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Abstract
Differentially flat under-actuated robots are characterized by more degrees of freedom (DOF) than actuators: this
makes possible the design of lightweight cheap robots with high dexterity. The main issue of such robots is the
control of the passive joint, which requires accurate dynamic modeling of the robot.
Friction is usually discarded to simplify the models, especially in the case of low-speed trajectories. However, this
simplification leads to oscillations of the end-effector about the final position, which are incompatible with fast and
accurate motions.
This paper focuses on planar n-DOF serial robotic arms with n − 1 actuated rotational joints plus one final pas-
sive rotational joint with stiffness and friction properties. These robots, if properly balanced, are differentially flat.
When the non-actuated joint can be considered frictionless, differentially flat robots can be controlled in open loop,
calculating the motor torques demanded by point-to-point motions. This paper extends the open-loop control to
robots with a passive joint with viscous friction adopting a Laplace transform method. This method can be adopted
by exploiting the particular structure of the equations of motion of differentially flat under-actuated robots in which
the last equations are linear. Analytical expressions of the motor torques are obtained. The work is enriched by an
experimental validation of a 2-DOF under-actuated robot and by numerical simulations of the 2- and 4-DOF robots
showing the suppression of unwanted oscillations.

1. Introduction
1.1. Motivations and state of the art
Under-actuated systems are a particular class of dynamic systems in which one or more joints are not
equipped with motors but are connected to the rest of the kinematic chain only by means of springs
(elastic joints). Actually, the motor torques of the actuated joints can indirectly control the motion of the
elastic joints.

In the last years, there has been a significant growth in research on under-actuated systems, resulting
in the development of various applications for different purposes. There are jointed arm under-actuated
robots [1–3], cable-driven under-actuated robots [4, 5], and under-actuated walking robots [6, 7].

The jointed arm under-actuated robots are more appealing than fully actuated robots when the weight
and the cost of the robot are important issues. Moreover, increasing the DOF with the same number of
actuators increases robot dexterity, reducing the risk of collision [8, 9]. Other noteworthy examples of
under-actuated systems include a prosthetic device as detailed in ref. [10], an autonomous sea surface
launch, and recovery robot presented in [11], and innovative gripper designs discussed in ref. [12–14]. In
general, under-actuated systems are hard to control. Over the years, many solutions have been proposed
to overcome their limitations, recent solutions can be found in ref. [15, 16].
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The differential flatness is an interesting property of some dynamic systems that was discovered
some years ago [17] to gain the controllability of the system. In a differentially flat system, the state
variables can be expressed as functions of a privileged set of variables, which are named flat variables
[18]. The mathematical operation that allows the mapping from the state variables to the flat variables
is named diffeomorphism. Most of the applications of differential flatness refer to the control of linear
time-invariant dynamic systems [19, 20], but there are interesting applications in the field of the control
of non-linear systems as well [21, 22].

The concept of differential flatness is useful for planning point-to-point motions of under-actuated
robots built with specific inertia properties [23]. The necessary and sufficient conditions under which
an under-actuated n−DOF planar jointed robot arm with one or two actuators is differential flat were
presented in ref. [23]. This analysis was extended in ref. [24] for n−DOF planar jointed arm robots
with an arbitrary number of actuators. Many simulations and experimental tests have demonstrated the
validity of the control of under-actuated robots based on flat variables, but have highlighted the presence
of some mechanical phenomena that usually are not taken into account in the model of the under-actuated
robot based on flat variables. In particular, in ref. [25] the presence of friction in the gearbox of the
actuated joint was detected and a controller with a torque inner loop was developed, to compensate for
friction. In ref. [26], the vibrations of an under-actuated robot at given configurations were analyzed,
taking into account the effect of the compliance of the actuated joints.

The extension of the differential flatness concepts to under-actuated robots with viscous friction
has been performed by Sangwan and Agrawal in 2018 [27]. On the one hand, the exact introduction
of viscous friction leads to a great complication in the mathematical model. On the other hand, fric-
tion in robots and automatic machines is a complex non-linear phenomenon [28] that sometimes is
simplified considering an equivalent viscous friction [29]. More detailed friction models have been
developed for applications requiring high-precision motions [30, 31]. Nonetheless, friction effects are
typically eliminated or compensated by means of specifically designed controllers [32]. In ref. [33],
a new compensation technique for the dynamic friction based on a PD control scheme was presented.
Other researchers in [34] proposed a continuously differentiable friction model to account for the friction
non-linearities.

Another technique was presented in ref. [35] to design a dynamic continuous controller for a mechan-
ical system with dry friction. In ref. [36], the internal states of a LuGre friction model are included as
generalized coordinates in a Hamiltonian formulation for the complete mechanical system. In ref. [37],
an approach that utilizes differential flatness and feedback for controlling a conventional 2-DOF robot
arm with two actuated joints with friction was presented.

