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Abstract

Machine learning components such as deep neural networks are used extensively in cyber-
physical systems (CPS). However, such components may introduce new types of hazards that
can have disastrous consequences and need to be addressed for engineering trustworthy systems.
Although deep neural networks offer advanced capabilities, they must be complemented by engi-
neering methods and practices that allow effective integration in CPS. In this paper, we proposed
an approach for assurance monitoring of learning-enabled CPS based on the conformal predic-
tion framework. In order to allow real-time assurancemonitoring, the approach employs distance
learning to transform high-dimensional inputs into lower size embedding representations. By
leveraging conformal prediction, the approach provides well-calibrated confidence and ensures
a bounded small error rate while limiting the number of inputs for which an accurate prediction
cannot be made. We demonstrate the approach using three datasets of mobile robot following a
wall, speaker recognition, and traffic sign recognition. The experimental results demonstrate that
the error rates are well-calibrated while the number of alarms is very small. Furthermore, the
method is computationally efficient and allows real-time assurance monitoring of CPS.

Introduction

Cyber-physical systems (CPS) can benefit by incorporating machine learning components that
can handle the uncertainty and variability of the real world. Typical components such as deep
neural networks (DNNs) can be used for performing various tasks such as the perception of
the environment. In autonomous vehicles, for example, perception components aim at making
sense of the surroundings like recognizing correctly traffic signs. However, such DNNs intro-
duce new types of hazards that can have disastrous consequences and need to be addressed for
engineering trustworthy systems. Although DNNs offer advanced capabilities, they must be
complemented by engineering methods and practices that allow effective integration in CPS.

A DNN is designed using learning techniques that require specification of the task, a mea-
sure for evaluating how well the task is performed, and experience which typically includes
training and testing data. Using the DNN during system operation presents challenges that
must be addressed using innovative engineering methods. The perception of the environment
is a functionality that is difficult to specify, and typically, specifications are based on examples.
DNNs exhibit some nonzero error rate, the true error rate is unknown, and only an estimate
from a design-time statistical process is known. Furthermore, DNNs encode information in a
complex manner and it is hard to reason about the encoding. Nontransparency is an obstacle
to monitoring because it is more difficult to have confidence that the model is operating as
intended.

Our objective in this paper is to complement the prediction of DNNs with a computation
of confidence that can be used for decision making. We consider DNNs used for classification
in CPS. In addition to the class prediction, we compute set predictors with a given confidence
using the conformal prediction framework (Balasubramanian et al., 2014). We focus on com-
putationally efficient algorithms that can be used for real-time monitoring. An efficient and
robust approach must ensure a small and well-calibrated error rate while limiting the number
of alarms. This enables the design of monitors which can ensure a bounded small error rate
while limiting the number of inputs for which an accurate prediction cannot be made.

The proposed approach is based on conformal prediction (CP; Vovk et al., 2005;
Balasubramanian et al., 2014). CP aims at associating reliable measures of confidence with
set predictions for problems that include classification and regression. An important feature
of the CP framework is the calibration of the obtained confidence values in an online setting
which is very promising for real-time monitoring in CPS applications. These methods can be
applied for a variety of machine learning algorithms that include DNNs. The main idea is to

https://doi.org/10.1017/S089006042100010X Published online by Cambridge University Press

https://www.cambridge.org/aie
https://doi.org/10.1017/S089006042100010X
https://doi.org/10.1017/S089006042100010X
mailto:dimitrios.boursinos@vanderbilt.edu
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-5966-3058
https://orcid.org/0000-0002-0923-6293
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S089006042100010X&domain=pdf
https://doi.org/10.1017/S089006042100010X


test if a new input example conforms to the training dataset by
utilizing a nonconformity measure (NCM) which assigns a
numerical score indicating how different the input example is
from the training dataset. The next step is to define a p-value as
the fraction of observations that have nonconformity (NC) scores
greater than or equal to the NC scores of the training examples
which is then used for estimating the confidence of the prediction
for the test input. In order to use the approach online, inductive
conformal prediction (ICP) has been developed for computational
efficiency (Papadopoulos et al., 2007; Balasubramanian et al.,
2014). In ICP, the training dataset is split into the proper training
dataset that is used for learning and a calibration dataset that is
used to compute the predictions for given confidence levels.
Existing methods rely on NCMs computed using techniques
such as k-nearest neighbors (k-NN) and Kernel Density
Estimation and do not scale for high-dimensional inputs in CPS.

DNNs have the ability to compute layers of representations of
the input data which can then be used to distinguish between avail-
able classes (Hinton, 2007; Bengio, 2009). In our previous work, we
developed an approach for mapping high-dimensional inputs into
lower-dimensional representations to make the application of ICP
possible for assurance monitoring of CPS in real time (Boursinos
and Koutsoukos, 2020a). The approach utilizes the vector of the
neuron activations in the penultimate layer of the DNN for a par-
ticular input. This low-dimensional representation can be used to
compute NC scores efficiently for high-dimensional inputs. In
problems where the input data are high-dimensional, such as the
classification of traffic sign images in autonomous vehicles, ICP
based on these learned embedding representations produces confi-
dent predictions. Moreover, the execution time and the required
memory are significantly lower than using the original inputs,
and the approach can be used for real-time assurance monitoring
of the DNN. The use of low-dimensional learned embedding repre-
sentations results in improved performance compared with ICP
based on the original inputs. However, the underlying DNN is
still trained to perform classification and does not learn necessarily
optimal representations for computing NC scores.

The main challenge addressed in this paper is the efficient
computation of embedding representations that allows assurance
monitoring based on conformal prediction in real time. The nov-
elty of the approach lies on using distance metric learning to gen-
erate representations of the input data and use Euclidean distance
as a measure of similarity. Unlike training a classifier where each
training input is assigned a ground truth label and the objective is
to minimize a loss function so that the prediction of the classifier
will be the same as the label, in distance metric learning, the
inputs are considered in pairs. The associated loss function is
defined using pairwise constraints such that its minimization
will make representations of inputs that belong to the same
class be close to each other and representations of inputs belong-
ing to different classes be far from each other. Preliminary results
on using appropriate representations for a robotic navigation
benchmark with low-dimensional inputs are presented in
Boursinos and Koutsoukos (2020c).

