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Abstract. Let G be a finite group. The symmetric genus σ (G) is the minimum
genus of any Riemann surface on which G acts faithfully. We show that if G is a
group of order 2m that has symmetric genus congruent to 3 (mod 4), then either G has
exponent 2m−3 and a dihedral subgroup of index 4 or else the exponent of G is 2m−2.
We then prove that there are at most 52 isomorphism types of these 2-groups; this
bound is independent of the size of the 2-group G. A consequence of this bound is that
almost all positive integers that are the symmetric genus of a 2-group are congruent to
1 (mod 4).

2010 Mathematics Subject Classification. Primary 20F38, Secondary 20D15,
20H10, 30F99, 57M60.

1. Introduction. A finite group G can be represented as a group of automorphisms
of a compact Riemann surface. In other words, G acts on a Riemann surface. The
symmetric genus σ (G) is the minimum genus of any compact Riemann surface on
which G acts faithfully.

The origins of this parameter can be traced back over a century to the work of
Hurwitz, Poincare, Burnside and others. We use the modern terminology introduced
in [16]. There is now a substantial body of work on the symmetric genus parameter.

A natural problem is to determine the positive integers that occur as the symmetric
genus of a group (or a particular type of group). Indeed, whether or not there is a
group of symmetric genus n for each value of the integer n remains a challenging
open question; see the recent, important article [4]. Here, we restrict our attention
to 2-groups. The 2-groups are interesting in this context because of the well-known
conjecture that, among the finite groups, almost all groups are 2-groups.

The only 2-groups of even genus are the classical 2-groups of genus 0 [11,
Theorem 9]. In other words, if G is a 2-group with positive symmetric genus, then σ (G)
is odd. The 2-groups with positive genus are our focus here, and we show that the 2-
groups with symmetric genus congruent to 3 modulo 4 are special indeed. In particular,
we show that a group G of order 2m acting on a Riemann surface of genus g ≡ 3 (mod 4)
must contain an element of order 2m−3 or larger. Further, if Exp(G) = 2m−3, then G
contains a dihedral subgroup of index 4. This yields the following result.

THEOREM 1. Let G be a group of order 2m. If σ (G) ≡ 3 (mod 4), then either
Exp(G) = 2m−3 and G has a dihedral subgroup of index 4 or else Exp(G) = 2m−2.

Thus, if the symmetric genus σ (G) ≡ 3 (mod 4), then G is a group of one of two
types. First, it may be that G has exponent Exp(G) = 2m−2, that is, G has a cyclic
subgroup of index 4 but no cyclic subgroup of index 2. The families of 2-groups with
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this property were classified, long ago, by Burnside [3] and Miller [13, 14]. There are
two abelian groups and 25 non-abelian groups of this type of order 2m, as long as
m ≥ 6. It is easy to see that the two abelian groups have symmetric genus 1.

The other possibility for a group G with σ (G) ≡ 3 (mod 4) is that Exp(G) = 2m−3,
and further, G has a dihedral subgroup of index 4. These 2-groups are our main focus
here, and we obtain a complete classification of the 2-groups of this type. We show that
if m ≥ 7, there are exactly 27 isomorphism types of these 2-groups (There are fewer for
small orders.). The important thing here is that this number of isomorphism types is
independent of the size of the 2-group G.

With this classification and the earlier one of Burnside and Miller, our Theorem 1
gives the following.

THEOREM 2. Let G be a group of order 2m. If σ (G) ≡ 3 (mod 4), then there are at
most 52 possible isomorphism types for the group G.

Of the 52 possible groups of each order, relatively few actually have genus congruent
to 3 (mod 4). We do not attempt to classify those families with genus congruent to
3 (mod 4), but such infinite families exist. A consequence of [4, Theorem 3.1] is that
every group in Miller’s family M5 (see [12, Table 2]) has genus congruent to 3 (mod 4).
Also, each group in the infinite family H6 (defined in Table 2) has genus congruent to
3 (mod 4).

The upper bound of Theorem 2 allows us to establish some interesting results
using the standard notion of density. We consider the general problem of determining
whether there is a 2-group of symmetric genus g, for each value of g. Let T be the set
of integers g ≥ 2 for which there is a 2-group of symmetric genus g; we know that T
only contains odd integers. Suppose T3 is the subset of T consisting of the integers
congruent to 3 (mod 4). Then T3 is infinite, due to the genus formulas for the families
M5(m) and H6(m). Our main results concerning density are the following.

THEOREM 3. The set T3 has density 0 in the set of positive integers.

THEOREM 4. Almost all positive integers that are the symmetric genus of a 2-group
are congruent to 1 (mod 4). Further, the density δ(T) is at most 1/4.