1.2. Contributions of the paper
This paper deals with point-to-point control of planar n-DOF robots with n − 1 actuated joints plus one
final passive joint with stiffness and viscous friction properties. An open-loop control strategy based on
motor torque calculation is adopted. The focus is on oscillation suppression at the endpoint, since in
many applications residual oscillations of the end-effector position may cause collisions or may lead to
a longer task time to wait for the rest position of the end-effector. If under-actuated robots satisfy the
differential flatness conditions, the equations of motion have a particular structure, and the last equations
are linear. Hence, the last motor torque depends linearly on the flat variable. The paper exploits this
property to derive an explicit expression of the robot motor torques in the presence of viscous friction;
by applying such torques to the robot, oscillation-free point-to-point motions are obtained. The main
contributions of the paper are as follows:

• The calculation of the last motor torque in the presence of viscous friction on the passive joint,
adopting a Laplace transform method. The torques of the other motors are calculated with the
Newton-Euler method and include non-linear terms.
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• The analysis of the dynamic behavior of the system in the Laplace domain, that shows why an
open-loop control taking into account joint friction avoids oscillations of the last link.

• The experimental and numerical demonstration of the effectiveness of the inclusion of viscous
friction in the calculation of the motor torques.

The paper is organized as follows. Section 2 presents the general model of a n-DOF robot with the
last non-actuated joint having stiffness and viscous friction properties. The analysis of under-actuated
robots in the Laplace domain is presented in Section 3. Experimental and numerical results for a 2-DOF
robot are presented in Section 4. The model is employed to simulate a 4-DOF robot in Section 5. Finally,
in Section 6 conclusions are drawn.

2. Mathematical model of the under-actuated robot
The robots studied in this paper are designed according to the theory of the differentially flat system
[23]. A robot must satisfy certain criteria to be differentially flat. Specifically, in the case of an n-DOF
robot, the following conditions must be met:

• the center of mass of the final link (n) must be positioned along the n-th joint axis;
• the center of mass of both links n and n − 1 must be located along the (n − 1)-th joint axis.

These conditions are iteratively applied until the center of mass of the final j links (i.e., n, n −
1, . . . , n − j + 1) is positioned on the (n − j + 1)-th joint axis, as described in ref. [23]. As a result,
the last j links are called “fully balanced.” The actuators for the system are located on the (n − j + 1)-
th joint, while the (j − 1) preceding joints are equipped with torsional springs. In this paper, only one
non-actuated joint is considered, hence j = 2. Therefore, it is necessary to balance the robot up to the
n − j + 1 = n − 1 joint. Fig. 1 shows the scheme of an n-DOF robot with the last passive joint. q1 rep-
resents the rotation of link 1 with respect to the base frame x − y, and qi is the relative rotation of link
i with respect to i − 1 link, with i = 2, 3, . . . , n. Only the last joint is not actuated, and the last link n is
connected with link n − 1 by a torsional spring with stiffness kn, and by a viscous damper with damping
coefficient cn.

Coming to mass distribution, the term mk is the mass of the k-th link, IGk is the barycentric moment of
inertia of the k-th element, aGk is the distance of the center of mass of k-th link from the k-th joint and ak

is the total length of the k-th links (with k = 1, 2, . . . , n). Regarding the last n − 1 and n balanced links,
mc(n−1) and mc(n) are the counterbalancing masses of n − 1 and n links, respectively. Similarly, aC(n−1) and
aC(n) are the distances of the counterbalancing masses from the n − 1 and n joint axis, respectively.

The dynamic model of the system can be derived by means of the Lagrangian approach, the result is
a system of equations that can be written in matrix form:

Mn(q)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̈1

q̈2

...

q̈n−2

q̈n−1

q̈n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ Cn

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̇1

q̇2

...

q̇n−2

q̇n−1

q̇n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ Kn

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1

q2

...

qn−2

qn−1

qn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1(q, q̇)

b2(q, q̇)

...

bn−2(q, q̇)

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1(q)

g2(q)

...

gn−2(q)

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

τ1

τ2

...

τn−2

τn−1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

in which the vector b(q, q̇) = [b1(q, q̇), b2(q, q̇) . . . bn−2(q, q̇), 0, 0]T contains the Coriolis-centrifugal
terms, while g(q) = [g1(q), g2(q) . . . gn−2(q), 0, 0]T is the vector of gravity terms. It is worth noting that
the last two elements of the vectors are null since the last [n − 1, n] links are fully balanced. τi is the
motor torque applied on i−th motor (with i = 1, 2, . . . , n − 1). All the actuated joints are considered
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Figure 1. Scheme of the mechanical system with n−DOF.

to be infinitely stiff and frictionless. Mass matrix Mn, damping matrix Cn, and stiffness matrix Kn are
defined as follows:

Mn(q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I∗
n−1 I∗

n

I∗
n−1 I∗

n

I∗
(n−2)×(n−2)(q)

...
...

I∗
n−1 I∗

n

I∗
n−1 · · · I∗

n−1 I∗
n−1 I∗

n

I∗
n · · · I∗

n I∗
n I∗

n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Cn =

⎡
⎢⎢⎢⎢⎢⎣

0

0(n−1)×(n−1)

...

0

0 · · · 0 cn

⎤
⎥⎥⎥⎥⎥⎦ , Kn =

⎡
⎢⎢⎢⎢⎢⎣

0

0(n−1)×(n−1)

...