The main contribution of the paper is the leverage of distance
metric learning for assurance monitoring of learning-enabled
CPS. The proposed approach based on ICP can be used in real
time for high-dimensional data that are typically used in CPS.
Different NC functions can be used in ICP to evaluate whether
new unknown inputs are similar to the data that have been used
for training a learning-enabled component such as DNN. An NC
function assigns a score to a labeled input reflecting how well it

conforms to the training dataset. Because the choice of the NC
function is very important, the proposed approach utilizes neural
network architectures for distance metric learning based on sia-
mese (Koch et al., 2015) and triplet networks (Hoffer and Ailon,
2015) to learn representations and define NC functions based on
the Euclidean distance. Specifically, the proposed functions com-
pute the NC scores of a new labeled input using (1) the labels of
its closest neighbors, (2) how far the closest neighbor of the same
class is compared with any other neighbor, and (3) how far the
label’s centroid is compared with the centroids of the other labels.
The main benefit of the approach is that by utilizing distance
metric learning in ICP, we reduce the computational requirements
without sacrificing accuracy or efficiency.

An important advantage of the approach is that it allows the
computation of the optimal significance level that can be used
by the assurance monitor to ensure a bounded error rate while
limiting the number of inputs for which an accurate prediction
cannot be made. Unlike most common machine learning classi-
fiers that assign a single label to an input, ICP computes a set
of candidate labels that contains the correct class given a selected
significance level. Small significance level values reduce the classi-
fication errors but may result in set predictors with multiple can-
didate labels. In autonomous systems, it is not only important to
have predictions with well-calibrated confidence but also to be
able to choose the desired significance level based on the applica-
tion requirements. Even though reducing the number of possible
classes may be helpful when the information is provide to a
human, in an autonomous system, it is desirable that the predic-
tion is unique. Therefore, we assume that set predictions that con-
tain multiple classes lead to a rejection of the input and require
human intervention. For this reason, it is desirable to minimize
the number of test inputs with multiple predictions. If the predic-
tion is unique, then the monitor ensures a confident prediction
with well-calibrated error rate defined by the significance level.
If the predicted set contains multiple predictions, the monitor
rejects the prediction and raises an alarm. Finally, if the predicted
set is empty, the monitor indicates that no label is probable. We
distinguish between multiple and no predictions, because they
may lead to different action in the system. For example, no predic-
tion may be the result of out-of-distribution inputs while multiple
possible predictions may be an indication that the significance
level is smaller than the accuracy of the underlying DNN.

The paper presents a comprehensive empirical evaluation of the
approach using three datasets for classification problems in CPS of
increasing complexity. The first dataset is the SCITOS-G5 robot
navigation dataset (Dua and Graff, 2017) for which we use a
fully connected feedforward network architecture. The second is
a speech recognition dataset which contains audio files of human
speech (Kiplagat, n.d.). For this problem, we learn the embedding
representations using a DNN with 1D convolutional layers. The
third dataset is the German Traffic Sign Recognition Benchmark
(GTSRB; Stallkamp et al., 2012). For this dataset, we use a modified
version of the VGG16 architecture (Simonyan and Zisserman,
2014) to learn and generate the embedding representations. We
used different combinations of NC functions and distance metric
learning architectures and compare them with ICP without dis-
tance metric learning. The results demonstrate that the selected
or computed significance levels bound the error rate in all cases.
Moreover, the representations learned by the siamese or triplet
networks result in well-formed clusters for different classes and
individual training data typically can be captured by their class cen-
troid. Such representations reduce the memory requirements and
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the execution time overhead while still ensure a bounded small
error rate with a limited number of prediction sets containing
multiple candidate labels.

Related work on confidence estimation and well-calibratedmod-
els for different kind of machine learning methods is presented in
the “Related work” section. In the section “Problem formulation”,
we define the problem and present the proposed architecture.
Sections “Distance learning”, “ICP based on distance learning”,
and “Assurancemonitoring” present the details of ICP based on dis-
tance learning and assurance monitoring. Finally, we evaluate the
performance of our suggested approach on three different applica-
tions in the section “Evaluation”.

Related work

Machine learning components tend to be poorly calibrated.
Modern, commonly used DNN architectures typically have a soft-
max layer to produce a probability-like output for each class. The
chosen class is the one with the highest probability; however, this
generated probability measure is often higher than the actual pos-
terior probability that the prediction is correct. Other factors that
affect the calibration in DNNs are the depth, width, weight decay,
and Batch Normalization (Guo et al., 2017). The estimation of
accurate error-rate bounds is important as it provides assurance
guarantees in safety-critical applications but also makes the deci-
sion confidence interpretable by humans. Several approaches have
been proposed that compute well-calibrated confidence metrics in
different ways, like scaling the DNN softmax outputs or other
post-processing algorithms.

The calibration methods generally belong to two categories:
parametric and nonparametric. The parametric methods assume
that the probabilities follow certain well-known distributions
whose parameters are to be estimated from the training data. The
Platt’s scaling method (Platt, 1999) is proposed for the calibration
of Support VectorMachine (SVM) outputs. After the training of an
SVM, the method computes the parameters of a sigmoid function
to map the outputs into probabilities. Piecewise logistic regression
is an extension of Platt scaling and assumes that the log-odds of cal-
ibrated probabilities follow a piecewise linear function (Zhang and
Yang, 2004). Another variant of Platt scaling is temperature scaling
(Guo et al., 2017) which can be applied in DNNs with a softmax
output layer. After training of a DNN, a temperature scaling factor
T is computed on a validation set to scale the softmax outputs.
However, while temperature scaling achieves good calibration
when the data in the validation dataset are independent and iden-
tically distributed (IID), there is no calibration guarantee under
distribution shifts (Ovadia et al., 2019). Experiments in Kumar
et al. (2019) show that Platt scaling and temperature scaling are
not well-calibrated as it is reported and it is difficult to know
how miscalibrated they are.

Histogram binning or quantile binning is a commonly used non-
parametric approach with either equal-width or equal-frequency
bins. It divides the outputs of a classifier into bins and computes
the calibrated probability as the ratio of correct classifications in
each bin (Zadrozny and Elkan, 2001). Isotonic Regression is a gen-
eralization of histogram binning by jointly optimizing the bin
boundaries and bin predictions (Zadrozny and Elkan, 2002). An
extention of isotonic regression is amethod called ensemble of near-
isotonic regression (ENIR) that uses selective Bayesian averaging to
ensemble the near-isotonic regression models (Naeini and Cooper,
2018). Adaptive calibration of predictions (ACPs) also use the ratio
of correct classifications as the posterior probability in each bin, but

it obtains bins from a 95% confidence interval around each individ-
ual prediction (Jiang et al., 2012). Estimating calibrated probability
is a more significant issue in class imbalance and class overlap prob-
lems. Receiver Operating Characteristics (ROC) Binning uses the
ROC curves to construct equal-width bins that provide accurate cal-
ibrated probabilities that are robust to changes in the prevalence of
the positive class (Sun and Cho, 2018). Bayesian binning into quan-
tiles (BBQs) extend the simple histogram-binning calibration
method by considering multiple equal-frequency Histogram
Binning models and their combination as the calibration result
(Naeini et al., 2015).