Theorem 4 has an interesting interpretation in connection with the conjecture that
among the finite groups, almost all groups are 2-groups. If this conjecture holds (as
it almost certainly does), then our results would imply that almost all groups have
symmetric genus congruent to 1 (mod 4).

Not surprisingly, Theorems 3 and 4 agree with the companion results [12] about
the strong symmetric genus, a closely related parameter. The general approach in [12]
is along similar lines, but, in fact, the proofs there are easier. This is, however, one
instance where work on one parameter suggests the companion results about a related
parameter.

2. Preliminaries. The groups of symmetric genus 0 are the classical, well-known
groups that act on the Riemann sphere (possibly reversing orientation) [8, Section
6.3.2]. The groups of symmetric genus 1 have also been classified, at least in a sense.
These groups act on the torus and fall into 17 classes, corresponding to quotients
of the 17 Euclidean space groups [8, Section 6.3.3]. Each class is characterized by a
presentation, typically a partial one.
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For each value of the genus g ≥ 2, there are only a finite number of groups with
symmetric genus g. This is essentially Hurwitz’s classical bound for the size of the
automorphism group of a Riemann surface. We use the standard well-known approach
to group actions on surfaces of genus g ≥ 2. Let the finite group G act on the (compact)
Riemann surface X of genus g ≥ 2. Then represent X = U/K , where K is a Fuchsian
surface group and obtain an non-Euclidean crystallographic (NEC) group � and a
homomorphism φ : � → G onto G such that K = kernel φ. Associated with the NEC
group � are its signature and canonical presentation. It is basic that each period and
each link period of � divide |G|. Further, the non-Euclidean area μ(�) of a fundamental
region for � can be calculated directly from its signature [15, p. 235]. Then the genus
of the surface X on which G acts is given by

g = 1 + |G| · μ(�)/4π. (1)

There are four families of non-abelian 2-groups that possess a cyclic subgroup
of index 2. A good reference for these groups is [7, Section 5.4]. These families
can be constructed using the non-trivial automorphisms of a cyclic 2-group. The
automorphism group is well-known; for n ≥ 3, we have

Aut(�2n ) = 〈−1〉 × 〈5〉 ∼= �2 × �2n−2 . (2)

These power automorphisms are detailed in [7, Lemma 4.1, p. 189]. Three of these
families of 2-groups will be needed here, and we describe these three.

For m ≥ 2, let D(m) be the group with generators x, y and defining relations

x2m−1 = y2 = 1, yxy = x−1. (3)

The group D(m) is the dihedral group of order 2m. Each dihedral group has symmetric
genus 0.

For m ≥ 4, let QD(m) be the group with generators x, y and defining relations

x2m−1 = y2 = 1, yxy = x−1+2m−2
. (4)

The group QD(m) of order 2m is called a quasi-dihedral group (or semi-dihedral group)
[7, p. 191]. This group has symmetric genus 1 [10, Theorem 2].

For m ≥ 4, let QA(m) be the group with generators x, y and defining relations

x2m−1 = y2 = 1, y−1xy = x1+2m−2
. (5)

The group QA(m) is a non-abelian group of order 2m [7, p. 190]; we call this group
quasi-abelian [10, p. 237]. This group also has symmetric genus 1 [10, Theorem 3].

The fourth family consists of the dicyclic groups [6, pp. 7, 8]; each dicyclic group
has symmetric genus 1 [10, p. 236].

The three automorphisms of order 2 of the maximal cyclic group will be called
inversion, the quasi-dihedral action and the quasi-abelian action; these actions are
given in (3), (4) and (5), respectively. Inversion is also used to construct a dicyclic
group, but the element of the group that gives rise to the inner automorphism which is
inversion has order 4.

Two additional families of 2-groups will be important here. Each of these groups
has a dihedral subgroup of index 2. First, for m ≥ 4, let CD(m) be the group with
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generators x, y, z and defining relations

x2m−2 = y2 = z4 = (xy)2 = 1, xz = zx, yz = zy, z2 = x2m−3
. (6)

This group is the central product of the dihedral group D(m − 1) and a cyclic group
of order 4. We call CD(m) a CD group. Each of these groups is also toroidal, and
σ (CD(m)) = 1 [11, Theorem 5].

For m ≥ 5, let HD(m) be the group with generators x, y, z and defining relations

x2m−2 = y2 = z2 = (xy)2 = (yz)2 = 1, zxz = x−1+2m−3
. (7)

This interesting group of order 2m has a dihedral subgroup 〈x, y〉 of index 2 as well
as a quasi-dihedral subgroup 〈x, z〉 of index 2. We call HD(m) a hyperdihedral group
[9, p. 113]. Each group in this family acts on the torus, that is, σ (HD(m)) = 1 [11,
Theorem 4].

