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ABSTRACT. Borehole inclinometers are standard equipment for field glaciol­
ogists and are commonly used for investigating the flow law of ice and for measuring 
the spatial position of englacial and sub-surface sensors. The recent development, at 
the University of British Columbia (UBC), of a prototype inclinometer that employs 
a three-component fluxgate magentometer to obtain a compass bearing has 
stimulated our interest in borehole inclinometry. Following a review of various 
approaches to glacier inclinometry, we present a unified theory of data interpretation 
that can be applied to all inclinometers, discuss the application of the theory to the 
UBC inclinometer, and discuss the sensitivity of the theory to error in the data. 

INTRODUCTION 

Whenever a deep hole is drilled into the surface of the 
Earth, there is uncertainty about its trajectory. Asym­
metries in the drill, layering in the material being drilled 
and shortcomings in drilling technique may cause the 
borehole to stray from its intended path (e.g. Walker, 
1986). Inclinometry tools are designed to remove spatial 
uncertainty by mapping the deviation of the borehole. 
Typically, two pieces of information are collected at a 
series of stations, or locations, along the length of the hole: 
the tilt of the inclinometer from vertical and the azimuth 
of that tilt in a geographical coordinate system. Of the 
many techniques available for making these measure­
ments, we present a brief overview of those that have been 
used for glaciological work. Sources for some of this 
inclinometry equipment are given. 

In this paper, we attempt to formalize some aspects of 
inclinometry-data analysis and, at the same time, 
introduce a new inclinometry tool that was recently 
assembled at the University of British Columbia (UBC). 
We describe the calibration procedure for the UBC 
inclinometer, formulate a general theory for interpret­
ation of inclinometer data and examine the sensitivity of 
this theory to error in the data. 

mSTORICAL OVERVIEW 

Inclinometry of glacier boreholes has long been associated 
with field investigations of the flow law for ice (Perutz , 
1947,1949,1950; Gerrard and others, 1952; Sharp, 1953; 
Nye, 1952, 1953, 1957; Miller, 1958; Paterson and 
Savage, 1963; Savage and Paterson, 1963; Shreve and 
Sharp, 1970; Raymond, 1971 b, c; Hooke, 1973; Garfield 
and U eda, 1976; Paterson, 1983; Hooke and Hanson, 

1986; Hooke and others, 1987). Many of these researchers 
used inclinometry data to infer the internal velocity field 
of the glacier and thereby deduce parameters of the flow 
law. Increasing interest in basal processes has created a 
new application for inclinometry, that of accurately 
determining the position of en glacial and subglacial 
sensors. As an example, the measurement of subglacial 
resistivity (Brand and others, 1987) requires knowledge of 
the spatial position of current and voltage electrodes 
within adjacent boreholes. 

Basic dip and azitnuth measurements 

A rudimentary fluid-level inclinometer can be built by 
partially filling a sealed glass vial with a solution of 
hydrofluoric acid. If the vial is kept at a fixed tilt angle for 
an appropriate time, the acid will etch the glass, leaving a 
record of the fluid surface. If several vials are positioned 
along the length of a borehole while the etching occurs, 
they provide a discrete record of the borehole tilt (e.g. 
Savage and Paterson, 1963, p. 4522). An exotic variation 
of the above approach substitutes a warm solution of 
gelatin ("] eUo" is a suitable commercial product) for the 
acid; the vials are left in place until the gelatin hardens 
and tilt is preserved in the surface of the gelatin (Shreve 
and Sharp, 1970, p. 71). Such fluid levels have three 
major drawbacks: (1) The vials may freeze to the walls of 
the borehole. (2) The precision of the tilt measurements is 
poor. (3) The vials do not measure tilt azimuth, although, 
in the case of the gelatin level, a magnetic compass needle 
suspended within the gelatin can provide a magnetic 
bearing. 

"Floating-compass" inclinometers improve on fluid­
level instruments by providing azimuth information, but 
they are laborious to use. Sperry-Sun Corporation 
(Houston, Texas) and Parsons Survey Company (South 
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Gate, California) manufacture floating-compass inclin­
ometers that employ a miniature camera. The camera in 
the Sperry-Sun instrument is focused on a weighted 
spherical magnetic compass ball that has azimuth and tilt 
markings, much like lines of latitude and longitude. At 
predetermined time intervals, the camera takes a 
photograph of the illuminated compass ball; it is left to 
the operator to ensure that the instrument is at the proper 
position along the borehole at the time each picture is 
taken. The camera in the Parsons instrument photo­
graphs an illuminated plumb bob against a compass 
graticule. The single-frame version of this instrument 
must be brought to the surface after each picture has been 
taken (e.g. Shreve, 1961; Savage and Paterson, 1963), 
but an improved multi-frame version uses electrical 
signals from the surface to advance the film (Garfield 
and Ueda, 1976). With both the Sperry-Sun and Parsons 
instruments, azimuth and tilt readings are transcribed 
from the developed film images, an obvious impediment 
to in-field data acquisition. 

Clamping the compass so that it can be examined 
once the inclinometer is brought to the surface is an 
alternative to film recording of compass position. The 
inclinometer built by Pajari Instruments Ltd (Orillia, 
Ontario) uses a gimbal-mounted horizontal compass 
needle. After a predetermined interval of time has 
passed, a locking mechanism arrests the gimbal rings 
and the compass. The operator sets the timer, lowers the 
instrument to the desired location and waits for the timer 
to lock the compass. The inclinometer is then brought to 
the surface, the gimbal mount is removed from the 
pressure casing, and azimuth and tilt are read from 
graduated scales in the unit. This laborious procedure is 
repeated for each station within the borehole. Koerner 
(personal communication, 1987) has used this instrument 
on the Agassiz Ice Cap. 