0

0 · · · 0 kn

⎤
⎥⎥⎥⎥⎥⎦ (2)

In Eq. (2), 0(n−1)×(n−1) is the zero matrix with dimension n − 1. Since the last [n − 1, n] links are
fully balanced, the mass matrix of the system includes a (n − 2) × (n − 2) configuration-dependent sub-
matrix, two constant rows and two constant columns. The constant columns are the transpose of the
rows.

From Eq. (1), differential flatness can be used to define a set of flat variables [1]. For a n-DOF system
with one non-actuated joint, the vector of flat variables Y = [y1, . . . , yn−1] can be defined as:

y1 =
n∑

i=1

qi

yi = qi−1 with i = 2, 3, . . . , n − 1

(3)

for example, n = 4, Y = [q1 + q2 + q3 + q4, q1, q2]. It is worth noting that flat variable y1 has the physical
meaning of orientation of the last link with respect to the fixed reference frame.
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Flat variables can be used to control point-to-point motions of under-actuated systems and depend on
the constraints on the joint values (position and derivatives) and on the total motion time tf . Although
Y can be defined by means of any function, in most cases, polynomials are used [38]. In order to
achieve the full controllability of the system, it is necessary to express all torques as a function of flat
variables Y .

If cn is equal to zero, starting from the last [n − 1, n] rows of Eq. (1), it is possible to derive the angular
position qn of the non-actuated joint as a function of the first flat variable:

qn = − I∗
n (q̈1 + q̈2 + · · · + q̈n−1 + q̈n)

kn

= − I∗
n

kn

ÿ1 (4)

The motor torque applied to the n − 1 joint can be calculated from the n − 1 row of Eq. (1) and using
Eq. (4). It results:

τn−1 = I∗
n−1ÿ1 + I∗

n (I∗
n−1 − I∗

n )

kn

y(4)
1 (5)

Since I∗
n and I∗

n−1 are constant, τn−1 is a linear function of the derivatives of y1. The other motor torques
can be calculated starting from τ(n−1) by means of the Newton-Euler formula [39]:1

τi =
n−2∑
k=1

(
I∗

ik(q) − I∗
(i+1)k(q)

)
ÿk+1 + (bi(q, q̇) − bi+1(q, q̇)) + (gi(q) − gi+1(q)) + τi+1 (6)

with i = 1, 2, . . . n − 2. The flat variable yk+1 has the subscript k + 1 because the first flat variable is
defined as the sum of all angular positions of the robot. Owing to the presence of the Coriolis-centrifugal
terms, the gravity terms, and the configuration-dependent inertial terms, these motor torques are non-
linear functions of flat variables.

Only under the hypothesis of a frictionless non-actuated joint, Equation (4) can be obtained. If cn �= 0,
the analytical expression of qn as a function of only y1 is difficult to obtain. In the next section, an
analytical method in the Laplace domain to express the joint variable qn as a function of a flat variable
in the presence of viscous friction is presented.

3. Laplace domain analysis of the last two motion equations
The last two rows of Eq. (1) are linear since the last [n − 1, n] links satisfy the differential flatness rules
and are fully balanced. Hence, the Laplace transform can be rigorously calculated.

3.1. Motor torque calculation in the presence of viscous damping
The flat variable y1 = ∑n

i=1 qi with i = 1, 2, . . . , n, and its derivatives can be written in the Laplace
domain as follows:

L(y1(t)) = Y1(s) =
n∑

i=1

Qi(s)

L(ẏ1(t)) = sY1(s) = s
n∑

i=1

Qi(s)

L(ÿ1(t)) = s2Y1(s) = s2

n∑
i=1

Qi(s)

(7)

in which L means Laplace transform.

1It is worth noticing that nowadays dynamic recursive methods are available for rigid and flexible robots [43–46].
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The last two equations of motion considering the damping coefficient cn �= 0 can be rewritten as
follows: ⎧⎨

⎩
I∗

n−1s
2(Y1(s) − Qn(s)) + I∗

n s2Qn(s) = Tn−1(s)

I∗
n s2Y1(s) + (cns + kn)Qn(s) = 0

(8)

in which Tn−1(s) is the motor torque of the last non-actuated joint. The joint variable Qn(s) can be obtained
from the last row of Eq. (8):

Qn(s) = − I∗
n

cns + kn

s2Y1(s) (9)

The torque that the last actuated joint has to generate can be obtained from the first row of Eq. (8)
introducing Eq. (9):

T̃n−1(s) = I∗
n−1s

2Y1(s) + I∗
n (I∗

n−1 − I∗
n )

cns + kn

s4Y1(s) (10)

in which T̃(n−1)(s) is the motor torque that takes into account the damping coefficient and k̃n = kn + scn

is the complex stiffness of the non-actuated joint.
Equation (10) can be rewritten collecting the stiffness kn from the second term, it results:

T̃n−1(s) = I∗
n−1s

2Y1(s) + I∗
n (I∗

n−1 − I∗
n )

kn

(
1 + cn

kn

s

)−1

s4Y1(s) (11)