Another framework developed to produce well-calibrated con-
fidence values is the CP (Vovk et al., 2005; Shafer and Vovk, 2008;
Balasubramanian et al., 2014). The conformal prediction frame-
work can be applied to produce calibrated confidence values
with a variety of machine learning algorithms with slight modifi-
cations. Using CP together with machine learning models such as
DNNs is computationally inefficient. In Papadopoulos et al.
(2007), the authors suggest a modified version of the CP frame-
work, ICP that has less computational overhead and they evaluate
the results using DNNs as undelying model. Deep k-nearest
neighbors (DkNN) is an approach based on ICP for classification
problems that uses the activations from all the hidden layers of a
neural network as features (Papernot and McDaniel, 2018). The
method is based on the assumption that when a DNN makes a
wrong prediction, there is a specific hidden layer that generated
intermediate results that lead to the wrong prediction. Taking
into account all the hidden layers can lead to better interpretabil-
ity of the predictions. In Johansson et al. (2013), the authors pre-
sent an empirical investigation of decision trees as conformal
predictors and analyzed the effects of different split criteria,
such as the Gini index and the entropy, on ICP. There are similar
evaluations using ICP with random forests (Devetyarov and
Nouretdinov, 2010; Bhattacharyya, 2013) as well as SVMs
(Makili et al., 2011). The above methods are applied to datasets
and show good results when the input data are IID. In
Boursinos and Koutsoukos (2020b), we showed that ICP under-
performs when the input data are sequential. Individual frames
of a sequence might contain partial information regarding the
input and more frames might be needed for ICP to reach a con-
fident prediction. The performance of ICP in this case can be
improved by designing a feedback-loop configuration that queries
the sensors until a single confident decision can be reached.

Confidence bounds can also be generated for regression prob-
lems. In this case instead of sets of multiple candidate labels, we
have intervals around a point prediction that include the correct
prediction with a desired confidence. There are ICP methods
for regression problems with different underlying machine learn-
ing algorithms. In Papadopoulos et al. (2011), the authors use the
k-nearest neighbors regression (k-NNR) as a predictor and evalu-
ate the effects of different nonconformity functions. Random for-
ests can also be used in regression problems. In Johansson et al.
(2014), there is a comparison on the generated confidence bounds
using k-NNR and DNNs (Papadopoulos and Haralambous,
2011). An alternative framework used to compute confidence
bounds on regression problems is the Simultaneous Confidence
Bands. The method presented in Sun and Loader (1994) generates
linear confidence bounds centered around the point prediction of
a regression model. In this approach, the model used for predic-
tions has to be estimated by a sum of linear models. Models that
satisfy this condition are the least squares polynomial models,
kernel methods, and smoothing splines. Functional principal
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components (FPC) analysis can be used for the decomposition of
an arbitrary regression model to a combination of linear models
(Goldsmith et al., 2013).

The findings of the state-of-the-art methods described above
illustrate the significance of computing well-calibrated and
accurate confidence measures. Typically, the main objective is to
complement existing machine learning models that are generally
unable to produce an accurate estimation of confidence for
their predictions with post-processing techniques in order to
compute well-calibrated probabilities. An important advantage
of such approaches is that they are independent of the underline
predictive machine learning models. Therefore, there is no need to
redesign and optimize the objective functions used for training
which could lead to optimization tasks with high computational
complexity.

Computing well-calibrated confidence is extremely important
for designing autonomous systems because accurate measures of
confidence are necessary to estimate the risk associated with
each decision. The main limitation of existing methods comes
from the fact that it is very difficult to select desired confidence
values according to the application requirements and ensure
bounded error rate. This is especially important in autonomous
CPS applications where decisions can be safety critical. Another
important challenge is to investigate how the computed confi-
dence measures can be used for decision making by autonomous
systems and how to handle data for which a confident decision
cannot be taken.

The proposed work based on ICP produces prediction sets and
computes a significance level that will bound the expected error
rate. Similar to existing methods, since the approach is based on
ICP, it can be used with any machine learning component without
the need of retraining. ICP methods provide very promising results
especially when the input data are not very high-dimensional and
there are not stringent time constraints. However, ICP can be
impractical when the inputs are, for example, images because of
the excessive memory requirements and high execution times. The
proposed approach aims to learn appropriate lower-dimensional
representations of high-dimensional inputs that make the task of
computing confidence measures based on similarities much easier.

Problem formulation

A perception component in a CPS aims to observe and interpret
the environment in order to provide information for decision
making. For example, in autonomous vehicles, a DNN can be
used to classify traffic signs. The problem is to complement the

prediction of the DNN with a computation of confidence. An effi-
cient and robust approach must ensure a small and well-calibrated
error rate while limiting the number of alarms to enable real-time
monitoring. That is, maximize the autonomous operation time
while keeping the error-rate bounded according to the application
requirements. Finally, the computation of well-calibrated predic-
tions must be computationally efficient for applications with
high-dimensional inputs that require fast decision as, for example,
in autonomous vehicles.

During the system operation of a CPS, inputs arrive one by
one. After receiving each input, the objective is to compute a
valid measure of the confidence of the prediction. The objective
is twofold: (1) provide guarantees for the error rate of the predic-
tion and (2) design a monitor which limits the number of input
examples for which a confident prediction cannot be made.
Such a monitor can be used, for example, by generating warnings
that require human intervention.

The conformal prediction framework allows computing set
predictors for a given confidence expressed as a significance
value (Balasubramanian et al., 2014). The confidence is generated
by comparing how similar a test is to the training data using dif-
ferent nonconformity functions. In our previous work (Boursinos
and Koutsoukos, 2020c) we used DNNs to produce embedding
representations for more efficient application of ICP. The addi-
tional problem we are solving is the computation of appropriate
embedding representations that will lead to more confident deci-
sions. The proposed approach is illustrated in Figure 1. The main
idea is to use distance learning and enable DNNs to learn a lower-
dimensional representation for each input on an embedding space
where the Euclidean distance between the input representations is
a measure of similarity between the original inputs themselves.
The ICP approach is applied using the low-dimensional embed-
ding representations and estimates the similarity between a new
input and the available data in the training set using an NC func-
tion. Using such a representation not only reduces the execution
time and the memory requirements but is also more efficient in
producing useful predictions. Based on a chosen significance
level, ICP generates a set of possible predictions. If the computed
set contains a single prediction, the confidence is a well-calibrated
and a valid indication of the expected error. If the computed set
contains multiple predictions or no predictions, an alarm can
be raised to indicate the need for additional information.