ELECTRONIC INCLINOMETRY 

In recent years, advances in electronic technology have 
enabled the development of inclinometry systems that 
transmit position information directly to the surface. 
Compared with earlier techniques, the time and labour 
savings of electronic inclinometry are appreciable; with 
appropriate equipment in place at the borehole site, the 
trajectory of the borehole can even be computed and 
displayed as the data are collected. 

Measuring tilt 

Electronic tilt transducers allow precise and repeated 
measurements of tilt to be made from a glacier surface. 
The Fredericks Company and Applied Geomechanics 
Inc. (Santa Cruz, California) manufacture electrolytic tilt 
transducers that are suitable for borehole inclinometry. 
General Oceanics (Miami, Florida) and Slope Indicator 
Company (Seattle, Washington) manufacture force­
balance tilt transducers. 

Measuring azitnuth 

To reconstruct the borehole trajectory, each set of tilt 
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measurements must be combined with a measurement of 
instrument azimuth. Rigidly coupled inclinometers, 
tracked inclinometers, magnetically oriented inclino­
meters and gyroscopically oriented inclinometers are the 
four design categories known to us. 

External azimuth control 
The orientation of a rigidly coupled inclinometer is 
controlled by a rod leading from the surface. This method 
is suitable for shallow holes but, as the distance between 
the instrument and the operator increases, azimuth 
control deteriorates and logistical problems grow 
(Gerrard and others, 1952). 

Tracked inclinometers require that a special grooved 
casing be installed in the borehole before inclinometry 
begins. Spring-loaded wheels or pins keep the inclino­
meter aligned with the grooves in the casing as the 
instrument moves through the hole. For shallow holes, 
twisting of the casing is assumed to be negligible; it follows 
that the azimuth of the inclinometer is constant and equal 
to the azimuth of the casing at the top of the hole. For 
deeper holes, a torsion tool can be used to measure the 
twist in the casing. This tool consists of two sections, each 
of which has a set of tracking wheels, that are connected 
by a sensitive torsion transducer. Any twisting of the 
casing is recorded by the transducer as the tool is moved 
through the hole. If a torsion tool is not available, the 
presence or absence of casing twist must be inferred from 
the data. Although the effort and expense of installing an 
inclinometry casing is an inconvenience, the casing 
provides a uniform borehole geometry for the inclino­
meter, serves to smooth out small perturbations in the 
borehole trajectory, and allows the operator to cancel any 
offset error in the instrument by executing precisely 
reversed runs through the hole; great accuracy can be 
achieved. Cased holes are also advantageous in long-term 
deformation studies because they are not prone to closure 
from creep and freezing. The biaxial inclinometer 
manufactured by Slope Indicator Company (Seattle, 
Washington) is an excellent example of a tracked 
inclinometer. Hooke and Hanson (1986) and Hooke 
and others (1987) have made precise measurements of 
glacier-ice deformation using this instrument, but we are 
certain that they have cursed the need for a casing. 

Internal azimuth control 
Gyroscopically and magnetically oriented inclinometers 
do not require a casing, hence their appeal for glacier 
work. A gyroscopically oriented inclinometer was built by 
the research team that made the historic measurements of 
deformation within Jungfraufirn (Gerrard and others, 
1952). Their paper contains a brief description of this 
inst1'ument, but we have been unable to locate the 
detailed instrumentation paper to which they refer 
(Broad, J as on and Perutz. J. Sci. Instrum., 1952, desig­
nated "in press") and suspect it remains unpublished. 

Inclinometers that use a magnetic compass to 
determine azimuth and that report the azimuth electric­
ally are a vast improvement over the Sperry-Sun, Parsons 
and Pajari designs; the output from the tilt sensors and 
the compass can be recorded while the inclinometer is on 
station. The primary disadvantage of magnetic orienta­
tion is that the compass is sensitive to geomagnetic 
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disturbances, as well as magnetic field variations caused 
by remnant magnetization and magnetic susceptibility in 
nearby materials. For ice, which has no magnetic 
signature, only geomagnetic disturbances are of conse­
quence. Glaciologists have used several designs for 
magnetically oriented inclinometers. Raymond (1971a) 
described an instrument that was used to measure the 
internal velocity structure of Athabasca Glacier (Ray­
mond, 1971c). P. Taylor (Hydro-Tech, Seattle, Wash­
ington) has built several magnetically oriented inclino­
meters specifically for use in glaciers. These instruments 
employ two orthogonal tilt sensors and a gimbal-mounted 
compass that produces a voltage signal proportional to 
the magnetic bearing. 

Further improvements in reliability can be gained by 
using a non-mechanical compass, such as a magneto­
meter. Levanto (1959) used a down-hole three-compon­
ent fluxgate magnetometer to measure the in situ 
magnetic susceptibility of rock. The instrument did 
contain a tilt sensor, but the sensor was used to maintain 
the attitude of the magnetometer rather than measure 
inclination. With minor modification, this instrument 
would have served well as an inclinometer. 

THE UBC INCLINOMETER 

In the spring of 1989, the glaciology group at the 
University of British Columbia, in collaboration with 
Slope Indicator Canada Limited (Richmond, British 
Columbia) and Narod Geophysics (Vancouver, British 
Columbia), developed a prototype inclinometer. This 
instrument is similar to the Hydro-Tech instrument in 
that it uses the Earth's magnetic field as an azimuth 
reference, but the field-sensing device is a fluxgate 
magnetometer rather than a mechanical compass. Two 
force-balance tilt transducers and the magnetometer are 
enclosed within a non-magnetic stainless-steel pressure 
tube (see Fig. I). Brass centralizing springs help keep the 

Fig. 1. A block diagram of the peripheral devices attached 
to the U BC inclinometer (inclinometer not drawn to scale) . 
The power module provides power to the instrumentfrom a 
small 6 Ah sealed lead-acid battery. Analogue signals are 
fed to the data logger which, on commandfrom the hand­
held control box, records data from the tilt sensors and 
magnetometer into the storage module. The operator keys in 
depth information on the control box. 