Each of the groups HD(m) and CD(m) contains a dihedral subgroup of index 2
and has exponent 2m−2. Among the 2-groups with exponent 2m−2, the only other group
with a dihedral subgroup of index 2 is the direct product �2 × D(m − 1). For m ≥ 4,
this group has generators x, y, z and defining relations

x2m−2 = y2 = z2 = (xy)2 = 1, xz = zx, yz = zy. (8)

The following classification is in [9, Theorem 9]; this result will be important here.

THEOREM A. Let G be group of order 2m with a dihedral subgroup M of index 2,
with m ≥ 5. If G has no element of order 2m−1, then G is isomorphic to �2 × M, HD(m)
or CD(m).

We established in [11, Theorem 9] that the only 2-groups of even genus are those
that act on a Riemann sphere and have genus 0. Important in the proof of the following
are the 2-groups with a maximal cyclic subgroup as well as the groups HD(m) and
CD(m).

THEOREM B. Let G be a 2-group with positive symmetric genus. Then σ (G) is odd.

3. 2-groups of odd genus. Here, we consider a 2-group G acting on a Riemann
surface of genus g ≡ 3 (mod 4) and obtain a refinement of [11, Theorem 7] in this case.

THEOREM 5. Let G be a group of order 2m that acts on a Riemann surface X of genus
g ≡ 3 (mod 4). Then G contains an element of order 2m−3 or larger. If Exp(G) = 2m−3,
then, further, G contains a dihedral subgroup of index 4.

Proof. Suppose G acts on the Riemann surface X of genus g ≥ 2 where g ≡
3 (mod 4). Represent X = U/K , where K is a Fuchsian surface group and obtain an
NEC group � and a homomorphism φ : � → G onto G such that K = kernel φ. The
NEC group � has signature

(p; ±; [λ1, · · · , λr]; {C1, · · · , Ck}),
where each period cycle Ci is either empty or contains the link periods ni1, · · · , nisi .
Each link period is the order of a product of involutions in the presentation for �. For
more information about signatures, see [15].
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Since K is a surface group, each period λi and each link period nij must be the
order of an element of G. The non-Euclidean area is given by

μ(�)/2π = εp − 2 + k +
∑ (

1 − 1
λi

)
+ 1

2

∑ (
1 − 1

nij

)
,

where ε = 1 or 2 [15, p. 235]. Now write g = 4t + 3 for some integer t. Then using (1),
we have

3 + 4t = 1 + 2m−1
(

εp − 2 + k +
∑(

1 − 1
λi

)
+ 1

2

∑ (
1 − 1

nij

))
,

1 +2t = 2m−2
(

εp − 2 + k +
∑ (

1 − 1
λi

)
+ 1

2

∑
(1 − 1

nij

))
.

It follows that the sum

∑(
2m−2

λi

)
(λi − 1) +

∑ (
2m−3

nij

)
(nij − 1))

must be an odd integer. But this clearly would not be the case if Exp(G) ≤ 2m−4. Hence,
Exp(G) ≥ 2m−3.

Suppose that Exp(G) = 2m−3. In this case, an odd number of the link periods must
equal to 2m−3. Then suppose that the specific link period nij = 2m−3. Now in the group
�, there are generating reflections ci,j−1 and ci,j with ni,j = o(ci,j−1 · ci,j). It follows that
〈ci,j−1, ci,j〉 ∼= D(m − 2) in G, and hence, G has a dihedral subgroup of index 4 in this
case. �

Proof of Theorem 1. By the previous result, Exp(G) must be at least 2m−3. First, G is
not cyclic, since a cyclic group has symmetric genus 0. Suppose then that G contained
an element of order 2m−1. If G were abelian, then G would be isomorphic to �2 × �2m−1 ,
a group of genus 0. Thus, G must be non-abelian and either dihedral, dicyclic, quasi-
dihedral or quasi-abelian [7, Theorem 4.4, p. 193]; but each of these groups has genus
0 or 1. Hence, Exp(G) is either 2m−2 or 2m−3. �

Thus, if σ (G) ≡ 3 (mod 4), then G is a group of one of two types. First, the families
of 2-groups with exponent 2m−2 were classified, about a century ago, by Burnside [3]
and Miller [13, 14]. There are exactly 27 groups of this type of order 2m, as long as
m ≥ 6; two of these are abelian. First, if G is abelian, then G is isomorphic to �4 × �2m−2

or �2 × �2 × �2m−2 . But each of these groups has symmetric genus 1 [8, pp. 291, 292];
these groups are in classes (a) and (h), respectively. The non-abelian groups of this type
were studied in [12]. In particular, Table 1 of [12] gives a presentation for each of the
25 non-abelian groups.