Usually, the damping coefficient cn is much smaller than torsion spring stiffness, especially if low-
friction bearings are used. For this reason, the term (1 + cn/kn s)−1 can be approximated using its Taylor
expansion arrested at the first order. Hence, Eq. (11) can be written as follows:

T̃n−1(s) = I∗
n−1s2Y1(s) + I∗

n (I∗
n−1 − I∗

n )

kn

(
1 − cn

kn

s

)
s4Y1(s) (12)

Hence, the expression of the motor torque T̃n−1 in the Laplace domain takes the final form:

T̃n−1(s) = I∗
n−1s2Y1(s) + I∗

n (I∗
n−1 − I∗

n )

kn

s4Y1(s) − I∗
n (I∗

n−1 − I∗
n )cn

k2
n

s5Y1(s) (13)

Finally, it is possible to express motor torque T̃n−1(s) in the time domain by means of the inverse
Laplace transform (the initial condition are zero):

τ̃n−1(t) = I∗
n−1ÿ1 + I∗

n (I∗
n−1 − I∗

n )

kn

y(4)
1 − cnI∗

n (I∗
n−1 − I∗

n )

k2
n

y(5)
1 (14)

It is worth noting that the introduction of viscous friction leads to an increase in the order of the
derivative of the flat variable that appears in the expression of the motor torque. Hence, the degree of
the polynomial representing y1 must increase to satisfy constraints on the fifth derivative. Equation (6)
is still valid if the damped motor torque τ̃n−1 is used instead of τn−1:

τ̃i(t) =
n−2∑
k=1

(
I∗

ik − I∗
(i+1)k

)
ÿk+1 + (bi(q, q̇) − bi+1(q, q̇)) + (gi(q) − gi+1(q)) + τ̃i+1 (15)

with i = 1, 2, . . . n − 2.

3.2. Natural frequencies
Free vibrations analysis makes it possible to identify the resonances of the system and is preliminary to
forced vibrations analysis.
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In the actual operation of the robot, the sum of the joint variables is an output that depends on the
motor torques which are functions of the commanded flat variables. Hence, in the analysis of natural
frequencies and forced response, the sum of joint variables in the Laplace domain is named �n(s).

The last equations of motion considering the damping coefficient (cn �= 0) can be rewritten as follows
in the Laplace domain: ⎧⎨

⎩
s2I∗

n−1(�n(s) − Qn(s)) + s2I∗
n Qn(s) = Tn−1(s)

s2I∗
n�n(s) + (cns + kn)Qn(s) = 0

(16)

in which Tn−1(s) is the motor torque for the last non-actuated joint.
If the motor torque Tn−1(s) and cn are set to zero, the equations of free undamped vibrations are

obtained. The natural frequencies of the undamped system can be determined by finding the roots of the
determinant of the matrix that multiplies the vector of unknowns:⎡

⎣I∗
n−1s

2 (I∗
n − I∗

n−1)s
2

I∗
n s2 kn

⎤
⎦ [

�1(s)

Qn(s)

]
=

[
0

0

]
(17)

The determinant of the matrix at the left-hand side of Eq. (17) is:

s2(I∗
n−1kn − I∗

n (I∗
n − I∗

n−1)s
2) = 0 (18)

Equation (18) shows that one solution is null since it corresponds to a rigid motion of the system. The
other non-null solution is the natural frequency of the system:

ωn =
√

knI∗
n−1

I∗
n (I∗

n−1 − I∗
n )

(19)

3.3. Forced vibrations
Coming back to Eq. (16), the transfer function of the system between the joint variable Qn(s) and the
generic input Tn−1(s) can be calculated as follows:

Qn(s) = I∗
n

−I∗
n (I∗

n − I∗
n−1)s2 + (cns + kn)I∗

n−1

Tn−1(s) (20)

Since Eq. (20) shows that the transfer function Qn(s)/Tn−1(s) has a pair of complex conjugate poles,
in general, the response is characterized by damped oscillations.

If the particular torque input, calculated with the flat variable (Eq. (10)), is considered:

T̃n−1(s) = I∗
n (I∗

n − I∗
n−1)s

2 − (cns + kn)I∗
n−1

cns + kn

s2Y1(s) (21)

when Eq. (21) is introduced in Eq. (20), a zero-pole cancelation takes place:

Qn(s) = − I∗
n

cns + kn

s2Y1(s) (22)

which corresponds to the disappearance of the oscillations.
Conversely, if the torque input is calculated by setting the damping coefficient cn equal to 0, Eq. (10)

takes the following form:

Tn−1(s) = I∗
n (I∗

n − I∗
n−1)s2 − knI∗

n−1

kn

s2Y1(s) (23)
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When this torque is introduced in Eq. (20), the zero-pole cancelation does not take place, and owing to
the complex conjugate poles oscillations may occur:

Qn(s) = I∗
n

−I∗
n (I∗

n − I∗
n−1)s2 + (cns + kn)I∗

n−1

· I∗
n (I∗

n − I∗
n−1)s

2 − knI∗
n−1

kn

s2Y1(s) (24)

4. Numerical and experimental results for a 2-DOF robot
The robot designed for the experimental validation of the mathematical model has 2-DOF (n = 2), with
one motor and one non-actuated joint. It moves on the horizontal plane, and link 2 is fully balanced. The
first link does not need to be balanced, since its moment of inertia about joint 1 is always constant [1].