Blake and Clarke: Interpretation of borehole-inclinometer data 

inclinometer centred in the borehole and prevent the 
instrument from spinning when on station. The tube is 
1.5 m long and has an outside diameter of 2.54 cm 
(1.00 in). The tilt transducers are Slope Indicator 
devices, identical to those used in their tracked 
inclinometers. The magneto meter is a N arod Geophysics 
miniature ring-core fluxgate magnetometer. (Wyckoff 
(1948) gave an overview of the principals of operation for 
a fluxgate magnetometer; more detailed treatments 
related to this magneto meter can be found in: United 
States Patent 3800213 (26 March 1974), UK Patent 
2044 460 ( 16 October 1979), Russell and others (1983), 
Narod and Russell (1984) and Narod and others (1985)). 
The sensing element of this three-component magneto­
meter is a 12.7 mm (0.50 in) cube. As the tilt sensors 
con tain permanent magnets, the magnetometer is 
mounted as far from the tilt sensors as possible. Ideally, 
the magnetometer would be placed at the bottom of the 
instrument, far from any secondary magnetic fields, but 
the tilt sensors completely fill the interior of the pressure 
tube so that no wires can pass by them; thus the tilt 
sensors must be positioned at the bottom and the 
magnetometer at the top. The space between these 
sensors is occupied by the electronics package. The 
instrument cable attaches to the top of the instrument. 
This cable carries power to the instrument and analogue 
data to the surface, and has a steel strength member. The 
magnetic bias created by the steel cable and the electric 
currents flowing in the cable is compensated by the 
magnetometer calibration. 

Data are collected by a data logger mounted inside a 
weather-tight plastic case. For each hole, the inclinometer 
is stepped down and up at I m intervals, resulting in a 
two-fold redundancy in the measurements. The depth of 
the inclinometer at each station, as marked on the cable, 
is coded manually on a digital potentiometer that is 
mounted in a hand-held control box. After the operator 
closes a momentary switch, indicating that the inclino­
meter is on station, the data logger records the time, the 
digital values of the tilt and magnetometer signals, and 
the voltage on the potentiometer. The data logger copies 
the data into the storage module. At the end of the day, 
the storage module is carried to the field camp where the 
data are transferred to a computer for analysis. 

This inclinometer system is very efficient. A single 
operator can make two inclinometry passes through a 
70 m hole at I m depth intervals in 25 min. 

COORDINATE SYSTEMS 

Three right-handed Cartesian coordinate systems are 
required to process data from a tracked or gyroscopically 
oriented inclinometer. Two additional coordinate systems 
associated with the Earth's magnetic field and the 
magnetometer are required to process data from a 
magnetically oriented inclinometer (Fig. 2). The coord­
inate system introduced by Nye (1957), and used in 
several subsequent papers by Nye and others, is aligned 
with the flow direction of the glacier. This is natural for 
studies of internal deformation but, because our primary 
concern is locating sensors placed within boreholes, we 
choose a system related to map coordinates. 
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Fig. 2. The five righthanded inclinometer coordinate 
systems displayed as a stereo pair. Top : the geographical 
coordinate system U and the geomagnetic coordinate system 
H. The angle C( d" between the grid north axis Yu and the 
magnetic north axis XH is the magnetic declination . 
Bottom: the tilt sensor (T), case ( C), and magnetometer 
( B) coordinate systems share a common .;:: axis pointing 
downward along the body of the inclinometer. 

The geographical coordinate system U is tied to the 
Universal Transverse Mercator (UTM) coordinate 
system used on Canadian topographic maps. The 
Xu, Yu and Zu axes point east, north and upward, 
respectively. The geomagnetic coordinate system (la­
belled H after the standard designation for magnetic 
field ) is tied to the local declination of the Earth's 
magnetic field . The ZH axis is positive downward and the 
XH axis points along the magnetic declination. This 
definition follows the international convention for 
geomagnetic coordinate systems and results in positive 
ZH readings in the Northern Magnetic Hemisphere. The 
remaining three coordinate systems have z-axes that point 
downward along the axis of the inclinometer. The tilt­
sensor coordinate system T has its XT and YT axes aligned 
with the sensitive axes of the tilt sensors. The case 
coordinate system C has the Xc axis aligned with some 
feature on the inclinometer. In the case of a tracked 
inclinometer, this would be the alignment mechanism. 
The UBC instrument has its Xc axis aligned with a 
machined facet on the inclinometer case (the use of this 
facet is discussed below). The magneto meter coordinate 
system (labelled B after the standard designation for 
magnetic flux density) represents the three axes of 
sensitivity of the fluxgate magnetometer. For the UBC 
inclinometer, the three instrument-based coordinate 
systems are distinct, and the rotational angles between 
the XT, Xc and XB axes must be known in order to process 
data. For other instruments, these three systems mayor 
may not coincide. 

DATA ANALYSIS 

The analysis of inclinometer data proceeds In three 
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distinct steps: (I ) The instrument calibrations are used to 
compute the two tilt angles and the azimuth at each 
station. (2 ) The tilt and azimuth values are transformed 
into vectors representing the orientation of the inclino­
meter at each station. (3) An inversion scheme computes 
the continuous trajectory of the borehole based on the 
discrete set of orientations. 