4. Groups with dihedral subgroups of index 4. Here, we study the families of 2-
groups that have dihedral subgroups of index 4 but no cyclic subgroups of index 4.
There are 27 groups of this type of order 2m, for each m ≥ 7.

We use the following notation in all cases. Let G be a group of order 2m with
a dihedral subgroup of index 4 such that Exp(G) = 2m−3. Assume that the dihedral
subgroup M ∼= D(m − 2) has generators x and y satisfying the relations (3), with
H = 〈x〉 a cyclic subgroup of index 8. Then, G has a subgroup L of index 2 that
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Table 1. Groups with CD subgroup of index 2.

Name s−1xs = s−1ys = s−1zs = s2 =
J1 x−1+2m−4

y z 1

J2 x−1+2m−4
y z z

J3 x−1+2m−4
y z−1 1

J4 x y z 1
J5 x y z z
J6 x y z−1 1

J7 x x2m−4
y z−1 1

contains the dihedral subgroup M. By Theorem A, L is isomorphic to CD(m − 1),
HD(m − 1) or �2 × M. For each of these three possibilities for the subgroup L, we
determine the number of isomorphism types for G.

To construct each group G, we use a standard, well-known technique [6, p. 5].
To the group L, we adjoin a new element s, with conjugation by s transforming the
elements of L according to an automorphism of order 2. We identify s2 with a central
element u of order j. Then the larger group G has order 2|L|. The defining relations for
G consist of the relations for L, the relations defining the action of s on each generator
of L and the relation s2 = u. This general construction suffices in almost all cases.

PROPOSITION 1. Let G be a group of order 2m, with m ≥ 7 and Exp(G) = 2m−3. If G
contains a subgroup L ∼= CD(m − 1), then G is isomorphic to one of seven groups; each
group is an extension of L with an added generator s and added relations listed in Table 1.

Proof. The subgroup L ∼= CD(m − 1) has generators x, y and z satisfying (6). Then the
centre Z(L) = 〈z〉 and M is the unique dihedral subgroup of L with index 2. The group
L contains two cyclic subgroups of maximal order. These subgroups are 〈x〉, which is
contained in M, and 〈xz〉, which is contained in the quasi-dihedral subgroup 〈xz, y〉.
Thus, 〈z〉, H and M are characteristic in L, and these three subgroups are normal in
G. Let C be the centralizer of H in G. Clearly, 〈x, z〉 ⊆ C, but C �= G, since y is not
in C. Hence, [G : C] is 2 or 4. In either case, G/C is isomorphic to a subgroup of the
automorphism group Aut(H), and Aut(H) is isomorphic to �2 × �2m−5 , where the �2

factor is generated by the inversion α(x) = x−1 [7, p. 189].

CASE I. Suppose first that [G : C] = 4. Then we must have C = 〈x, z〉. In this case,
G/C ∼= �2 × �2, with one �2 factor generated by inversion and the other �2 factor
generated by the automorphism β(x) = x−1+2m−4

(the quasi-dihedral action) [7, p. 189].
Hence, there is an element s ∈ G − L such that s−1xs = β(x) = x−1+2m−4

. Then, easily,
s−2xs2 = x, so that s2 is in the centralizer C. Now we have G = 〈x, y, z, s〉.

Since 〈z〉 is normal in G, we must have either s−1zs = z or s−1zs = z−1. Also, since
the dihedral subgroup M = 〈x, y〉 is normal, s−1ys = x�y for some integer �.

Assume first that s−1zs = z. Then s2 commutes with z so that s2 is in Z(〈s, x, z〉) =
〈x2m−4

, z〉 = 〈z〉. By replacing s with sz, if necessary, we may assume that either s2 = 1
or s2 = z. In either case, s2 commutes with y. Since M is normal, s−1ys = x�y for some
integer �. Now y = s−2ys2 = s−1x�ys = x2m−4�y and so � is even. Write � = 2k, and then
replace y by xky, and we get the same relations with either s−1ys = y or s−1ys = x2m−4

y.
In the latter case, replace y by x2m−5

y and we get the relation s−1ys = y. This gives the
two groups J1 and J2, with s2 = 1 and s2 = z, respectively.

Next, assume that s−1zs = z−1. Now s2 ∈ Z(〈s, x, z〉) = 〈z2〉 and so s2 = 1 or
s2 = z2. In both cases, by the same argument as before, s−1ys = y. Then with s2 = 1,
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Table 2. Groups with hyperdihedral subgroup of index 2.