For such a robot, Eq. (1) takes the following form:

M2

[
q̈1

q̈2

]
+ C2

[
q̇1

q̇2

]
+ K2

[
q1

q2

]
=

[
τ1

0

]
(25)

where τ1 is the motor torque and the matrices are defined as follows:

M2 =
⎡
⎣I∗

1 I∗
2

I∗
2 I∗

2

⎤
⎦ , C2 =

⎡
⎣0 0

0 c2

⎤
⎦ , K2 =

⎡
⎣0 0

0 k2

⎤
⎦ (26)

in which the moments of inertia are I∗
1 = IG1 + m1a2

G1 + (m2 + mc2)a2
1 + IG2 + m2a2

G2 + mc2a2
c2, and I∗

2 =
IG2 + m2a2

G2 + mc2a2
c2, and c2 is the damping coefficient of the second joint. It is worth noting that, in

this case, the mass matrix is constant and the Coriolis-centrifugal and gravity terms are null because the
second link is balanced and the system works in the horizontal plane.

Only one flat variable is required: y1 = q1 + q2. If c2 = 0, the motor torque of the first joint is
calculated by means of Eq. (5):

τ1 = I∗
1 ÿ1 + I∗

2 (I∗
1 − I∗

2 )

k2

y(4)
1 (27)

whereas the motor torque for the damped systems is calculated by means of Eq. (14):

τ̃1 = I∗
1 ÿ1 + I∗

2 (I∗
1 − I∗

2 )

k2

y(4)
1 − c2I∗

2 (I∗
1 − I∗

2 )

k2
2

y(5)
1 (28)

The flat variable is chosen to obtain a specific position, velocity, acceleration, jerk, and snap of q1 and
q2 at the beginning and at the end of the motion (tf ). For the undamped system, a 9-th degree polynomial
is sufficient, and the corresponding constraints on the flat variable y1 are as follows:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

y1(ti) = q1i + q2i

y1(tf ) = q1f + q2f

ẏ1(ti) = ÿ1(ti) = y(3)
1 (ti) = y(4)

1 (ti) = 0

ẏ1(tf ) = ÿ1(tf ) = y(3)
1 (tf ) = y(4)

1 (tf ) = 0

(29)

where q1i, q1f , q2i, and q2f are the initial and final angular positions of joint 1 and joint 2, respectively.
For the damped system, at least an 11-th degree polynomial must be used to obtain a continuous fifth
derivative y(5)

1 . Hence, y1 is defined by an 11-th degree polynomial, and the boundary conditions are the
same as Eq. (29) with the addition of the constraints on the crackle:⎧⎨

⎩
y(5)

1 (ti) = 0

y(5)
1 (tf ) = 0

(30)
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Figure 2. The 2-DOF robot used in the experimental tests. The motor of the device is located under the
black plane to avoid interference with the vision system.

The constants of the polynomial are obtained by solving the linear system:

Ax = b (31)

in which A is the matrix associated with the boundary conditions, x is the vector of the polynomial
coefficients and b is the vector that contains the boundary conditions [40].

The prototype was built using additive manufacturing and moves in the horizontal plane as depicted
in Fig. 2. The first joint is actuated by means of a direct drive Portescap 35NT2R82 426SP brushed DC
motor. The non-actuated joint is equipped with a small torsional spring with a stiffness of 0.0026 Nm/rad
identified via modal analysis directly on the prototype [41]. The inertial properties of links 1 and 2 are
summarized in Table I. It should be noted that the mi term represents the mass of the i-th link without
considering any balancing mass mci. The details of stiffness, damping coefficient, and the commanded
point-to-point motion are listed in Table II. It is worth noting that, for a point-to-point motion, the initial
and final angles of the under-actuated joint (i.e., q2i and q2f ) must be null [26]. The damping coefficient
of the under-actuated joint c2 is identified by means of free vibration tests on the prototype using the
logarithmic decrement method [42]. The experimental natural frequencies of the prototype robot are 0
and 1.4 Hz. They are in good agreement with the analytical values calculated by means of the formulas
of Section 3.2.

The response of the prototype robot to the torques calculated by means of the standard and the
improved diffeomorphism (with viscous friction) is studied both experimentally and numerically. For
the experimental validation, the measurement of joint variables is needed. The angle of the actuated
joint (q1) is obtained by means of an incremental optical encoder LIKA Electronic I58-L-5000ZCU16R
installed on the motor of joint 1. A second encoder, for the measurement of the passive joint angle (q2),
would represent an added mass. Hence, the second link is equipped with two markers, and its trajectory
is tracked by the industrial camera Dalsa Genie Nano GM30-M2050, having a resolution of 2064 × 1544
pixels and using a sensor Sony IMX252.

For the simulations, the model of Eq. (25) with the parameters of Tables I and II is implemented in
Simulink.

Three scenarios are studied:

• Control based on the simple diffeomorphism (c2 = 0) with y1 represented by a 9-th degree
polynomial.

• Control based on the simple diffeomorphism (c2 = 0) with y1 represented by an 11-th degree
polynomial.