In the following two sections, we discuss in detail the 
calibration and transformation procedures for the UBC 
inclinometer. Although these procedures vary from 
instrument to instrument, all share the common goal of 
determining the vertical unit vector fi and the orientation 
unit vector m in an inclinometer coordinate system 

(Fig. 3). For a magnetically oriented inclinometer, m 
represents the Earth's magnetic field vector and, for a 
tracked inclinometer, m represents the orientation of the 
track grooves. The UBC inclinometer yields the true 
magnetic vector, whereas an instrument that uses a 
gimbal-mounted compass yields the magnetic vector 
projected on to the gravitationally horizontal plane. 

Calibration 

The tilt sensors are calibrated using a calibration frame 
that allows positioning of the inclinometer at precise tilt 
angles (to within I min of arc) throughout its operating 
range of ± 30° of tilt from vertical. Repeated calibration 
of the instrument between field seasons indicates neg­
ligible drift in the calibration. The output voltage from 
the tilt sensors is proportional to the sine of the tilt angle 
from vertical. In the T system, the components of fi are 
given by 

(1) 

where Ix and III are the two tilt angles. 
The calculation of the orientation vector m would be 

trivial if the three axes of the magnetometer were to have 
zero offset and equal sensitivity but, in practice, the 
design of the magnetometer sensor makes it very difficult 
to realize these characteristics, particularly with regard to 

'" '" n n 

" " m m 

Fig. 3. A stereogram showing the two unit vectors 
measured by an inclinometer and the tilt coordinate system 
T in which they are resolved. The tilt sensors yield fi and 
the orientation apparatus yields m. 
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voltage offsets. A calibration is required. If a series of 
measurements of the Earth's magnetic field is taken with 
the magnetometer positioned at many orientations within 
the field, then the measured points will map out a surface 
in the B system. If we assume that the axes of sensitivity of 
the magnetometer (with their non-zero offsets and 
unequal sensitivities) are mutually orthogonal, then the 
surface is a translated ellipsoid. The calibration function 
we seek transforms this ellipsoid into a unit sphere centred 
on the origin; applying the calibration to any given point 
will produce the corresponding orientation vector. 

The calibration data are best collected on the glacier 
surface where the magnetic environment can be con­
trolled. The operator, stripped of magnetic clothing, 
holds the inclinometer at a succession of orientations. At 
each position, the inclinometer is held steady while the 
three magnetometer outputs are recorded. The orient­
ations are chosen such that the Earth's magnetic field 
intersects the magnetometer sensor from as many 
directions as the patience of the operator allows. The 
specific calibration orientations are not important, so a 
hand-held calibration can be used. In addition to 
instrument error, reading errors result from fluctuations 
in the Earth's magnetic field during the calibration and 
movement of the inclinometer as data are recorded (the 
band width of the magnetometer is 5 Hz and the three 
components are measured sequentially within a span of 
114 ms). 

Typically, about 200-500 calibration triplets are 
collected. A calibration transformation that maps a data 
point M(B) on this ellipsoid on to a unit sphere centred on 
the origin is given by 

[ 

mx(B) ] [ Sxx 
my(B) = 0 
mz(B) 0 

o 
Sw 
o 

(2) 

where T is an offset vector, S is a scaling matrix, and m(B) 
is the transformed point. The six free parameters 
(Sxx, Sw, Szz, Tx, Ty , Tz) are determined by minimizing 
the objective function 

for the n transformed calibration triplets (Sxx, Sw and 
Szz are non-negative). An algebraic approach to solving 
the minimization is algebraically horrific, if not intract­
able, so we use an iterative six-dimensional simplex 
algorithm (Press and others, 1986, p. 289). For the UBC 
inclinometer, the transformed calibration data fit a unit 
sphere to within 2%. Removing the constraint on 
magnetometer-axis orthogonality by allowing non-zero 
off-diagonal terms in calibration matrix S results in a 
negligible improvement in fit, at the expense of greatly 
increasing the geometrical complexity of data analysis. 

TransforInations 

In this section, we discuss the transformations that are 
applied to data from the UBC inclinometer. Some of these 
transformations are generic in nature and can be used 
with all inclinometers. 

In order to simplify the analysis, the scaled magnetic 
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vector m (B) must be rotated about the inclinometer axis 
from the B system into the T system (Fig. 2). The angle 
)!, measured from the XB axis to the XT axis, is calculated 
as the sum of two intermediate angles. The angle between 
the XT and the Xc axes can be measured accurately on the 
tilt calibration frame. The angle between the Xc and XB 

axes is not as well constrained. Repeated sightings on 
known geographical reference points are made through a 
telescope clamped to the machined facet on the body of 
the inclinometer. By reconciling the magnetic declination 
published on the I: 50 000 topographic map (Energy, 
Mines and Resources, Canada map sheet 115 F /1, 
Edition I, 1987; covers Trapridge Glacier, Yukon) with 
the coordinates of the reference points and the coordinates 
of the observation site, the value of this angle can be 
computed to within ±0.5°. Weather permitting, these 
reference sightings are made before and after each hole is 
logged. This allows correction for temporal variations in 
magnetic declin-ation caused by geomagnetic distur­
bances. 