Name s−1xs = s−1ys = s−1zs = s2 =
H1 x y z 1

H2 x y zx2m−4
1

H3 x yx2m−4
z 1

H4 x yx2m−4
zx2m−4

1

H5 x1+2m−5
y z yz

H6 xyz z y 1

H7 x1+2m−5
yz zx2−2m−5

yx2+2m−5
x2

H8 x1+2m−5
yz zx2+2m−5

yx2−2m−5
x2

H9 x1+2m−5
yz zx2m−5

yx−2m−5
1

H10 x1+2m−5
yz zx−2m−5

yx2m−5
1

we have the group J3. The group G with s2 = z2 is isomorphic to J3 by the map
ψ : G → J3 defined by x 
→ x, y 
→ x−1y, z 
→ z and s 
→ sx1+2m−5

z.

CASE II. Suppose that [G : C] = 2. Since inversion is the only non-trivial action
on H by any element of G, we may choose s ∈ G − L so that s ∈ C and sx = xs. Now
s2 ∈ 〈x, z〉, since s2 ∈ L

⋂
C. It is clear that s2 = x2k or s2 = x2kz, since o(s) ≤ o(x). We

can replace s by (x−ks) and assume without loss of generality that s2 = 1 or s2 = z.
Furthermore, since 〈z〉 is normal in G, we know that s−1zs = z or s−1zs = z−1. Finally,
since M is normal in G, we have s−1ys = xty for some integer t. Now y = s−2ys2 =
s−1xtys = x2ty, and t = 0 or t = 2m−4.

Suppose that s−1zs = z. There are two possibilities for s2 and two possibilities for
the action of s on y. Assume first that s−1ys = y. Then with s2 = 1 and s2 = z, we
obtain the groups J4 and J5, respectively. The group G with s2 = 1 and s−1ys = x2m−4

y
is isomorphic to J4 by the map θ : G → J4 defined by x 
→ x, y 
→ y, z 
→ z and
s 
→ szx−2m−5

. The group G with s2 = z and s−1ys = x2m−4
y is isomorphic to J5 by the

map ϕ : G → J5 defined by x 
→ x, y 
→ y, z 
→ z−1 and 
→ sx−2m−5
.

Suppose that s−1zs = z−1. It is easy to see that this forces s2 = 1, and we have two
groups, J6 with s−1ys = y and J7 with s−1ys = x2m−4

y. These are the final two groups
of this type.

It is not hard to check that in each of the seven presentations, the action of s does
define an automorphism of L, and it follows that G is a group of order 2m by the
general construction of [6, p. 5].

No two of these seven groups are isomorphic. These groups can be distinguished
using three group invariants. First, the centre and the abelian quotient invariants suffice
to distinguish all but J3, J6 and J7; these two invariants agree for these three groups.
These groups have different numbers of involutions; these counts are not difficult, just
from the presentations. �

Next, we consider the second type of group, one with a hyperdihedral subgroup
of index 2. We omit some details.

PROPOSITION 2. Let G be a group of order 2m, with m ≥ 7 and Exp(G) = 2m−3. If
G contains a subgroup L ∼= HD(m − 1), then G is isomorphic to one of 10 groups; each
group is an extension of L with an added generator s and added relations listed in Table 2.
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Proof. The subgroup L has generators x, y and z satisfying (7). Then L has two cyclic
subgroups of maximal order, namely, 〈x〉 and 〈xyz〉. The proof splits into two cases,
depending upon whether or not these subgroups are normal in G.

CASE I. Suppose 〈x〉 is normal in G. Thus, G/CG(x) has order 4 or 8.
Assume first that |G/CG(x)| = 4. We can find an element s in G − L that centralizes

x. Since s2 ∈ CL(x), we see that s2 = xk and k must be even. Since 〈x, s〉 is abelian,
choose s so that s2 = 1. A consideration of the possible actions of s on y and of s on z
gives four possible presentations and the groups H1 to H4 in Table 2.

Suppose that |G/CG(x)| = 8, and let s be any element of G − L. Then the
automorphism of 〈x〉 given by conjugation by s has order 4. By multiplying s by the
appropriate element of L, we may suppose that s−1xs = x1+2m−5

. It follows that we
must have s−1ys = yxk and also s−1zs = zxk, with k = 0 or k = 2m−4. The two choices
for k yield two presentations, but both lead to the group H5.

CASE II. Suppose that 〈x〉 is not normal in G. Any element s in G − L must
interchange the subgroups 〈x〉 and 〈xyz〉, and hence s−1xs = xkyz, where k is odd.
Therefore, s−1x2s = (xkyz)2 = (x2)k(1+2m−5) and 〈x2〉 is normal in G. It follows that
k ≡ 1, −1, 1 + 2m−5 or −1 + 2m−5 (mod 2m−4). By choosing a suitable element s in
G − L, we have either s−1xs = xyz or s−1xs = x1+2m−5

yz. Either way, we may assume
that s2 = x2�, where � = 1 or � is even, and also that s−1ys = zx2t.

