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Abstract

The generalized diffusion equation with a nonlinear source term which encompasses the
Fisher, Newell-Whitehead and Fitzhugh-Nagumo equations as particular forms and ap-
pears in a wide variety of physical and engineering applications has been analysed for
its generalized symmetries (isovectors) via the isovector approach. This yields a new
and exact solution to the generalized diffusion equation. Further applications of group
theoretic techniques on the travelling wave reductions of the Fisher, Newell-Whitehead
and Fitzhugh-Nagumo equations result in integrability conditions and Lie vector fields for
these equations. The Lie group of transformations obtained from the exponential vector
fields reduces these equations in generalized form to a standard second-order differential
equation of nonlinear type, which for particular cases become the Weierstrass and Jacobi
elliptic equations. A particular solution to the generalized case yields the exact solutions
that have been obtained through different techniques. The group-theoretic integrability
relations of the Fisher and Newell-Whitehead equations have been cross-checked through
Painlev^ analysis, which yields a new solution to the Fisher equation in a complex-valued
function form.

1. Introduction

The importance of group theoretic techniques and Painleve analysis for solving nonlin-
ear differential equations of many physical and engineering systems has already been
highlighted in a number of recent publications. See for example Ovsyannikov [14],
Olver [13], Bluman and Kumei [5], Ames and Rogers [2], Edelen [8], Edelen and
Wang [9], Hill [11], Ramani et al. [15] and Ablowitz and Clarkson [1].

The motivation for the present study had its origin in our attempt to carry over
these techniques, either singly or collectively as the case may be, for solving and
obtaining the exact solutions of the nonlinear diffusion equation with the source term
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and its symmetry reductions, namely, the second-order nonlinear ordinary differential
equations via the isovector approach ( Edelen [8]) and further group invariance tech-
niques respectively. More specifically, after obtaining the isovectors of the nonlinear
diffusion equation with source term in Section 3, we have dealt with its symmetry
reductions, invariant solutions and further group invariant solutions of the reductions
in the same section for the physically realizable forms of the functions of the depend-
ent variable occurring in it. As a cross check on the results established in Section 3,
we have utilized Painleve analysis to confirm them in Section 4. In particular, Pain-
leve' analysis, when applied to the ordinary differential equations that arise as the
travelling-wave reduction of the Fisher and Newell-Whitehead equations, yields the
integrability conditions obtained in Section 3 using group theoretic methods. Finally,
in Section 5, we have summed up the results of this study.

2. Nonlinear diffusion equation with source term

The generalised diffusion equation, that is, the nonlinear diffusion equation with
source term, is written in the form

T, = (DX(T)TX)X + D2(T), (1)

where D\(T) and D2(T) are referred to as the diffusivity and source terms. Applica-
tions of (1) can be found in diverse fields such as physics (particularly plasma physics,
astrophysics, laser and semiconductor physics), population dynamics in biology, and
the helium combustion process in chemistry. In particular, when D\(T) = aTm

and D2(T) = bT" — cT, where a — c are arbitrary constants and m and n are
nonzero constants, (1) represents a population density model (Wilhelmson [18]). For
D\{T) = a constant, D2(T) — T(\ — T), (1) represents the Fisher equation. Equa-
tion (1) becomes the Fitzhugh-Nagumo equation when D\(T) = a constant and
D2(T) = T(\ — T){T — a), a is a constant. Further, this possibility reduces to the
Newell-Whitehead equation when a = — 1 (see Sachdeva [16] for complete collec-
tion of these equations). In general, (1) represents the nonlinear diffusion equation for
the propagation of heat from an instantaneous plane source in an initially cool infinite
medium (see Bhutani and Vijayakumar [4]).

Several authors have used group theoretic analysis to examine equations of the form
(1). Special mention can be made of Dorodnitsyn [7], who classified the symmetries
according to the forms of D\(T) and D2(T) he proposed, Nucci and Clarkson [13],
who used classical Lie, direct and non-classical methods in their investigations of the
Fitzhugh-Nagumo equations for solutions and Arrigo et al. [3] for their recent work
using a non-classical approach.