The calibrated magnetic vector m(B), from Equation 
(2), is nominally a unit vector, but errors in the data will 

result in a slightly erroneous vector magnitude. If the 
magnitude is not corrected, then the components ofm(B), 
and vectors derived from it, cannot be used as direction 
cosines. Therefore, the unit magnetic vector ID is defined 
by rotating and normalizing m(B) using the equation 

[

mx] 1 [COS)! 
my = -I -I -sin)! 
m z m(B) 0 

sin)! 
cos)! 

o 
0] [mX(B)] o my(B) 
1 mz(B) 

where Im(B) 1 denotes the scalar length of vector m(B)' 

(4) 

Examination of Figure 3 reveals that, in the case 
where ID is the full magnetic field vector, there is 
redundancy in the data. The three degrees of freedom 
representing the orientation of the inclinometer body are 
constrained by the four degrees of freedom embodied in 
the components of ID and n, which in turn are derived 
from the five instrument readings (Ix, Iy, Mx(B), MY(B ) 

and MZ(B) ). The two additional degrees of freedom 
governed by the instrument readings are the magnitude 
of the magnetic field vector (lost in normalizing ID) and 
the spin orientation of the inclinometer on its axis (in our 
analysis, this information is discarded) . For the UBC 
inclinometer, the value of n is far better determined than 
m, so we use n to define the inclination angle of the ZT 

axis. Vector m is used to constrain the azimuth of the ZT 

axis about vector n. The functions of ID and n can be 
exchanged but, were ID used as the inclination reference, 
accuracy would be lost. Note that data from magnetically 
oriented inclinometers become indeterminate when ID 
and n are parallel or anti-parallel. 

Our objective now is to find a set of Eulerian 
transformation angles <p, e and '" (see Appendix A) 
which will map m, as expressed in the T system, on to the 
U system such that the horizontal projection ofm has the 
proper magnetic declination d. By casting the transform­
ation in this way, we avoid directly implicating the H 
system. The transformation must also map n, as expressed 
in the T system, on to the vertical in the U system. We 
will treat the U system as unprimed and the T system as 
primed (Appendix A, Equation (A2)). 
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The angle () defines the net tilt of the ZT axis with 
respect to the vertical Zu axis. This net tilt is simply 

(5) 

The angle 1/1 controls the relative contribution of the two 
tilt angles to the net tilt, defined as 

~ = tan-
1 (~:) . (6) 

The angle cP rotates the T system about the Zu axis; in 
other words, cP is the Eulerian angle that controls the 
declination of the transformed magnetic vector. Given () 
and 1/1, the value of cP must satisfy 

[ 
F sin d ] [mx 1 Fcosd 1 = AT my 

(1 - F2)2 m z 

(7) 

where 0 < F ~ 1 is the magnitude of ID when projected 
on to the horizontal plane and d is the magnetic 
declination east of UTM north. This system of equations 
has an explicit solution for cP and F, but the algebra can 
be simplified considerably by first solving for the case 
where d = 0 and subsequently adjusting the solution. 
This trick results in an indirect association with the H 
system. The equation to solve becomes 

F =AT my [ 0] [mx] 
(1- F2)~ mz 

(8) 

and the solution is 

-1 [ mx cos 'l/J - my sin 'l/J 1 = tan 
cP (mx sin ~ + my cos~) cos () - m z sin e (9) 

F = [( mx cos ~ - my sin 'l/J) 2 

+ cos2 e(my COS ~ - mx sin ~)2 

+ m z sin2 e(my cos 'l/J - mx sin~) + m; sin2 e] 1/2 . 

(10) 

The non-zero declination d is reinstated by modifying 
Equation (9) to give 

-1 [ mx cos 'l/J - my sin 'l/J 1 d cp = tan - . 
(mx sin ~ + my cos ~) cos e - m z sin e 

(11) 

Equations (9) and (11) are curiously insensitive to the 
value of m z in the sense that a value of ID derived from a 
gimbal-mounted compass (i.e. ID is horizontal) will give 

Table 1. The Eulerian transformation matrix 

the same value for cP as a value of ID representing the full 
Earth field , but this insensitivity is expected. Both gimbal­
mounted and full-field magnetometers are equally adept 
at determining magnetic bearing. 

As the final step in the data-transformation procedure, 
the orientation vector t of the inclinometer (which 
corresponds to the ZT axis), as expressed in the U 
system, is computed by the transformation 

[ 
tx ] [ 0 1 [Sin e sin cP 1 ty = AT 0 = - sin e cos cP . 
tz 1 cose 

(12) 

The Eulerian transformation matrix A is defined in Table 
I and by Equations (5), (6) and (11) . For this analysis the 
value of F is irrelevant. 

Universal application of transformations 
Note that Equations (5), (6), (9) and (12) apply to any 
inclinometry data that can be expressed in terms of a tilt 
vector n and an orientation vector ID. This includes data 
from tracked and gyroscopically oriented inclinometers. 

Inverse problem 

In this section, we develop a general theory, applicable to 
all inclinometers, for computing a continuous borehole 
trajectory based on discrete measurements of borehole 
depth and inclinometer orientation. Before considering 
the details of this step, it is appropriate to consider the 
relationship between the inclinometer orientation and the 
borehole axis. 

The simplest assumed relationship is that the 
inclinometer is always parallel to the bore hole axis . 
Although this presumption is erroneous, without ad­
ditional data describing the borehole geometry and 
centring device geometry, it is difficult to improve upon. 
At any given station along the borehole, the inclinometer 
axis lies along a straight line drawn between the centring 
devices. If the two centring devices operate identically, 
the borehole has smooth walls and constant diameter, and 
the curvature of the borehole is a circular arc, then the 
inclinometer axis will lie parallel to the borehole axis at a 
point midway between the centring devices. In practice, 
these three conditions are rarely satisfied. It is here that 
tracked inclinometers exhibit improved performance over 
instruments such as the UBC tool; the groove-tracking 
wheels can accurately position the inclinometer in the 
centre of the casing and the casing provides both smooth 
walls and regular borehole geometry. The trajectory 
computation method described below will assume that 
the bore hole and inclinometer axes coincide; the 

( 

cos ~ cos cP - cos e sin cp sin ~ 
A = - sin 'l/J cos cp - cos e sin cp cos ~ 

sin esin cp 

cos 'l/J sin cp + cos e cos cp sin ~ 
- sin 'l/J sin cp + cos e cos cP cos ~ 

sin'l/Jsine) 
cos 'l/Jsin e 

- sin e cos cP cose 
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sensitivity of the method to posItioning error will be 
discussed at the end of the paper. 