Suppose that s−1xs = xyz. If s2 = x2, we can derive a contradiction. Therefore, s2 =
x4k for some integer k. By replacing s with the appropriate element, we have s2 = 1 and
1 = x−4t+t2m−4

. Consequently, G either has relations s−1ys = zx2m−4
and s−1zs = yx2m−4

or else s−1ys = z and s−1zs = y. We now have two complete presentations; each defines
the group H6 in Table 2.

Suppose that s−1xs = x1+2m−5
yz. We also know that s−1ys = zx2t and s2 = x2�,

where � = 1 or � is even. In either case, we have s−1zs = yx2t−2m−4
.

First, suppose that s2 = x2. It can be shown that s−1ys = zx2±2m−5
and

s−1zs = yx2∓2m−5
. This leads to groups H7 and H8 in Table 2. Finally, if s2 = x4k, the

same type of calculation gives the final two groups, H9 and H10, in Table 2.

In seven of the presentations, the action of s defines an automorphism of L, and
the general construction of [6, p. 5] shows that we have a group of order 2m. The general
construction will also handle the groups H7 and H8, if we first replace s by s1 = sxy.
This gives alternate presentations of H7 and H8. Finally, by eliminating the redundant
generator z from the presentation for H5, we see that H5 is isomorphic to a semi-direct
product of D(m − 2) by �4.

No two of these 10 groups are isomorphic. The first five groups can be distinguished
using the centre, the abelian quotient invariants and the fact that H2 and H3 are
isomorphic to J6 and J3, respectively. These invariants also distinguish the first five
groups from the second five groups. Among the remaining five groups, H7 is the
only one not generated by involutions and only H9(m) has a subgroup isomorphic
to �2 × D(m − 2). The groups H6 and H10 can be distinguished from H8 because the
quotients of each by 〈x4〉 are different groups of order 32. The group 〈x4〉 is contained
in the intersection of all of the cyclic subgroups of maximal order. Finally, the third
centre of H6 is an abelian subgroup of order 32, and the third centre of H10 is a
non-abelian subgroup of order 32. �
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Table 3. Groups with �2 × D(m − 2) of index 2.

Name s−1xs = s−1ys = s−1zs = s2 =
A1 x1+2m−4

y z 1

A2 x1+2m−4
y z z

A3 x1+2m−4
zy z 1

A4 x1+2m−4
zy z z

A5 x1+2m−4
y zx2m−4

1

A6 x1+2m−4
x2m−5

zy zx2m−4
1

A7 x y z 1
A8 x y z z
A9 x yz z 1
A10 x yz z z
A11 x x2m−4

y z 1

A12 x x2m−4
yz z z

A13 x−1z y z 1

A14 x−1z y z x2m−4

A15 x−1z y z z
A16 x−1z y z x2m−4

z
A17 x−1+2m−5

z y zx2m−4
1

Now we consider the third type of index 2 subgroup. Again, we provide an outline
of the proof but omit quite a few details.

PROPOSITION 3. Let G be a group of order 2m, with m ≥ 7 and Exp(G) = 2m−3. If G
contains a subgroup L ∼= �2 × D(m − 2), then G is isomorphic to one of 17 groups; each
group is an extension of L with an added generator s and added relations listed in Table 3.

Proof. The subgroup L has generators x, y and z satisfying (8). The centre Z(L) =
〈x2m−4

, z〉 is isomorphic to �2 × �2. There are two maximal cyclic subgroups of L,
namely 〈x〉 and 〈zx〉. The proof splits into two cases, depending upon whether or not
these subgroups are normal in G.

CASE I. Suppose that 〈x〉 is normal in G. Now CL(x) = 〈x, z〉 and it follows
that G/CG(x) has order 2 or order 4. We consider these two possibilities in two subcases.

Subcase a. Suppose that G/CG(x) has order 4. Then we can find an element s in
G − L such that s−1xs = x1+2m−4

. It is easy to see that either s−1zs = z or s−1zs = zx2m−4
.

Further, by replacing s by an element of the form x−ts if necessary, we may assume
that either s2 = 1 or s2 = z.

Since y acts on x by inversion, so does s−1ys. Therefore, s−1ys = xky or s−1ys =
xkyz. First, suppose that s−1zs = z. Then since y = s−2ys2 = x2k+k2m−4

y, we see that k =
0 or k = 2m−4, and there are four possible actions of s on y. With the two possibilities
for s2, there are eight presentations. With k = 0, we obtain the four groups A1 through
A4 in Table 3. Each of the four presentations with k = 2m−4 leads to groups isomorphic
to one of these four.