• Control based on the new diffeomorphism (c2 �= 0) with y1 represented by an 11-th degree
polynomial.

Figs. 3 and 4 depict the simulated and measured motion when the joint 1 torque is calculated accord-
ing to the simple diffeomorphism (c2 = 0) with a 9-th degree polynomial, and with an 11-th degree
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Table I. Inertial parameters of the simulated
and experimental robot.

Parameter Link 1 Link 2
mi (kg) 2.55 · 10−2 8.7 · 10−3

mci (kg) 0 8.7 · 10−3

IGi (kgm2) 4.5 · 10−5 3.5 · 10−5

ai (m) 1.3 · 10−1 0.8 · 10−1

aGi (m) 7.1 · 10−2 0
aci (m) 1 · 10−2 0.8 · 10−1

Table II. Stiffness and damping coefficient of
the non-actuated joint used in the simulated and
experimental robot and the motion parameters.

Parameter Value Unit
k2 0.0026 Nm/rad
c2 1.87 · 10−5 Nms/rad
q1i, q2i, q2f 0 ◦

q1f 180 ◦

tf 0.6 s

Figure 3. 2-DOF robot trajectory of the end-effector in x − y plane obtained with y1 described by a 9-th
degree polynomial, without the viscous friction on the non-actuated joint (c2 = 0). The black trajectory
is obtained by a 1-DOF robot with only one link of length a1 + a2.

polynomial, respectively. In both cases, there is a good agreement between numerical and experimental
results. The end-effector of the robot describes a trajectory with a cusp. It is worth noting that the area
swept by the robot is smaller than the area swept by a 1-DOF robot made by a unique link with length
a1 + a2. The increase in the order of the polynomial modifies the shape of the trajectory near the cusp.
In both cases, the end-effector has an overshoot and before stopping oscillates around the final position.
It is worth noting that the robot is not aligned to the x-axis at the end of the planned motion (t = 0.6 s),
since it is still oscillating.
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Figure 4. 2-DOF robot trajectory of the end-effector in x − y plane obtained with y1 described by
an 11-th degree polynomial, without the viscous friction on the non-actuated joint (c2 = 0). The black
trajectory is obtained by a 1-DOF robot with only one link of length a1 + a2.

Figure 5. 2-DOF robot trajectory of the end-effector in x − y plane obtained with y1 described by an
11-th degree polynomial, with the viscous friction on the non-actuated joint (c2 �= 0). The black trajectory
is obtained by a 1-DOF robot with only one link of length a1 + a2.

Fig. 5 shows the effect of the torque calculated taking into account joint viscous friction (c2 �= 0). In
this case, the overshoot and the oscillations are strongly reduced and at the end of the planned motion,
the two links are aligned. The agreement between experimental and numerical results is good.

It is worth noticing that the shape of the trajectory changes with the polynomial degree and with the
inclusion of viscous friction. End-effector trajectory is also influenced by the non-actuated joint stiffness
and the motion time, as shown in ref. [9].

https://doi.org/10.1017/S0263574724000249 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000249


12 Michele Tonan et al.

Figure 6. 2-DOF robot numerical and experimental joint rotations (left: q1; right: q2) in the case of
three different open-loop controls: frictionless control with 9-th degree polynomial law for y1 (top),
frictionless control with 11-th degree polynomial (middle), friction compensation control with 11-th
degree polynomial (bottom).

To highlight the effect of the diffeomorphism on the oscillation of the robot, the simulated and mea-
sured joint variables are depicted in Fig. 6. There is a good agreement between the two sets of results. The
comparison between q1 and q2 depicted in Fig. 6 shows that the oscillations at the end of the planned
motion chiefly involve the second joint which is non-actuated. The right side of Fig. 6 shows that if
the simple diffeomorphism is adopted, there are large oscillations of q2 whose frequency is equal to
ωn. The increase in the order of the polynomial has a small effect on the amplitude of such oscillations.
Conversely, the adoption of the new diffeomorphism leads to a nearly complete disappearance of oscilla-
tions of q2. The suppression of oscillations at the end of the trajectory is due to the zero-pole cancelation
described in Section 3.3.

5. Numerical results for a 4-DOF robot
This section aims to show the application of the general theory to a more complex under-actuated robot
with 4-DOF having non-linear terms and operating in the horizontal plane. Trajectories are simulated
to highlight the effect of torques calculated with and without viscous friction. For this robot, Eq. (1)
becomes:
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M4(q)

⎡
⎢⎢⎢⎢⎣

q̈1

q̈2

q̈3

q̈4

⎤
⎥⎥⎥⎥⎦ + C4

⎡
⎢⎢⎢⎢⎣

q̇1

q̇2

q̇3

q̇4

⎤
⎥⎥⎥⎥⎦ + K4

⎡
⎢⎢⎢⎢⎣

q1

q2

q3

q4

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

b1(q, q̇)

b2(q, q̇)

0

0

⎤
⎥⎥⎥⎥⎦ = τ (32)

in which M4(q), C4, and K4 are the mass, damping, and stiffness matrices, respectively. These matrices
are defined as follows:

M4(q) =

⎡
⎢⎢⎢⎢⎣

I∗
11(q) I∗

12(q) I∗
3 I∗

4

I∗
21(q) I∗

22(q) I∗
3 I∗

4

I∗
3 I∗

3 I∗
3 I∗

4

I∗
4 I∗

4 I∗
4 I∗

4

⎤
⎥⎥⎥⎥⎦ C4 =

⎡
⎢⎢⎢⎢⎢⎣

0

03×3

...