The task of computing a continuous borehole 
trajectory from a set of discrete tilt and azimuth 
measurements constitutes an inverse problem. An infinite 
number of possible trajectory solutions exist that will 
satisfy a given data set exactly. An infinite number of 
additional solutions exists that do not satisfy the data 
exactly, but which do fall within the error bounds of the 
data. A single solution of the first type can be isolated by 
placing appropriate geometrical constraints on the 
trajectory; the solution to the inverse problem becomes 
an interpolation scheme. All treatises of which we are 
aware, this paper included, use geometrical constraints to 
choose an exact solution that will hopefully reflect the 
true trajectory. This method for solving an inverse 
problem differs from traditional methods in that an a 
priori structural model is solely responsible for isolating 
one of the possible solutions. Traditional methods can find 
solutions of the second type by setting an objective 
function, such as minimizing the rate of change of 
borehole tilt, and by allowing for assessment of error in 
the data. Data smoothing is another possible approach to 
finding inexact trajectory solutions. 

Many methods for interpolating slope angles have 
been discussed in the petroleum industry literature. The 

Fig. 4. A perspective view of the circular-arc interpolation 
model. Between pairs of measurement stations, the borehole 
is assumed to follow a circular trajectory. The arc length is 
constrained by the measured distance between stations, and 
the plane of the arc is difined by the instrument-orientation 
vectors at the end points of the arc. These orientation 
vectors are tangential to the arc. 

Blake and Glarke: Interpretation of borehole-inclinometer data 

"terminal-angle tangential method" is often mentioned as 
the best-known interpolation method: over any station 
interval, the orientation of the inclinometer axis is 
assumed to be equal to that of the lower station. In 
effect, no interpolation is performed and the slope of the 
computed trajectory is discontinuous at every station. 
Because of its faulty representation of inclinometer 
motion, this method results in appreciable error. 
Walstrom and others (1972) discussed five different 
methods for interpolating the tilt angle and azimuth 
between stations. The underlying premise of many of 
their mathematical models is that tilt angle and azimuth 
can be treated as independent quantities. This premise 
does not always hold true, as is revealed by considering 
the radius-of-curvature method developed by Wilson 
(1968) and later expanded by Rivero (1971 ). Their 
method maps the borehole trajectory on to the surface of 
a vertical cylinder such that the desired azimuth and tilt 
are preserved at the end points of the spiral segment. The 
resulting trajectory is not independent of the coordinate 
system in which the projection is made, indicating that in 
this case the tilt angle and azimuth cannot be treated 
separately. Angle-interpolation methods are also clut­
tered with special treatment for the multivalued nature of 
the inverse trigonometric functions. 

We assume that the path of the inclinometer between 
stations can be described by a series of circular arc 
sections (Fig. 4). Figure 5 shows one of these arcs in 
detail. The end points of the arc (PI, P 2) are tangential 
to the normalized orientation vectors (h, t2 ), and the 
length of the arc L equals the measured depth increment 
on the cable. Successive arcs join in a smooth manner 
with no discontinuities in slope, although discontinuities 
in the direction of slope change are present. If the posi tion 
of PI is known, then the position of P 2 or any 
intermediate point P 3 along the arc can be computed. 
This method has been discussed by Zaremba (1973), but 

Fig. 5. A detailed view of one circular arc in the borehole 
trajectory. Knowing the position of the starting point PI, 
the tangent vectors tI and t2, and the length of the arc L, 
the position of the end point P2 can be computed. The 
position of any intermediate point P3 on the arc can also be 
computed. The angle}' is difined by tI and t2' 
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Zaremba derived an unnecessarily complicated solution. 
Our solution for P2 is 

(13) 

where 

COS'Y = h . t2 ' (14) 

In the limit, where t2 --+ h (the anti-parallel case IS 

unlikely), the circular arc will have infinite radius 
(-y -+ 0), and the solution for P2 becomes 

P2 = P l + Ltl . (15) 

A full derivation of the solution is found in Appendix B. A 
solution for a point P 3 at an arbitrary position along the 
arc is also given. The trajectory computed by this 
circular-arc method is independent of the coordinate 
system orientation. The trajectory of the borehole is 
reconstructed by successively applying Equations (13) 
and (15), as appropriate, beginning at the glacier surface 
and working downward. 

SENSITIVITY 

The trajectory of the borehole as determined by the 
circular-arc method, or by any other interpolation 
method, is inherently incorrect - even if the borehole­
orientation data are error-free. This is because the 
continuous borehole trajectory is sampled at a finite 
number of points. In the case of the UBC inclinometer, 
we do not believe that sampling density is a major source 
of error because our I m sampling interval is short 
compared to the length of the inclinometer and the drill 
stem used to drill the holes; we do not expect 
perturbations in the borehole trajectory on a scale 
smaller than I m. For this dense sampling interval, and 
given error-free borehole-orientation data, the divergence 
between the true trajectory and the computed trajectory 
is expected to be at most a few centimetres. Problems arise 
because the borehole-orientation data are not error-free. 

The UBC inclinometer has logged 125 boreholes 
during the 1989 and 1990 field seasons at Trapridge 
Glacier, Yukon. Each hole was logged at least twice. By 
comparing the inclinometry results, we estimate that the 
instrument locates the bottom of a 70 m hole to within 20-
30 cm. The error tends to be largest in the azimuthal 
sense; the radial deviation of a borehole is determined to 
within 15 cm. Based on this evidence, we identify two 
major sources of error: random-positioning error of the 
inclinometer in the borehole and systematic orientation 
error. Superimposed on these error terms are the 
measurement errors of the tilt sensors and magnetometer. 