Now suppose that s−1zs = zx2m−4
. First, it is clear that s2 = z is not possible and

so s2 = 1. Again, it follows that s−1ys = xky or s−1ys = xkyz. These two relations
(with appropriate values for k) lead to groups A5 and A6, respectively.

Subcase b. Suppose that G/CG(x) has order 2. Then we can find an element s in
G − L that s−1xs = x. Also, s2 ∈ CL(x) = 〈x, z〉, and therefore s2 = x� or s2 = x�z for
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some integer �. As before, we can get s2 = 1 or s2 = z. It is also easy to see that either
s−1zs = z or s−1zs = zx2m−4

. If s−1zs = zx2m−4
, then with some work, we are back in

subcase (a) and so s−1zs = z.
As before, s−1ys = xky or s−1ys = xkyz and k = 0 or k = 2m−4. So, there are four

possible actions of s on y and with the two possibilities for s2, again there are eight
presentations. In this subcase, there are six different groups, the groups A7–A12.

CASE II. Suppose that 〈x〉 is not normal in G. Any element s in G − L conjugates 〈x〉
to 〈xz〉. As before, 〈x2〉 is normal in G. Choosing s carefully, we get s−1xs = x−1+�2m−5

z
for � equal to 0, 1, 2 or 3. As before, s−1zs = z or s−1zs = zx2m−4

.
If s−1zs = z, without loss of generality, s−1xs = x−1z and we have s2 ∈ C〈x,z〉(s) =

〈x2m−4
, z〉. We only need to consider two actions of s on y, s−1ys = y and s−1ys = yz.

With the relation s−1ys = y, we obtain the groups A13–A16 in Table 3. The other action
s−1ys = yz yields the same four groups.

Finally, suppose that s−1zs = zx2m−4
. By replacing generators, if needed, we

may assume that s−1xs = x−1+2m−5
z and s−1ys = y, and there are two presentations,

depending on the value of s2. Both presentations yield A17. This completes the listing
of the groups in Table 3.

In each of the 17 presentations, the action of s defines an automorphism of L, and
consequently, in each case, we obtain a group of order 2m by the general construction
of [6, p. 5].

Finally, we need to check that no two of these 17 groups are isomorphic. First,
the centre and the abelian quotient invariants distinguish A1, A2, A5, A7, A8 and A11.
Further, these two invariants separate the other 11 into two sets, the pair A6 and A17 and
the remaining nine. Case I and case II groups cannot be isomorphic. This distinguishes
A6 from A17 and helps with the others. Of these nine groups, only A12 (case I) and A16

(case II) are not generated by involutions. This leaves seven groups to consider. Then
using the second centre and separating groups by the two cases distinguishes A15 and
divides the others into three pairs, A3 and A9, A4 and A10, and the pair A13 and A14.
In the groups A3 and A4, the centralizer of a maximal order cyclic subgroup that is
normal has index 4, whereas in A9 and A10, it has index 2. Finally, to separate the pair
A13 and A14, we use quotient groups by the three central subgroups of order 2. Two of
the corresponding subgroups give isomorphic quotients. However, the group A13 has
a third quotient group isomorphic to �2 × D(m − 2), but the corresponding quotient
of A14 is isomorphic to CD(m − 1)). These are the quotients by 〈z〉 in our presen-
tations. �

THEOREM 6. Let G be a group of order 2m, with m ≥ 7. If G has a dihedral subgroup
of index 4 such that Exp(G) = 2m−3, then G is isomorphic to one of 27 groups, independent
of m.

Proof. Theorem A and Propositions 1–3 show that there are at most 34 groups.
Table 4 gives seven isomorphisms among these three types of groups.

Finally, it is necessary to show that there are no further isomorphisms among the
remaining 27 groups. A careful consideration of the centre and the abelian quotient
invariants for these groups distinguishes nine of the groups and separates the others
into three sets, the trio J3, J6 and J7, the set of nine Ais considered in the proof of
Proposition 3, and a final set of six, A6 and the set of five His considered in the proof
of Proposition 2. Since the groups of each type have been classified, the only possible
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Table 4. Isomorphisms of groups.

Map Image of x Image of y Image of z Image of s

φ : H1 → A1 x y ys z
φ : H2 → A5 x y ys z
φ : H2 → J6 xs y yzs s
φ : H3 → J3 x y z zx2m−5

φ : H4 → J1 x y s zx2m−5

φ : H9 → A17 xys xy xyz sy
φ : J4 → A11 x y sx2m−5

z

remaining isomorphism is between A6 and some Hj. But it is not hard to see that
the group A6 does not have a hyperdihedral subgroup of index 2. This completes the
classification. �

Now Theorem 1, the classification of Burnside and Miller, and the classification
of Theorem 6 combine to establish Theorem 2.