In this work, we have utilized the isovector approach [4] to obtain the generalised
symmetries of the diffusion equation (1). On using the part of the symmetries which
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are the usual classical symmetries (or isovectors), we have obtained some symmetry
reductions of (1) for the power-law form of the functions of the dependent variables
D)(T) and D2(T). One of the reductions in this case yields a new exact solution of

4 (1) for these forms of D\ (T) and D2(T). A table of symmetries (isovectors) has been
given for various choices of the functions D{(T) and D2(T) involved in (1). The
purpose of this work is to show the presence of exact solutions for the equation of the
form

T, = DOTSX + D2(T), (2)

where Do is the constant diffusion coefficient. More specifically, when D2(T) =
±T =p T", using group analysis, we have obtained an integrability condition for the
travelling-wave reduction of (2), as the only possibility of the symmetries of (2) are
the translations in x and /. Under this condition, we have shown that (2) can be
reduced to

w" = ±(l/D0)w", (3)

where w = w(z), z = z(x — ct) and c is the wave speed. For n = 2, 3, we
have shown that (3) (which respectively becomes the Fisher and Newell-Whitehead
equations) is reducible to the Weierstrass and Jacobi equations. In addition to the
above reductions, we have obtained particular solutions of (2) for the cases that
correspond to the Fisher and Newell-Whitehead equations as well as for the general
case. We have further shown that these particular solutions lead to all known and
available solutions. Painlev6 analysis has also been utilized to confirm the integrability
properties that have been obtained via group analysis. Furthermore, we have obtained
the Weierstrass elliptic equation reduction of the Fitzhugh-Nagumo equation

a), (4)

where a is a constant, for three choices of a, that is, a = —1, 2, 5 via group analysis
of the travelling wave reduction of (4). We will see these details in the following
sections.

3. Isovector method, isovectors and symmetry reductions and exact solutions of
equations (1) and (2)

In order to apply the isovector approach to (1), we rewrite it in the language of
exterior differential forms as

ex-dT- udt - ydx, (5)

https://doi.org/10.1017/S0334270000007773 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007773


516 K. Vijayakumar [4]

e2 = (u -y2D\{T)- D2(J))dx Adt - Dx(T)dy Adt, (6)

<?3 = —du Adt — dy A dx, (7)

where e,, e2, e3 are respectively 1, 2, 2-forms. Here A denotes the exterior product
of differential forms and the dash over D\ (T) represents the derivative with respect
to T. Further, we have assumed y and u as y = Tx and u = T, respectively. In order
to render the system of forms et, e2, e3 closed with respect to exterior differentiation,
we add de2 to them. Let / = e,, e2, e3, de2 be the fundamental ideal of the algebra of
exterior forms A(£), where E is the manifold of dimension 5 in the space of variables
t,x,T, y,u. Then the ideal / is closed by because dl c / .

Let V be the vector field in the tangent space TE of E(t, x, T, y, u). Then V can
be given in its components V, Vx, VT, Vy, V" as

V = V'dt + Vxdx + VTdT + Vy3y + Vdu, (8)

where dt = d/dt, dx = d/dx etc. The vector field V is an isovector field if and only
if (see Edelen [9] for details)

LVI £ /• (9)

Using (9) in the forms, namely, the contact 1-form e\ and the balance 2-form e2, we
rewrite (9) as

(10)

(11)

where r, s and / are arbitrary functions of the variables t, x, T, y and y and W are
arbitrary 1-forms. Further,

(12)

(13)

where d denotes the exterior differentiation and J denotes inner multiplication of
forms. Also, de2 is a 3-form and it is given as

de3 = du A dx A dt — 2yD\ (T)dy A dx A dt

- (y2D"(T) + D'3(T))dT Adx Adt - D\(T)dT Ady Adt. (14)