In CPS, it is desirable to minimize the number of alarms while
performing the required computations in real time. An evaluation
of the method must be based on metrics that quantify the error
rate, the number of alarms, and the computational efficiency.

Fig. 1. Assurance monitoring using ICP based on
distance learning.
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For real-time operation, the time and memory requirements of
the monitoring approach must be similar to the computational
requirements of the DNNs used in the CPS architecture.
Figure 1 illustrates the proposed architecture for assurance mon-
itoring. At design time, a DNN is trained to produce embedding
representations using distance metric learning techniques. Then,
NC scores are computed for a labeled calibration set that is not
used for training of the DNN. During system operation, the assur-
ance monitor employs the trained DNN to map new sensor inputs
to lower-dimensional representations. Using the NC scores of the
calibration data, the method produces prediction sets including
well-calibrated confidence of the predictions. Ideally, a prediction
set should include exactly one class to enable decision making.
Alarms can be raised if either the prediction set include multiple
possible classes or if it does not contain any.

Distance learning

The ICP framework requires computing the similarity between
the training data and a test input. This can be done efficiently
by learning representations of the inputs for which the
Euclidean distance is a metric of similarity, meaning that similar
inputs will be close to each other as illustrated in Figure 2. There
are different approaches based on DNN architectures that gener-
ate embedding representations for distance metric learning.

A siamese network is composed using two copies of the same
neural network with shared parameters (Koch et al., 2015) as
shown in Figure 3a. During training, each identical copy of the
siamese network is fed with different training samples x1 and x2
belonging to classes y1 and y2. The embedding representations
produced by each network copy are r1 = Net(x1) and r2 = Net
(x2). The learning goal is to minimize the Euclidean distance
between the embedding representations of inputs belonging to
the same class and maximize it for inputs belonging to different
classes as described below:

min d(r1, r2), if y1 = y2,
max d(r1, r2), otherwise.

{
(1)

This optimization problem can be solved using the contrastive loss

function (Melekhov et al., 2016):

L(r1, r2, y) = y · d(r1, r2)+ (1− y)max [0, m− d(r1, r2)],

where y is a binary flag equal to 0 if y1 = y2 and to 1 if y1≠ y2 and
m is a margin parameter. In particular, when y1≠ y2, L = 0, when
d(r1, r2)≥m, otherwise the parameters of the network are
updated to produce more distant representations for those two
elements. The reason behind the use of the margin is that when
the distance between pairs of different classes are large enough
and at most m, there is no reason to update the network to put

Fig. 2. Embedding representations of input images
from the traffic sign recognition dataset.

Fig. 3. (a) Siamese network architecture and (b) triplet network architecture.
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the representations even further away from each other and instead
focus the training on harder examples.

Another architecture trained to produce embedding repre-
sentations for distance learning is the triplet network (Hoffer
and Ailon, 2015). A triplet is composed using three copies of
the same neural network with shared parameters as shown in
Figure 3b. The training examples consist of three samples, the
anchor sample x, the positive sample x+, and the negative sample
x−. The samples x and x+ belong to the same class, while x−

belongs to a different class. The embedding representations pro-
duced by each network copy will be r = Net(x), r+ = Net(x+),
and r− = Net(x−). The optimization problem described by Eq.
(1) is solved by training the triplet network copies using the triplet
loss function:

L(r, r+, r−) = max [d(r, r+)− d(r, r−)+m, 0].

The margin parameter m separates pairs of different classes by
at most m and it is used so that the network parameters will not
be updated trying to push a pair even further away when a posi-
tive sample is already at least m closer to an anchor than a
negative sample. Instead, the training is more efficient when
harder triplets are used. The input triplets to the network copies
can be sampled randomly from the training data. However, as
training progresses it is harder to randomly find triplets that pro-
duce L(r, r+, r−) > 0 that will update the triplet network parame-
ters. This leads to slow training and underfitted models. The
training can be improved by carefully mining the training data
that produce a large loss (Xuan et al., 2019). For each training
iteration, first, the anchor training data are randomly chosen.
For each anchor, the hardest positive sample is chosen, meaning
a sample from the same class as the anchor that is located the
furthest away from the anchor. Then, the triplets are formed by
mining hard negative samples that satisfy d(r, r−) < d(r, r+) or
semi-hard negatives that satisfy d(r, r−) < d(r, r+) +m. This way
the formed triplet batches will produce gradients to update the
shared weights between the DNN copies.

ICP based on distance learning

We consider a training set {z1,…, zl} of examples, where each zi∈
Z is a pair (xi, yi) with xi the feature vector and yi the label of that
example. For a given unlabeled input xl+1 and a chosen significance
level ϵ, the task is to compute a prediction set Γϵ for which
P(yl+1 � Ge) , e, where yl+1 is the ground truth label of the input
xl+1. ICP computes well-calibrated prediction sets with the underlying
assumption that all examples (xi, yi), i= 1, 2, … are IID generated
from the same but typically unknown probability distribution.

Central to the application of ICP is a nonconformity function
or NCM which shows how different a labeled input is from the
examples in the training set. For a given test example zi with can-
didate label ỹi, an NC function assigns a numerical score indicat-
ing how different the example zi is from the examples in {z1, …, zi
−1, zi+1, …, zn}. There are many possible NC functions that can be
used (Vovk et al., 2005; Shafer and Vovk, 2008; Balasubramanian
et al., 2014; Johansson et al., 2017; Boursinos and Koutsoukos,
2020a). For example, an NC function can be defined as the num-
ber of the k-NN to zl+1 in the training set with label different from
the candidate label ỹl+1 (k-NN NCM). The input space is often
high-dimensional which makes storing the whole training set
impractical and the computation of the NC scores inefficient.
To address this challenge, the proposed approach leverages

distance metric learning methods to learn representations that
enable applying ICP in real time.

Nonconformity functions that can be defined in the embed-
ding space learned by siamese and triplet networks are (1) the
k-NN (Papernot and McDaniel, 2018), (2) the one Nearest
Neighbor (1-NN; Vovk et al., 2005), and (3) the Nearest
Centroid (Balasubramanian et al., 2014). The k-NN NCM finds
the k most similar examples of a test input x in the training
data and counts how many of those are labeled different from
the candidate label y. We denote f : X→ V the mapping from
the input space X to the embedding space V defined by either a
siamese or a triplet network. Using the trained neural network,
the encodings vi = f(xi) are computed and stored for all the
training data xi. Given a test input x with encoding v = f(x),
we compute the k-NN in V and store their labels in a multi-set
Ω. The k-NN NCM of input x with a candidate label y is
defined as

a(x, y) = |i [ V : i = y|.