Of the 52 possible 2-groups of each order, relatively few actually have genus
congruent to 3 (mod 4). Some have symmetric genus 1, and some have higher genus
σ (G) ≡ 1 (mod 4). For example, among the groups of order 128, there are 10 groups
with genus congruent to 3 (mod 4); the symmetric genus of each group was calculated
using MAGMA.

Among the 52 infinite families, there are some containing groups with genus
congruent to 3 (mod 4). In [4], Conder and Tucker define the following group of order
16n.

Vn = 〈x, y|x4 = y4 = [x2, y] = [y2, x] = 1, (xy)2n = x2〉.

They prove that σ (Vn) = 4n − 1 for all n > 1 [4, Theorem 3.1]. This gives examples of
order 2m with genus congruent to 3 (mod 4), for all m ≥ 7. A little bit of work suffices
to show that

V2m−4 ∼= M5(m),

one of Miller’s 2-groups from [13]. The family H6 is another family of groups with
genus congruent to 3 (mod 4). We omit the proof.

PROPOSITION 4. Suppose that G is the group H6(m) of order 2m, where m ≥ 7. Then
G has symmetric genus σ (G) = 2m−4 − 1.

5. Density. Now we consider the general problem of determining whether there
is a 2-group of symmetric genus g for each value of g, and describe our results using
the standard notion of density.

Let T be the set of integers g ≥ 2 for which there is a 2-group of symmetric genus
g. By Theorem B, all the integers in T are odd. For an integer n, let f (n) denote the
number of integers in T that are less than or equal to n. Then the natural density δ(T)
of T in the set of positive integers is

δ(T) = lim
n→∞

f (n)
n

.
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Also, let T3 be the subset of T consisting of the integers congruent to 3 (mod 4), with
the companion “counting” function denoted by f3.

Although the set T3 is infinite, the upper bound of Theorem 2 suffices to prove
that the density of T3 in the set of positive integers is zero.

Proof of Theorem 3. First, among the 2-groups of order 64 or less, there are exactly
11 groups with genus congruent to 3 (mod 4). Assume n = 2m, with m ≥ 7, and let G
be a 2-group with genus n or less such σ (G) ≡ 3 (mod 4). From the basic lower bound
for the genus of a 2-group, we have

|G| ≤ 32(σ (G) − 1) ≤ 32(n − 1) < 2m+5,

so that |G| ≤ 2m+4. For each of the possible m − 2 orders in the range 128, 256, . . .,
2m+4, there are at most 52 groups with genus congruent to 3 (mod 4), by Theorem 2.
Thus, f3(n) = f3(2m) ≤ 52(m − 2) + 11, counting the 11 groups of small order. Hence,
δ(T3) = 0. �

Together, Theorems B and 3 clearly imply Theorem 4.
Another interesting interpretation of our results is possible by considering group

counting functions, together with the abundance of 2-groups. Here, see the recent
survey article [5], together with [1] and the book [2].

For the positive integer n, the group number of n, denoted by gnu(n), is the number
of distinct abstract groups of order n [5]. The values of gnu(n) are given for all n < 2, 048
in the Appendix of [5].

Let F be a family of finite groups. For a positive integer n, let f (n) denote the
number of groups in the family F that have order n or less, and let t(n) be the total
number of groups of these orders. Then the natural group density �(F) of the family F
in the collection of finite groups is

�(F) = lim
n→∞

f (n)
t(n)

.

For small n, values of the counting function t may be obtained by summing values of
the gnu function, of course.

Now let F2 be the family of finite 2-groups, with companion counting function
f2. As is well understood, the number of 2-groups simply overwhelms the number of
other groups. In fact, the following conjecture is well-known.

CONJECTURE. The group density of the 2-groups is 1, that is, �(F2) = 1.

We call this conjecture the density of 2-groups (D2G) conjecture. If the D2G conjecture
holds, then in this sense, almost all finite groups are 2-groups.

Theorem 2 can now be given another interpretation. Let F1 be the family of finite
groups, each of which has symmetric genus congruent to 1 (mod 4). Now the following
clearly holds; for a detailed proof of a very similar result, see [12, Theorem 9].

THEOREM 7. If the D2G conjecture holds, then �(F1) = 1.

Among the finite groups, then, almost all groups would have symmetric genus
congruent to 1 (mod 4) (assuming that the D2G conjecture holds). On the other hand,
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there is the conjecture that for every integer g ≥ 0, there is a group G with symmetric
genus σ (G) = g [4, p. 273].

Finally, we would like to thank the referees for several helpful comments.
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