Further, it can be seen easily that d(de3) = 0. Let

Vje} =G. (15)
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And we assume that

W = Adt + Bdx + Cdu + Ddy + EdT, (16)

where A, B, C, D, E are arbitrary functions of x, t, u, T, y. On making use of (5)-
(6), (10), (15) and (16) in equation (12) (we perform expansions under exterior
differentiation and inner multiplication and we collect the coefficients of similar
1-forms), we get the following system of equations:

V' = -Gu, Vx = -Gy, VT = G-uGu-yGy,
V" = G, + uGT, V, = G, + yGT. (17)

On making a similar expansion for the 2-form e2, we have by using (5)-(7), (14), (16)
in (13)

G,,u = 0, (18)
2D\(« - y2D\{T) - D2{T))Guy + D,{T){Gllx + yGllT) = 0, (19)

(uGT + G,) - 2yD\ (T){GX + yGT)

- (y2D'[{T) + D'2(T))(G - uG,, - yGy)

- (u - y2D\{T) - D2(T))Gxy - D,(T)(GA,V + yG,T)

- y(u - y2D\(T) - D2(T))GyT - yDx{T){GxT + yGTT)

- {\/D\{T)){u - y2D\{T) - D2(T)2Gyy

- (D;(7)/D,(r))(M - y2D\(T) - D2{T)){G - uGu - yGy)

- (u - y2D\(T)D2(T))(Gvy + GT + yGyT) = 0. (20)

On solving (18)—(19), we find

G = Udx, t, T) + U2(x, t)y + U3(t)u. (21)

Further, it can easily be shown that

(22)

On making use of equations (21) and (22) in equation (20) and collecting the coeffi-
cients of u, y, y2 and constant terms, we obtain the following system of equations:

U'3 - W2x - - ^ ( / , + fiT) = 0, (23)

U2l - D, U2xx - 2(D, (/, + f2T))xT = 0, (24)

-D'2(fi + hT) + / „ + ftJ - £>,(/,„ + fz,,T) + (U; + f2)D2 = 0. (26)
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TABLE 1. a-d and c\ - Q are arbitrary constants. Rows 5 and 6 represent the isovectors of the Fisher
and Fitzhugh - Nagumo equations respectively.

b<J + k)"
b

b

b

a

d

D2

bt(T + £)"+2<+1

b,{T + k)m

C\emT

c,7"logT
±T T T"

T(l-T)(T-a)

V
~(n+2c)t+ct

-(m - l)c,t + c2

-mc\t + c2

c4

Cl

Vs

—CX + C|

-(2=i)c,jr + C3

c3

VT

T +
T +

C\

(c2x + c3

0
0

k
k

(2c-

+2c

V"

l)c,
C\T,

+ c3)
ibTA

0
0

1)7,

+ D7;

ibT + T,)

v?

(c+\)Ty

jT<

e'"[(c2(T+xT,)

0
0

From (25) we find that the general form of D\ (T) is

D\{T) = b{T + k)", n^O, / , = a constant, f2 = a constant

Without loss of generality, we can assume that f\=k and f2 = 1, where /t is arbitrary
and n is real. On solving the remaining equations in the system (23)-(26), we find

D2(T) = bl(T + k)" let + c,, c2, (27)

where ft, &!, c, c, and c2 are arbitrary constants.
On using equations (21), (22) and (27) in (17), we find

V' = -(n + 2c)t + c,, Vx = -c

V = (2c + n + l)[(b(T + k)"Tx\x + b\(T

For c = 0, C| = c2 = 0, we have from (28)

- (c + 1)7^.(28) .

Equation (29), when applied to (1) for the case under consideration, yields

b(wnw" + nwn^wa) + (\/n)w + b\Wn+{ = 0.