The 1-NN NCM requires to find the most similar example of a
test input x in the training set that is labeled the same as the can-
didate label y as well as the most similar example in the training
set that belongs to any class other than y and is defined as

a(x, y) = mini=1,...,n : yi=y d(v, vi)

mini=1,...,n : yi=y d(v, vi)

where v = f(x), vi = f(xi), and d is the Euclidean distance metric in
the V space.

The nearest centroid NCM simplifies the task of computing
individual training examples that are similar to a test input
when there is a large amount of training data. We expect
examples that belong to a particular class to be close to each
other in the embedding space, so for each class yi, we compute
its centroid myi =

∑ni
j=1 v

i
j/ni, where vij is the embedding repre-

sentation of the jth training example from class yi and ni is the
number of training examples in class yi. The NC function is
then defined as

a(x, y) = d(my, v)

mini=1,...,n : yi=y d(myi , v)

where v = f(x). It should be noted that for computing the nearest
centroid NCM, we need to store only the centroid for each
class.

The NC score is an indication of how uncommon a test input
is compared with the training data. Input data that come from the
same distribution as the training data will produce low NC scores
and are expected to lead to more confident classifications while
unusual inputs will have higher NC score. However, this measure
does not provide clear confidence information by itself, but it can
be used by comparing it with NCM scores computed using a
calibration set of known labeled data. Consider the training set
{z1, …, zl}. This set is split into two parts, the proper training
set {z1, …, zm} of size m < l that will also be used for the training
of the siamese or triplet network and the calibration set {zm+1, …,
zl} of size l−m. The NC scores a(xi, yi), i =m + 1, …, l, of the
examples in the calibration set are computed and stored before
applying the online monitoring algorithm. Given a test input x
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with an unknown label y, the method generates a set |Γϵ| of pos-
sible labels ỹ so that P(y � |Ge|) , e. For all the candidate labels
ỹ, ICP computes the empirical p-value defined as

pj(x) = |{a [ A :a ≥ a(x, j)}|
|A| .

which is the fraction of NC scores of the calibration data that are
equal or larger than the NC score of a test input. A candidate
label is added to Γϵ if pj(x) > ϵ. It is shown in Balasubramanian
et al. (2014) that the prediction sets computed by ICP are valid,
that is, the probability of error will not exceed ϵ for any ϵ∈ [0, 1]
for any choice of NC function. Our approach focuses on computing
small prediction sets in an efficient manner that allow assurance
monitoring approach in real time.

Assurance monitoring

In CPS, it is not only important to have predictions with well-
calibrated confidence but also to be able to choose the desired
significance level based on the application requirements. ICP
computes a prediction set Γϵ with a chosen significance level
ϵ and Γϵ may include any subset of all possible classes. Even
though reducing the number of possible classes may be helpful
when the information is provided to a human, in an autonomous
system it is desirable that the prediction is unique, that is, |Γϵ| = 1.
Therefore, we assume that set predictions that contain multiple
classes, that is, |Γϵ| > 1, lead to a rejection of the input and require
human intervention. For this reason, it is desirable to minimize
the number of test inputs with multiple predictions and we define
a monitor with output defined as

out =
0, if |Ge| = 0,
1, if |Ge| = 1,
reject, if |Ge| . 1.

⎧⎨
⎩

If the set Γϵ contains a single prediction, the monitor outputs
out = 1 to indicate a confident prediction with well-calibrated
error rate ϵ. If the predicted set contains multiple predictions,
the monitor rejects the prediction and raises an alarm. Finally,
if the predicted set is empty, the monitor outputs out = 0 to indi-
cate that no label is probable. We distinguish between multiple
and no predictions, because they may lead to a different action
in the system. For example, no prediction may be the result of
out-of-distribution inputs while multiple possible predictions
may be an indication that the significance level is smaller than
the accuracy of the underlying DNN. Choosing a relatively
small significance level that can consistently produce prediction
sets with only one class is important. To do this, we apply ICP
on the data in the calibration/validation set and compute the
smallest significance level ϵ that does not produce any prediction
set with |Γϵ| > 1. Assuming that the distribution of the test set is
the same as the one of the calibration/validation set we expect the
same value of ϵ to minimize the prediction sets with multiple
classes on the test data.

The assurance monitoring approach is illustrated in
Algorithms 1 and 2. Algorithm 1 shows the tasks that need to
be performed at design time where, first, a distance metric learn-
ing network f is trained using the proper training set (X, Y ) so
that the computed embedding representations will form clusters
for each class. Then, using the calibration data, both the NC

scores A and the optimal significance level ϵ are computed and
stored. Algorithm 2 shows the tasks that are performed at runtime
for a sensor input xt. The input first needs to be mapped to its
embedding representation vt. Then, using the same NC function
that is used for the calibration data, we compute the NC scores
and the p-values assuming every label j as a candidate label.
Then, the p-values pj and ϵ are used to compute the set of candi-
date labels Γϵ.

Evaluation

Our assurance monitor design leverages distance metric learning
techniques to compress the input data to lower dimensions in
order to make the ICP application more efficient and with lower
memory requirements. The objective of the evaluation is to com-
pare how the suggested architecture performs against the baseline

Algorithm 1. Training, calibration, and significance level computation

Require: training data (X, Y ), calibration data (Xc, Yc)
Require: DNN architecture f for distance metric learning
Require: Nonconformity function α
1: Train f using (x, y)∈ (X, Y ) ▷ Training
2: // Compute the representations
3: V = f (X )
4: Vc = f (Xc)
5: // Compute the nonconformity scores for the calibration data
6: A = {α(vc, yc) : (vc, yc) ∈ (Vc, Yc)} ▷ Calibration
7: for each vci in Vc, i = 1, . . . , l −m do
8: for each label j∈ 1, …, n
9: Compute the nonconformity score a(vci , j)

10: pij = pj(vci ) = {a[A :a≥a(vci , j)}| |
|A| ▷ empirical p-value

11: end for
12: Store all pij
13: end for
14: Compute ϵ such that for each i∈ [1, …, l−m] no more that than 1 of

the p-values pij≥ ϵ

Algorithm 2. Assurance monitoring

Require: Nonconformity function α
Require: training data or centroids (V, Y ) depending on the used

nonconformity function α
Require: trained siamese or triplet neural network f for distance metric

learning
Require: test input zt = (xt, yt)
Require: significance level threshold ϵ
1: // Generate prediction sets for each test data xt
2: Compute embedding representation vt = f (xt)
3: for each label j∈ 1, …, n do
4: Compute the nonconformity score α(vt, j )

5: pj(zt ) = |{a[A :a≥a(z, j)}|
|A| ▷ empirical p-value

6: if pj(z)≥ ϵ
7: Add j to the prediction set Γϵ ▷ Γϵ formation
8: end if
9: end for
10: if |Γϵ| = 0 then
11: return 0
12: else if |Γϵ| = 1 then
13: return 1
14: else
15: return Reject
16: end if
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ICP approaches as well as investigate the validity/calibration and
efficiency (size of set predictions).

