suppose that $\langle x \rangle$ is not normal in G. Any element s in $G - L$ conjugates $\langle x \rangle$ to $\langle xz \rangle$. As before, $\langle x^2 \rangle$ is normal in G. Choosing s carefully, we get $s^{-1}xs = x^{-1+2m-5}z$ for ℓ equal to 0, 1, 2 or 3. As before, $s^{-1}zs = z$ or $s^{-1}zs = z\chi^{2m-4}$.

If $s^{-1}zs = z$, without loss of generality, $s^{-1}xs = x^{-1}z$ and we have $s^2 \in C_{G}(x,z) = \langle x^{2m-4}, z \rangle$. We only need to consider two actions of s on y, $s^{-1}ys = y$ and $s^{-1}ys = yz$. With the relation $s^{-1}ys = y$, we obtain the groups A_{13}–A_{16} in Table 3. The other action $s^{-1}ys = yz$ yields the same four groups.

Finally, suppose that $s^{-1}zs = z\chi^{2m-4}$. By replacing generators, if needed, we may assume that $s^{-1}xs = x^{-1+2m-5}z$ and $s^{-1}ys = y$, and there are two presentations, depending on the value of s^2. Both presentations yield A_{17}. This completes the listing of the groups in Table 3.

In each of the 17 presentations, the action of s defines an automorphism of L, and consequently, in each case, we obtain a group of order 2^m by the general construction of [6, p. 5].

Finally, we need to check that no two of these 17 groups are isomorphic. First, the centre and the abelian quotient invariants distinguish A_1, A_2, A_3, A_7, A_8 and A_{11}. Further, these two invariants separate the other 11 into two sets, the pair A_6 and A_{17} and the remaining nine. Case I and case II groups cannot be isomorphic. This distinguishes A_6 from A_{17} and helps with the others. Of these nine groups, only A_{12} (case I) and A_{16} (case II) are not generated by involutions. This leaves seven groups to consider. Then using the second centre and separating groups by the two cases distinguishes A_{15} and divides the others into three pairs, A_3 and A_9, A_4 and A_{10}, and the pair A_{13} and A_{14}. In the groups A_3 and A_4, the centralizer of a maximal order cyclic subgroup that is normal has index 4, whereas in A_9 and A_{10}, it has index 2. Finally, to separate the pair A_{13} and A_{14}, we use quotient groups by the three central subgroups of order 2. Two of the corresponding subgroups give isomorphic quotients. However, the group A_{13} has a third quotient group isomorphic to $Z_2 \times D(m-2)$, but the corresponding quotient of A_{14} is isomorphic to $CD(m-1))$. These are the quotients by $\langle z \rangle$ in our presentations.

Theorem 6. Let G be a group of order 2^m, with $m \geq 7$. If G has a dihedral subgroup of index 4 such that $\text{Exp}(G) = 2^{m-3}$, then G is isomorphic to one of 27 groups, independent of m.

Proof. Theorem A and Propositions 1–3 show that there are at most 34 groups. Table 4 gives seven isomorphisms among these three types of groups.

Finally, it is necessary to show that there are no further isomorphisms among the remaining 27 groups. A careful consideration of the centre and the abelian quotient invariants for these groups distinguishes nine of the groups and separates the others into three sets, the trio J_3, J_6 and J_7, the set of nine A_{6}s considered in the proof of Proposition 3, and a final set of six, A_6 and the set of five H_ss considered in the proof of Proposition 2. Since the groups of each type have been classified, the only possible
remaining isomorphism is between \(A_6 \) and some \(H_j \). But it is not hard to see that the group \(A_6 \) does not have a hyperdihedral subgroup of index 2. This completes the classification. □

Now Theorem 1, the classification of Burnside and Miller, and the classification of Theorem 6 combine to establish Theorem 2.

Of the 52 possible 2-groups of each order, relatively few actually have genus congruent to 3 (mod 4). Some have symmetric genus 1, and some have higher genus \(\sigma(G) \equiv 1 \) (mod 4). For example, among the groups of order 128, there are 10 groups with genus congruent to 3 (mod 4); the symmetric genus of each group was calculated using MAGMA.

Among the 52 infinite families, there are some containing groups with genus congruent to 3 (mod 4). In [4], Conder and Tucker define the following group of order \(16n \).

\[
V_n = \langle x, y | x^4 = y^4 = [x^2, y] = [y^2, x] = 1, (xy)^{2n} = x^2 \rangle.
\]

They prove that \(\sigma(V_n) = 4n - 1 \) for all \(n > 1 \) [4, Theorem 3.1]. This gives examples of order \(2^m \) with genus congruent to 3 (mod 4), for all \(m \geq 7 \). A little bit of work suffices to show that

\[
V_{2^{m-4}} \cong M_5(m),
\]

one of Miller’s 2-groups from [13]. The family \(H_6 \) is another family of groups with genus congruent to 3 (mod 4). We omit the proof.