Accurate positioning of a non-tracked inclinometer 
within a borehole is dependent on the texture of the 
borehole wall and the performance of the centring 
devices. Glacier borehole walls are not necessarily 
smooth and the centring devices allow the inclinometer 
to cant relative to the borehole axis. The discrepancy 
between the axis of the borehole and the axis of the 
inclinometer is estimated at ± 0.5 0

• This estimate is based 
on the diameter of the borehole and that of the 
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inclinometer with the centring-devices fully compressed. 
It is also likely that the inclinometer tends to under­
estimate the borehole tilt since tension in the cable and 
the instrument weight work to force the instrument 
towards a vertical orientation. As this effect depends on 
the lay of the cable and the local hole geometry, it is 
impractical to quantify; we satisfy ourselves with the 
± 0.50 positioning error. The tilt-sensor error (less than 
one part in JO 000) is neglected. The magnetometer error 
is appreciable and amounts to ±2% on the XB and YB 
axes, and ± 3% on the ZB axis. These estimates are based 
on the calibration fit and the specifications for the 
magnetometer. Neglecting stretch in the cable, the error 
in positioning along the borehole is estimated at I cm for 
each 1 m interval. 

The effects of the random errors can be modelled using 
Monte Carlo techniques . Synthetic data are generated for 
a sequence of stations with error terms superimposed on 
the " correct" data . The standard deviation of the 
Gaussian-distributed error for each reading is given 
above. Relative contributions to the net deviation can 
be examined by selectively removing the error terms. 
Figure 6 shows the results from a series of Monte Carlo 
tests on a 70 station hole (69 m long) . The figure shows 
horizontal maps of the computed bottom locations for 
each Monte Carlo test. The underlying model is a linear 
hole dipping J00 to the south with the top at the origin. 
Each test contains 1000 runs through the hole. Figure 6a 
shows the effects of applying all error terms simultan­
eously. The cross hair indicates the location of the error­
free hole bottom at 11.98 m south. Note the slight 
stretching of the "data cloud" in the azimuthal (east­
west) sense and the offset towards the north (origin). Both 
of these effects are primarily due to error introduced by 
the magnetometer, as can be demonstrated by removing 
the magnetometer and depth error (Fig. 6b). This results 
in a more symmetric cloud, with less noticeable offset. 
Figure 6c shows how the magnetometer introduces these 
two distortions. The east- west lineation is actually a short 
section of a circle with its centre at the origin. This is 
easily seen in Figure 6d where gross errors ( ± 50%) in the 
magnetometer over one station interval result in a 
circular scattering envelope. Again, the cross hair 
indicates the error-free solution. The foreshortening 
(drawing in towards the origin) observed in Fig­
ures 6a, c and d results from the fact that error in 
azimuth will always cause the radius of the interpolating 
circular arc to decrease; this results in a horizontal 
projection that is always smaller than, or equal to, the 
true projection. On average, error in tilt measurements 
also produces foreshortening (Fig. 6b). Note that, for 

. holes of this depth, the foreshortening amounts to no more 
than a few centimetres. In Figure 6a, the net depth error 
amounts to no more than ± 2 cm. 

Systematic error is caused by the non-random 
orientation of the inclinometer as it moves through the 
borehole. The orientation of the inclinometer does not 
change greatly as it moves from station to station but, in 
separate passes through the hole, the general orientation 
of the inclinometer may be quite different . It follows that 
any offset error in determining the angle n between the 
XT and XB axes will accumulate differently in different 
inclinometer passes, and this will result in additional 
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Fig. 6. Monte Carlo modelling of the sensitiviry of the 
inclinometer toerror in its sensors is shown as a series of 
scatter plots. Panels (a) ,( b) and (c) show the hori{ontal 
deviation of the computed hole bottom from its true position 
for 1000 Monte Carlo runs down a 69 m hole dipping 
southward at 10° (station interval of 1 m). The hole top is 
at the origin and the true bottom position is indicated by the 
cross hair.(a) The combined effect of a ±0.5" error in 
tilt, a 2% error in m", and my, a 3% error in m z and a 
1 cm m-I error in depth control. (b) The effect of tilt error 
alone. (c) The magnetometer error alone. (d) Scatter 
produced by allowing gross (50 % ) error in the components 
of ID over one station interval. 
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azimuthal error. By adjusting the value ofn such that the 
azimuthal error is minimized for all holes, we can remove 
much of the systematic error. 

Our estimated positioning error of 20-30 cm, with 
slightly better radial control, is consistent with the results 
of the Monte Carlo test in Figure 6a. This leads us to 
conclude that we have a good understanding of the 
factors influencing the performance of our inclinometer. 

DISCUSSION 

Our experience with the UBC inclinometer has shown 
that it is an efficient and accurate instrument for 
glaciological work. Surveys are performed quickly and 
do not require any special attention to the instrument or 
preparation of the borehole. For these reasons, we expect 
that magnetically oriented inclinometers using fluxgate 
magnetometers will gain popularity with glaciologists . 
For rigorous applications, some researchers may wish to 
combine the better tilt accuracy of a tracked inclinometer 
with the additional check on orientation provided by a 
magnetometer. 

The principal shortcoming of these instn.;ments is that 
they become confused at very high magnetic latitudes. 
We estimate that the UBC inclinometer will not operate 
reliably where the dip of the magnetic field exceeds 85°. 
This constraint probably excludes its use throughout most 
of the Canadian Arctic archipelago and the Wilkes Coast 
and George V Land in Antarctica. We know that the 
accuracy of the magnetometer is being degraded by its 
close proximity to electrical currents inside the pressure 
tube. Redesigning the internal configuration of the 
instrument so as to avoid this magnetic noise would 
reduce the error observed in Figure 6c, and might allow 
the instrument to be used closer to the Earth's magnetic 
poles . 