Experimental setup

For the evaluation, we experiment with three datasets of variable
complexity and input size. First, we use a dataset generated by the
SCITOS-G5 mobile robot (Dua and Graff, 2017). This robot is
equipped with 24 ultrasound sensors around it that are sampled
at a rate of 9 samples per second. Its task is to navigate itself around
a room counter-clockwise in close proximity to the walls. The
possible actions the robot can take to accomplish this are
“Move-Forward”, “Sharp-Right-Turn”, “Slight-Left-Turn”, and
“Slight-Right-Turn”. The SCITOS-G5 dataset contains 5456 raw
values of the ultrasound sensormeasurements as well as the decision
it took in each sample. Because of the small sensor number, the
inputs have one dimension and their size is relatively small.
Second, we use a speech recognition dataset which contains 7501
audio samples from speeches of five prominent leaders; Benjamin
Netanyahu, Jens Stoltenberg, Julia Gillard, Margaret Thatcher,
and Nelson Mandela, made available by the American Rhetoric
(Kiplagat, n.d.). Each audio sample has 1 s duration, the sampling
rate is 16 kHz and use pulse-code modulation (PCM) encoding.
Third, the German Traffic Sign Recognition Benchmark (GTSRB)
dataset is a collection of traffic sign images to be classified in 43
classes (each class corresponds to a type of traffic sign) (Stallkamp
et al., 2012). The dataset has 26,640 labeled images of various
sizes between 15 × 15 and 250 × 250 depending on the distance of
the traffic sign to the vehicle. For all datasets, we split the available
data so that 10% of the samples is used for testing. From the remain-
ing 90% of the data, 80% is used for training and 20% for calibration
and/or validation. In the ICP implementations that use the k-NN
NC function, the number of neighbors k are chosen to be 20, 15,

and 40, respectively, for the three datasets, values that produce
stability to outlier data points. The choice of DNN architectures
happened according to the complexity of each application so that
they will be simple enough to reduce the computational require-
ments but at the same time achieve good accuracy and data cluster-
ing without overfitting. All the experiments run in a desktop
computer equipped with Intel(R) Core(TM) i9-9900K CPU, 32
GB RAM and a Geforce RTX 2080 GPU with 8 GB memory.

Baseline

The proposed approach assigns the original inputs into embed-
ding representations for which the Euclidean distance is a mea-
sure of similarity between the inputs themselves. In order to
understand the effect of the distance metric learning in ICP, we
compare it with the approaches that we used in our previous
work (Boursinos and Koutsoukos, 2020a). First, the most basic
way of applying ICP is using only the original inputs. Then, we
compare it with the approach that we presented in our previous
work that uses embedding representations without distance
metric learning and this will be the baseline in the following
experiments.

The baseline approach computes the embedding representa-
tions using the activations of the penultimate layer of a DNN.
A DNN is trained as a classifier to predict the class of the input
data. The vector of activations of the neurons in the penultimate
layer will be considered as the embedding representation of the
input. In Figure 4, there is an illustration of how the embedding
representations are generated in the baseline using a DNN with
four input neurons that classify inputs to two possible classes.
The embedding representations are generated in the penultimate
layer and are typically reduced in size compared with the inputs.
For an accurate comparison between the baseline and the

Fig. 4. Baseline DNN architecture.
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proposed improvements using either the triplet or the siamese
network, all of these approaches use the same DNN architecture,
meaning that the embedding representations will also be of the
same size.

Preprocessing and distance learning

The difficulty to compute the NC functions and the memory
demands increase as the input size increases. Here, we see how
the original high-dimensional inputs are mapped to lower-
dimensional representations so that the application of ICP will
be more efficient as well as the Euclidean distance between two
embedding representations is a metric of similarity, property use-
ful in the computation of the NC scores. We evaluate how the use
of the embedding representations affect the application of
ICP when it is applied on datasets of increasing complexity.
First, the input data to the SCITOS-G5 mobile robot is a vector
of 24 values. We use a fully connected feedforward DNN
to generate embedding representations with size 8. The DNN is
trained in either a siamese or triplet network for distance
metric learning. The triplet network is trained without mining
since this is a small dataset. Second, the speech recognition
dataset contain audio samples with duration 1 s. For each audio
sample, we add different kind of noises like dishwasher, running
tap, and exercise bike on half the volume of the speech
sample. Then, we use FFT to convert the audio samples to their
frequency domain. The sampling rate of the speech files is 16
kHz, so in the frequency domain, it has 8000 components
according to the Nyquist–Shannon sampling theorem
(Shannon, 1949). A convolutional DNN is used to generate
embedding representations of each audio wave in the frequency
domain with size 32. In the case when the triplet architecture is
used for the DNN’s training, the semi-hard negatives mining
produce the best results. Finally, the GTSRB dataset contains traf-
fic sign images of variable sizes. In order to be able to use a single
DNN to produce embedding representations for the image data,
every image is either up-sampled by interpolation or down-
sampled to 96 × 96 × 3. A convolutional DNN is used to generate
embedding representations with size 128. In the triplet case, the
training produced better results when mining for hard negatives
is used.

We first look at how well the distance metric learning methods
cluster data of each class. A commonly used metric of the separa-
tion between classes is the Silhouette (Rousseeuw, 1987). For each
sample, we first compute the mean distance between i and all
other data points in the same cluster in the embedding space

a(i) = 1
|Ci| − 1

∑
j[Ci ,i=j

d(i, j).

Then, we compute the smallest mean distance from i to all the
data points in any other cluster

b(i) = min
k�i

1
|Ck|

∑
j[Ck

d(i, j).

The silhouette value is defined as

s(i) = b(i)− a(i)
max {a(i), b(i)}

.