PROPOSITION 4. Suppose that \(G \) is the group \(H_6(m) \) of order \(2^m \), where \(m \geq 7 \). Then \(G \) has symmetric genus \(\sigma(G) = 2^{m-4} - 1 \).

5. Density

Now we consider the general problem of determining whether there is a 2-group of symmetric genus \(g \) for each value of \(g \), and describe our results using the standard notion of density.

Let \(T \) be the set of integers \(g \geq 2 \) for which there is a 2-group of symmetric genus \(g \). By Theorem B, all the integers in \(T \) are odd. For an integer \(n \), let \(f(n) \) denote the number of integers in \(T \) that are less than or equal to \(n \). Then the natural density \(\delta(T) \) of \(T \) in the set of positive integers is

\[
\delta(T) = \lim_{n \to \infty} \frac{f(n)}{n}.
\]
Also, let T_3 be the subset of T consisting of the integers congruent to 3 (mod 4), with the companion “counting” function denoted by f_3.

Although the set T_3 is infinite, the upper bound of Theorem 2 suffices to prove that the density of T_3 in the set of positive integers is zero.

Proof of Theorem 3. First, among the 2-groups of order 64 or less, there are exactly 11 groups with genus congruent to 3 (mod 4). Assume $n = 2^m$, with $m \geq 7$, and let G be a 2-group with genus n or less such $\sigma(G) \equiv 3 \pmod{4}$. From the basic lower bound for the genus of a 2-group, we have

$$|G| \leq 32(\sigma(G) - 1) \leq 32(n - 1) < 2^{m+5},$$

so that $|G| \leq 2^{m+4}$. For each of the possible $m - 2$ orders in the range 128, 256, ..., 2^{m+4}, there are at most 52 groups with genus congruent to 3 (mod 4), by Theorem 2. Thus, $f_3(n) = f_3(2^m) \leq 52(m - 2) + 11$, counting the 11 groups of small order. Hence, $\delta(T_3) = 0$. □

Together, Theorems B and 3 clearly imply Theorem 4.

Another interesting interpretation of our results is possible by considering group counting functions, together with the abundance of 2-groups. Here, see the recent survey article [5], together with [1] and the book [2].

For the positive integer n, the *group number* of n, denoted by $\text{gnu}(n)$, is the number of distinct abstract groups of order n [5]. The values of $\text{gnu}(n)$ are given for all $n < 2,048$ in the Appendix of [5].

Let F be a family of finite groups. For a positive integer n, let $f(n)$ denote the number of groups in the family F that have order n or less, and let $t(n)$ be the total number of groups of these orders. Then the natural *group density* $\Delta(F)$ of the family F in the collection of finite groups is

$$\Delta(F) = \lim_{n \to \infty} \frac{f(n)}{t(n)}.$$

For small n, values of the counting function t may be obtained by summing values of the gnu function, of course.

Now let F_2 be the family of finite 2-groups, with companion counting function f_2. As is well understood, the number of 2-groups simply overwhelms the number of other groups. In fact, the following conjecture is well-known.

Conjecture. The group density of the 2-groups is 1, that is, $\Delta(F_2) = 1$.

We call this conjecture the density of 2-groups (D2G) conjecture. If the D2G conjecture holds, then in this sense, almost all finite groups are 2-groups.

Theorem 2 can now be given another interpretation. Let F_1 be the family of finite groups, each of which has symmetric genus congruent to 1 (mod 4). Now the following clearly holds; for a detailed proof of a very similar result, see [12, Theorem 9].

Theorem 7. If the D2G conjecture holds, then $\Delta(F_1) = 1$.

Among the finite groups, then, almost all groups would have symmetric genus congruent to 1 (mod 4) (assuming that the D2G conjecture holds). On the other hand,
there is the conjecture that for every integer \(g \geq 0 \), there is a group \(G \) with symmetric genus \(\sigma(G) = g \) [4, p. 273].

Finally, we would like to thank the referees for several helpful comments.

REFERENCES

11. C. L. May and J. Zimmerman, Groups of symmetric genus \(\sigma \leq 8 \), *Comm. Algebra* 36 (2008), 4078–4095.
13. G. A. Miller, Determination of all the groups of order \(p^m \) which contain the abelian group of type (m-2,1), \(p \) being any prime, *Trans. Am. Math. Soc.* 2 (1901), 259–272.