0

0 · · · 0 c4

⎤
⎥⎥⎥⎥⎥⎦ , K4 =

⎡
⎢⎢⎢⎢⎢⎣

0

03×3

...

0

0 · · · 0 k4

⎤
⎥⎥⎥⎥⎥⎦ (33)

The elements of the mass matrix M4(q) and of the vector of Coriolis-centrifugal terms are rather
complex and are reported in the Appendix.

The vector τ contains the motor torques of the first, second, and third actuated joints.
According to Eq. (3), the three flat variables are Y = [y1, y2, y3] = [q1 + q2 + q3 + q4, q1, q2]. The
motor torques without considering the viscous friction can be calculated from Equations (5) and (6)
imposing n = 4.

τ3 = I∗
3 ÿ1 + I∗

4 (I∗
3 − I∗

4 )

k4

y(4)
1

τ2 = (
I∗

21(y3) − I∗
3

)
ÿ2 + (

I∗
22(y3) − I∗

3

)
ÿ3 + b2(y3, ẏ2) + τ3

τ1 = (
I∗

11(y3) − I∗
21(y3)

)
ÿ2 + (

I∗
12(y3) − I∗

22(y3)
)

ÿ3 + (b1(y3, ẏ2, ẏ3) − b2(y3, ẏ2)) + τ2

(34)

The motor torques with viscous friction can be calculated from Equations (14) and (15) imposing
n = 4, the expressions are as follows:

τ̃3 = I∗
3 ÿ1 + I∗

4 (I∗
3 − I∗

4 )

k4

y(4)
1 − c4I∗

4 (I∗
3 − I∗

4 )

k2
4

y(5)
1

τ̃2 = (
I∗

21(y3) − I∗
3

)
ÿ2 + (

I∗
22(y3) − I∗

3

)
ÿ3 + b2(y3, ẏ2) + τ̃3

τ̃1 = (
I∗

11(y3) − I∗
21(y3)

)
ÿ2 + (

I∗
12(y3) − I∗

22(y3)
)

ÿ3 + (b1(y3, ẏ2, ẏ3) − b2(y3, ẏ2)) + τ̃2

(35)

The flat variables y are the same for both cases and are calculated by means of polynomial functions, in
particular, an 11-th degree polynomial for y1 and a 5-th degree polynomial for y2 and y3. The polynomial
coefficients are calculated by means of Eq. (31), and the initial and final conditions are defined as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1(ti) = ∑4
k=1 (qk)i

y1(tf ) = ∑4
k=1 (qk)f

y2(ti) = q1i

y2(tf ) = q1f

y3(ti) = q2i

y3(tf ) = q2f

ẏ1(ti) = ÿ1(ti) = y(3)
1 (ti) = y(4)

1 (ti) = y(5)
1 (ti) = ẏ2(ti) = ÿ2(ti) = ẏ3(ti) = ÿ3(ti) = 0

ẏ1(tf ) = ÿ1(tf ) = y(3)
1 (tf ) = y(4)

1 (tf ) = y(5)
1 (tf ) = ẏ2(tf ) = ÿ2(tf ) = ẏ3(tf ) = ÿ3(tf ) = 0

(36)
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Table III. Parameters of the simulated 4-DOF robot.

Parameter Link 1 Link 2 Link 3 Link 4
mi (kg) 2.8 · 10−2 2.8 · 10−2 2.8 · 10−2 8.7 · 10−3

mci (kg) 0 0 3.8 · 10−1 8.7 · 10−3

IGi (kgm2) 3.9 · 10−5 3.9 · 10−5 4.5 · 10−5 3.5 · 10−5

ai (m) 1.3 · 10−1 1.3 · 10−1 1.3 · 10−1 0.8 · 10−1

aGi (m) 7.1 · 10−2 7.1 · 10−2 7.1 · 10−2 0
aci (m) 1 · 10−2 1 · 10−2 1 · 10−2 0.8 · 10−1

Figure 7. Simulated joint variables of the 4-DOF robot considering the torque calculated without and
with the viscous friction. An 11-th degree polynomial has been used for y1 and a 5-th degree polynomial
for y2 and y3 in both cases.
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Figure 8. Simulated trajectories of the end-effector of the 4-DOF robot in x − y plane considering the
torque calculated without and with the viscous friction. An 11-th degree polynomial has been used for
y1 and a 5-th degree polynomial for y2 and y3 in both cases.

The simulations are performed considering a motion time equal tf = 0.5 s. The start configuration is
qi = [−20, −20, −20, 0] deg, while the end configuration is qf = [185, 35, 20, 0] deg. The parameters of
4-DOF robot are summarized in Table III.