Each sample i in the embedding space is assigned a silhouette
value − 1≤ s(i)≤ 1 depending on how close and how far it is to
samples belonging to the same and different classes, respectively.
The closer s(i) is to 1, the closer the sample is to samples of the
same class and further from samples belonging to other classes.
To compare the representations learned using the different
methods as well as compute how much the clustering improves
over the original inputs, we compute the mean silhouette over
the training data and the validation data separately. In Table 1,
we see that the representations learned by either the siamese or
the triplet network form well-defined clusters and are improved
over the baseline clusters. On the other hand, the original inputs
are not arranged in clusters.

Selecting the significance level

First, we illustrate the assurance monitoring algorithm with a test
example from the GSTRB dataset. The left side of Figure 5 shows
the image of a 60 km/h speed limit sign. Using nearest centroid as
the NC function and the siamese network, Algorithm 2 can be
used to generate sets of possible predicted labels. In the following,
we vary the significance level ϵ and we report the set predictions.
When ϵ∈ [0.001, 0.004), the possible labels are “Speed limit
50 km/h”, “Speed limit 60 km/h”, “Speed limit 80 km/h”; when
ϵ∈ [0.004, 0.006), the possible labels are “Speed limit 50 km/h”,
“Speed limit 60 km/h”, and finally, when ϵ∈ [0.006, 0.0124],
the algorithm produces a single prediction “Speed limit 60 km/h”
which is obviously correct.

For monitoring of CPS, one can either choose ϵ to be small
enough given the system requirements or compute ϵ to minimize
the number of multiple predictions. Since the number of multiple
predictions decreases when ϵ increases, we can select ϵ as the
smallest value that eliminates multiple predictions for a calibra-
tion/validation set. This can be seen in Figure 6 where for each
dataset, the optimal ϵ is selected as the significance level value
where the performance curve goes to 0. The nearest centroid
NC function is used for the plots in this figure.

Table 1. Clustering comparison using the silhouette coefficient

Training
silhouette

Validation
silhouette

SCITOS-G5 Triplet embeddings 0.72 0.64

Siamese embeddings 0.94 0.8

Baseline embeddings 0.23 0.23

Original inputs −0.03 −0.03

Speaker
recognition

Triplet embeddings 0.64 0.58

Siamese embeddings 0.8 0.66

Baseline embeddings 0.19 0.19

Original inputs −0.03 −0.03

GTSRB Triplet embeddings 0.43 0.43

Siamese embeddings 0.75 0.72

Baseline embeddings 0.23 0.24

Original inputs −0.22 −0.23
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Table 2 shows the results for the different datasets and the var-
ious NC functions. First using the calibration/validation dataset,
we select ϵ to eliminate sets of multiple predictions and we report
the errors in the predictions for the testing dataset. The algorithm
successfully did not generate any set with multiple predictions for
the testing datasets for any of the NC functions other than the
1-NN when it was used in the SCITOS-G5 dataset with repre-
sentations computed with the triplet network. In this particular
case, there was no ϵ that could eliminate the prediction sets
with multiple classes and even when ϵ = 1, 38.6% of the test
inputs produced prediction sets with multiple classes. The error
rates are well-calibrated and bounded by the computed or the
chosen significance level. One way to compare the different
NCMs is by looking at the significance level that is required for
ICP to make single predictions. The use of embedding representa-
tions could always produce single predictions using significance

levels much lower than when the original inputs are used. The sig-
nificance of the distance metric learning techniques is apparent in
the case of the nearest centroid NCM on all the datasets. This is
an appealing NCM for its simplicity and the reduced memory
requirements. When used as part of the baseline the performance
was not as good as the more expensive NCMs. However, lever-
aging the better clustering that distance metric learning methods
achieve, the nearest centroid NCM performs as well or better than
the rest of the NCMs on making predictions with low significance
level while retaining the computational efficiency. We also evalu-
ate how well the different approaches bound the error rate for two
different values of the significance level. The errors are bounded
in most cases no matter if embedding representations are used
or not. The percentage of set predictions on the test data that
have multiple candidate classes tend to increase the lower the
chosen ϵ is compared with the estimated optimal ϵ.

Fig. 5. Illustrative example.

Fig. 6. Performance and calibration curves formed
using the validation data from the different datasets
using the nearest centroid NC function.
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Computational efficiency

In order to evaluate if the approach can be used for real-time
monitoring of CPS, we measure the execution times and the
memory requirements. Different NC functions lead to different
execution times and memory requirements. We compare the

average execution time over the testing datasets required for gen-
erating a prediction set after the model receives a new test input in
Table 3. The 1-NN NC function on the input space of the GTSRB
dataset has excessive memory requirements. Below we present the
computational requirements for each NC function and explain the
higher requirements of the 1-NN function in more detail.

Table 2. ICP performance for the different configurations

Estimate ϵ ϵ = 0.01 ϵ = 0.02

Dataset Architecture NC function ϵ Errors (%) Errors (%) Multiples (%) Errors (%) Multiples (%)