These restrictions aside, the error in determining the 
position of subglacial and englacial sensors with the UBC 
inclinometer is small enough for all but the most exacting 
experiments. We are seeking to improve the performance 
of the instrument, primarily by redesigning the centraliz­
ing springs. If this results in reduced error in the tilt 
readings, then the instrument might approach the 
sensitivity represented by Figure 6c . 

The circular-arc interpolation scheme is simple to 
apply and easy to visualize. On a 12 MHz IBM-PC­
compatible computer equipped with a numerical co­
processor, the time required to calibrate, process and plot 
the data from a 70 m borehole takes a fraction of a second. 
The foreshortening effect of the circular-arc method is the 
only drawback of which we are aware, but this effect is 
not unique to this interpolation method. 

We expect that improvements in the accuracy of 
inclinometry-data inversion can be obtained in at least 
three ways: (1) Incorporate additional borehole geometry 
and centring-device geometry. (2) Study the effects of 
centring-device spacing relative to station spacing. (3) 
Introduce full inversion techniques that produce trajec­
tories having an imperfect fit, within error, to the data. 
Data smoothing is one strategy for finding these 
imperfectly fitting trajectories, but it is important that 
the smoothing process does not result in violation of the 
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error bounds on the data. We invite other interested 
parties to consider these approaches. 
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APPENDIX A 

EULERIAN ANGLES 

The relationship between two arbitrarily rotated co­
ordinate systems that share the same origin can be 
uniquely described using Eulerian angles. Figure 7 shows 
how a triplet of Eulerian angles (</J,O,l/J) defines the 
transformation between any two righthanded Cartesian 
coordinate systems. The transformation is achieved by 
three successive righthanded rotations about specified 
axes. Defined as a matrix operation, the transformation 
from the unprimed coordinate system to the primed is 

x' =Ax (AI) 

where x and x' are coordinates of a point in ~3 and A is 
defined in Table 1. Because A is an orthogonal matrix, 
A-I = AT, so the inverse transformation x = A-lx, is 
simply 

x = ATx'. (A2) 

The inverse matrix A-I satisfies AA -1 = I, where I is the 
identity matrix, and the transposed matrix AT is obtained 
by writing the rows of A, in order, as columns. 

This level of complexity is only necessary when 
moving from an instrument-based coordinate system to 
a map-coordinate system. Transformations between 
coordinate systems within these two groups is accom­
plished by simple rotation about the common z axis 
(O=</J=O). 

APPENDIX B 

INTERPOLATION SCHEME 

We derive solutions for P 2 and P3 given the initial 
position PI and the unit tangent vectors to the circular 
arc it and t2 (Fig. 5). Consider the general problem of 
solving for the intermediate co-planar vector between two 
non-parallel unit vectors (Fig. 8). The partitioning factor 
E ranges between 0 and I. The unit vector t3 is defined by 
the linear combination 

(B1) 

where kl and k2 are appropriate scalar values. The 
solutions for k1 and k2 must satisfy 

t1.t3 = cos (€I) (B2) 

t2.t3 = cos [(1 - Eh] (B3) 

where 

cos 'Y = it .t2. (B4) 

Equations (B2) and (B3) ensure that h is a unit vector co-
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planar with tl and t2. The solutions are 

kl = cos (€I) - cos 'Y cos[(l - Eh] 
sin2 'Y 

(B5) 

k2 = si~ (f'Y) . 
sm 'Y 

(B6) 

In the special case of bisection (f = 0.5), 

1 
kl = k2 = 2cosb/2) (B7) 

z 
z' 

Fig. 7. A set of Eulerian angles describes the transform­
ation between two righthanded coordinate systems sharing a 
common origin. The transformation from an unprimed to a 
primed coordinate system is difined as a set of three right­
handed rotations about specified axes. The three rotations 
are: (1) A rotation by angle <p about the z axis. (2) A 
rotation by angle () about the intermediate x axis (dotted 
line). (3) A rotation by angle 'ljJ about the :/ axis. 

Fig. 8. The intermediate co-planar unit vector t3 between 
two arbitrary non-parallel unit vectors t1 and t2 is shown. 
The value of 0 :::; E :::; 1 difines the position of the 
intermediate vector. 

y 

123 
https://doi.org/10.3189/S0022143000009655 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000009655


Journal of Glaciology 

In Figure 5, the chord drawn between P l and P2 bisects 
the two vectors hand h. The length of the chord is given 
by 

(B8) 

and Equations (BI ) and (B7) yield the unit vector along 
the chord 

(B9) 

so that we can write the solution for P 2 as 

(BIO) 

The position at any intermediate position P 3, located at 
some fractional distance 0 ~ t :::; 1 along the arc from P l 

is given by a similar construction as 

(Bll) 

where ,,(, kl and k2 are defined by Equations (B4), (B5 ) 
and (B6). 

In the special case where h = 12 (the case h = -t2 is 
unlikely), the circular arc will have infinite radius and the 
solutions for P2 and P 3 are 

P 2 = P l +Lh 

P 3 = P l +tLh. 

(BI2) 

(BI3) 

MS received 19 February 1991 and in revisedjorm 30 May 1991 

124 
https://doi.org/10.3189/S0022143000009655 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000009655

	Vol 38 Issue 128 page 113-124 - Interpretation of borehole-inclinometer data: a general theory applied to a new instrument - Erik W. Blake and Garry K.C. Clarke