Fig. 7 depicts the joint variables of the robot. The behavior of the 4-DOF robot is very similar to the
one of the 2-DOF robot in which motor torque has been calculated by means of 11-th degree polynomials
(Fig. 6). The introduction of viscous friction has a direct effect on torque τ̃3 and an indirect effect on the
other motor torques through the Newton-Euler recursive formula (Eq. (15)). As a result, q1 and q2 are
poorly affected by viscous friction, q3 is slightly affected by viscous friction, and q4 is strongly affected
by viscous friction, especially at the end of the motion, since q4 shows oscillations about the final value
if viscous friction is not considered in the calculation of torques.

Fig. 8 shows the simulated trajectories of the end-effector considering the torque calculated without
and with viscous friction. The difference between the trajectories is relevant near the cusp and at the end
of the motion. Moreover, the zoom of the end of the trajectories (depicted in Fig. 8) clearly shows that
the end-effector presents oscillations at the end of the planned motion if viscous friction is not taken
into account in torque calculation. Such a behavior is not suitable for many applications, in which the
motion is considered complete when the amplitude of residual end-effector vibrations is reduced within
a small range. Conversely, if torques are calculated taking into account the viscous friction, the system
does not show residual vibrations.

These results show that large improvements in point-to-point motion can be achieved with a proper
open-loop system without any feedback from the non-actuated joint.

6. Conclusions
If a differentially flat under-actuated robot with friction in the last joint is driven by torques calcu-
lated without considering friction in the diffeomorphism, large oscillations occur at the end of the
motion. To cope with this problem, a Laplace transform analysis has been proposed, exploiting the
linear characteristics of the last rows of the dynamic equations of the system.
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First, the proposed method has made it possible to understand the source of the above-mentioned
oscillations. Second, a novel approximate method for the calculation of the torques considering viscous
friction has been proposed. Third, experimental and numerical results have shown the validity of the
proposed method.

The proposed method can be used for improving the control of a planar differentially flat robot, when
it is based on the dynamic model of the robot. Let us consider, for example, the control scheme presented
in [28], which exploits the actuator torques calculated from flat variables and includes a term for friction
compensation in the actuated joints. Such a control scheme may be further improved by adding to the
calculated torques the friction compensation term proposed in this paper (Eq. 14), so as to take into
account the viscous friction of the passive joint in addition to that of the active joints, thus suppressing
the oscillations of the last link which occur especially in the execution of fast motions.

The main limit of such method lies in the fact that a small viscous friction of the joint is consid-
ered. While this assumption holds true for well-lubricated joints, other forms of friction may be present
in actual robotic joints. In this case, the proposed method still can be used considering an equivalent
viscous damper that dissipates in a vibration cycle the same amount of energy as the actual dissipative
phenomenon. But a further approximation is introduced, which may lead to positioning errors and/or
oscillations.

Future developments of this research will be experimental tests on non-actuated joints having differ-
ent friction characteristics with the extension of the proposed method to consider other forms of friction.
Another possible development will be the extension of the proposed method to under-actuated spatial
manipulators.
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Appendix.
The terms of the mass matrix of the 4-DOF robot are as follows:

I∗
11(q) = I1 + I2 + I3 + I4+

(a1
2 a3

ac3

+ a2
2 a3

ac3

+ a1
2 a3ag4

ac3ac4

+ a2
2 a3ag4

ac3ac4

+ a2
1 + a2

2 + a3
2 + a3ac3+

a1
2 ag4

ac4

+ a2
2 ag4

ac4

+ a3
2 ag4

ac4

+ a3ac3

ag4

ac4

+ ag4
2 + ac4ag4)m4+

(
a1

2 + a2
2 + a1

2 ag3

ac3

+ a2
2 ag3

ac3

+ ag3
2 + ac3

2 ag3

ac3

)
m3+

(
a1

2 + ag2
2
)

m2 + ag1
2m1 + 2 cos(q2)

ac3ac4

(a1a2a3ac4m4 + a1a2a3ag4m4 + a1a2ac3ac4m3+

a1a2ac3ac4m4 + a1a2ac4ag3m3 + a1a2ac3ag4m4 + a1ac3ac4ag2m2)

(37)

I∗
12(q) = I∗

21(q) = I2 + I3 + I4+

(a2
2 + a3
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2 + a3ac3 + ac4ag4 + a2

2 a3
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2 a3ag4
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I∗
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2m4 + ac4ag4m4 + I4 (41)
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The Coriolis-centrifugal terms for the 4-DOF robot are as follows:

b1(q, q̇) = − 1

ac3ac4

(a1 sin(q2) (2q̇1 + q̇2) q̇2(a2a3ac4m4 + a2a3ag4m4+

a2ac3ac4m3 + a2ac3ac4m4 + a2ac4ag3m3 + a2ac3ag4m4 + ac3ac4ag2m2))

(42)

b2(q, q̇) = − 1

ac3ac4

(a1 sin(q2) q̇2
1(a2a3ac4m4 + a2a3ag4m4 + a2ac3ac4m3+

a2ac3ac4m4 + a2ac4ag3m3 + a2ac3ag4m4 + ac3ac4ag2m2))

(43)
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