SCITOS-G5 Triplet k-NN 0.087 9.2 0 100 0 100

1-NN 1.0 61.4 0.4 88.3 1 71.1

Nearest centroid 0.095 8.4 0 96.2 0.5 84.6

Siamese k-NN 0.066 6.6 0 100 0 100

1-NN 0.078 8.2 0.4 71.8 2.2 21.4

Nearest centroid 0.062 7.1 0.2 45.8 1.5 13.4

Baseline k-NN 0.093 7.9 0 100 0.7 36.3

1-NN 0.074 7.5 0.9 35.7 1.3 27.8

Nearest centroid 0.133 16.1 0.7 67.9 1.6 55.9

Original inputs k-NN 0.198 22.3 0.7 72.1 1.6 58.4

1-NN 0.122 12.6 1 57.9 3.7 37.5

Nearest centroid 0.428 43.5 0.5 96.9 0.7 95.8

Speaker
recognition

Triplet k-NN 0.058 5.2 1.5 16.6 2.5 10

1-NN 0.063 5.9 2.1 22.6 2.8 14.1

Nearest centroid 0.058 6.3 1.9 20.1 2.5 14

Siamese k-NN 0.041 3.6 0 100 2.3 7.3

1-NN 0.045 4.5 0.9 16.1 2 7.6

Nearest centroid 0.043 4 1.5 14.8 1.9 7.1

Baseline k-NN 0.03 3.1 0.9 6.7 1.6 2.5

1-NN 0.033 3.6 0.9 6.9 2.3 2.9

Nearest centroid 0.141 14.6 0.5 78.2 2.1 61.9

Original inputs k-NN 0.295 29.6 0 100 0 100

1-NN 0.231 22.9 0.7 84.82 1.3 76.7

Nearest centroid 0.336 33.3 0.7 100 1.6 98.3

GTSRB Triplet k-NN 0.04 4.8 1.5 9.3 2.6 4.6

1-NN 0.031 3.8 1.4 8.2 2.7 2.9

Nearest centroid 0.067 6.3 1.5 22.6 2.5 13.9

Siamese k-NN 0.031 3.1 0.9 7.4 1.8 3.4

1-NN 0.035 3.3 0.8 9.5 1.5 4.8

Nearest centroid 0.038 3.8 1.2 8.7 2.5 4.1

Baseline k-NN 0.011 1.1 1 0.1 2 0

1-NN 0.003 0.3 1 0 2.1 0

Nearest centroid 0.182 19.4 0.9 71.8 1.9 62.8

Original inputs k-NN 0.731 71.7 1.2 98.5 1.2 98.5

1-NN – – – – – –

Nearest centroid 0.824 82.7 0.9 100 2 100
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Table 3 reports the average execution time for each test input
and the required memory space using different NC functions.
Datasets with high-dimensional inputs are challenging for apply-
ing ICP in real time and the results demonstrate the impact of the
embedding representations use on the execution times. All the
NC functions require storing the calibration NC scores which
are used for computing the test p-values online. The DNN weights
need to be stored when embedded representations need to be

calculated for every new test input. Furthermore, each NCM has
a different memory overhead. In the k-NN case, the encodings
of the training data are stored in a k−d tree (Bentley, 1975) that
is used to compute efficiently the k-NN. This data structure is
used both for the k-NN and 1-NN NC functions. In the 1-NN
case, it is required to find the nearest neighbor in the training
data for each possible class which is computationally expensive
resulting in larger execution time. The nearest centroid NC

Table 3. Execution times and memory requirements

Dataset Architecture NC function Execution time Memory

SCITOS-G5 Triplet k-NN 0.2 ms 700.6 kB

1-NN 1.8 ms 2 MB

Nearest centroid 56 μs 324.8 kB

Siamese k-NN 0.2 ms 700.6 kB

1-NN 1.6 ms 2 MB

Nearest centroid 56 μs 324.8 kB

Baseline k-NN 0.2 ms 700.6 kB

1-NN 1.6 ms 2 MB

Nearest centroid 58 μs 324.8 kB

Original inputs k-NN 0.3 ms 2.4 MB

1-NN 1.9 ms 4.1 MB

Nearest centroid 59 μs 763.1 kB

Speaker recognition Triplet k-NN 0.2 ms 15.3 MB

1-NN 2.1 ms 24.6 MB

Nearest centroid 74 μs 13.1 MB

Siamese k-NN 0.2 ms 15.3 MB

1-NN 2 ms 24.6 MB

Nearest centroid 0.1 ms 13.1 MB

Baseline k-NN 0.3 ms 15.3 MB

1-NN 2.3 ms 24.6 MB

Nearest centroid 71 μs 13.1 MB

Original inputs k-NN 53 ms 723.9 MB

1-NN 274 ms 2.3 GB

Nearest centroid 0.1 ms 378.7 MB

GTSRB Triplet k-NN 0.6 ms 70.1 MB

1-NN 24.6 ms 1.4 GB

Nearest centroid 0.7 ms 38.4 MB

Siamese k-NN 0.5 ms 70.1 MB

1-NN 21.8 ms 1.4 GB

Nearest centroid 0.6 ms 38.4 MB

Baseline k-NN 0.6 ms 70.1 MB

1-NN 24.4 ms 1.4 GB

Nearest centroid 0.7 ms 38.4 MB

Original inputs k-NN 654 ms 8.9 GB

1-NN – –

Nearest centroid 4.8 ms 2.1 GB
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function requires storing only the centroids for each class and the
additional memory required is minimal.

In conclusion, the evaluation results demonstrate that moni-
toring based on ICP has well-calibrated error rates in all config-
urations. Furthermore, the use of embedding representations
reduces the computational requirements and can lead to decisions
with an improved significance level. Using distance metric learn-
ing methods, the training data form well-defined clusters that is
essential in the case of the nearest centroid NCM. This improve-
ment makes it a good NCM option for all of the used datasets as it
performs as well as the other NCMs but with significantly less
computational requirements.

Concluding remarks

CPS incorporate machine learning components such as DNNs for
performing various tasks such as the perception of the environ-
ment. When used for safety-critical applications, they need to
satisfy specific requirements that are defined taking into account
the acceptable risk and its cost for incorrect decisions. Although
DNNs offer advanced capabilities on the decision making process,
they cannot provide guarantees on the estimated error rate. To
achieve this, they must be complemented by engineering methods
and practices that allow effective integration in CPS where an
accurate estimate of confidence is needed.

The paper considers the problem of complementing the pre-
diction of DNNs with a well-calibrated confidence. For classifica-
tion tasks, the inductive conformal prediction framework allows
selecting the significance level according to the requirements of
each application. This is a parameter that defines the acceptable
error rate and is a trade-off between errors and alarms. We pre-
sented computationally efficient algorithms based on representa-
tions learned by underlying DNN models that make possible for
ICP to be used for real-time monitoring. The proposed approach
was evaluated on three different benchmarks of increasing com-
plexity from a mobile robot with ultrasound sensors, to speaker
recognition and traffic sign recognition. The evaluation results
demonstrate that monitoring based on the inductive conformal
prediction framework using embedding representations instead
of the original inputs has well-calibrated error rates and can mini-
mize the number of alarms when a confident decision cannot be
made. When appropriate embedding representations are com-
puted using distance metric learning methods input data that
belong to the same class form well-defined clusters. This property
is very important when the similarity of a test input to the test
data is estimated. That way the training set can be efficiently rep-
resented by the centroids of each class which reduces the compu-
tational requirements without any loss in performance when
compared with the more computationally expensive approaches.

During the experiments, we identified a number of challenges
that can lead to poor performance of the proposed method. First,
when the datasets are imbalanced both the siamese and the triplet
architectures may not learn embedding representations that cluster
the under-represented classes well. This affects the efficiency of the
NC functions. Second, the training of the triplet networks require
mining of training data that will form triplets that lead to large gra-
dients for minimizing the triplet loss function. There is ongoing
research for mining algorithms for faster training. One open ques-
tion for future research is how to utilize all the candidate decisions
in the prediction set to deal with the cases when a confident decision
cannot be made that will satisfy the significance-level requirements.
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