(29)

(30)
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Equation (30) can be reduced to a quadrature of the form

w"dw

w"+2/(2n + n2) -
(31)

where c3 and z0 are constants of integrations. When c3 = 0, we get a solution to (1)
for this case. It is given as

zo)]\y
2/n

) \ L (32)
]\y2/n

However, for all n and c, we have an ordinary differential equation of order two of
the form

b(w"w')' + —?—zw' + —-—w + btw
n+2c+l = 0 (33)

n + 2c n + 2c
from (1) under the symmetry transformation

z = x/tcn"+2l), T +k = t-i/{"+2l)w(z). (34)

Equation (33) reduces to (30) when c = 0. Equation (33) is not solvable in its present
form. Further, when c2 ^ 0, c = 0, we have the following symmetry transformation:

c,/«), T + k = (/ + - ) " w(z), ki=n/c2. (35)

On applying the transformation given in (35) to (1), we get

bk2(w"w')' + w' + (\/n)w + btw"+l =0. (36)

This equation can be reduced to the Abel equation under w' = v(w) and it is given as

(bvv' + nw~]v2 + (\/bk2)u>-"v + (l/bk2) (btw + -w1'"] = 0. (37)

Equation (37) is a generalised Abel equation, which is difficult to solve. It is worth
mentioning that the solution given in (31) represents an exact and new solution to (1)
for the forms of Dt (T) and D2(T) that we have considered. Equation (32) is valid for
all n except n = 0.

The system of equations (23)-(26) has further been solved for some particular
forms of Dt(T) and D2(T). Consequently, we have arrived at different solutions of
U2 and U-s with the form of U\ that is given in (22). On using these values of U\, U2

and U3 in (21) and (17) we get isovectors for these cases. These isovectors have been
tabulated in Table 1. From Table 1, we have utilized only the isovectors corresponding
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to the travelling wave solutions case, as they are the only possibility for (2) and (3)
in the sense of classical symmetries (however, non-classical symmetries exist, see
Arrigo et al. [3] for details). We have divided the study regarding (2) and (3) into
two cases. Case 1 and 2 respectively deal with equations (2) and (3). In these cases
we have further used group-invariant techniques to obtain reductions of second-order
ordinary differential equations (which are travelling wave reductions of (2) and (3)) to
standard forms (Jacobi and Elliptic equations) together with integrability conditions.
Consequently, we have solved these reductions for some particular solutions which
are new even though they can be written in terms of elliptic functions in general. We
shall see these cases in detail in the following paragraphs.

Case 1: Equation (3)
Since we have only constant isovectors for equation (3) (see row 5 of Table 1),

we get T(x, t) = w(z), z = x - ct, c = c2/c3 where c represents the wave speed.
On using the transformation given above in (3), we obtain an ordinary differential
equation of order two in the form

Dow" + cw' + D2(w) = 0. (38)

If we assume the transformations of the infinitesimal type

z' = z + eZ(z,w;)+o(e2), (39a)

w' = w + eW(z,w) + o(€2) (39b)

keep (38) invariant then the invariant condition reads as

N(z, w, w')(Ww - 2Z2 - 3w'Zw) - N:Z - NWW

- NW.(WZ + w\Ww - Z:) - w'2ZJ + W:: + w'(2Wzw - Z::)

+ w'2{Www - 2Z2W) - w°Zww = 0, (40)

where N(z,w,w') = w". On substituting (38) in (40), we find by collecting the
coefficients of u/3, w'2, w' and the constant term and equating them to zero a system
of equations

Zww = 0, (41)

(2c/D0)Zw + Www - 2Z2W = 0, (42)

(c/D0)Zz + 2W:w - Z22 + (3D2(w)/D0)Zw = 0, (43)

-(D2(w)/D0)(Ww - 2Z.J + (c/D0)W2 + {D'2(w)/D0)W + W22 = 0. (44)

This equation looks too complicated to be solved without specific values of D2{w).
So, we consider D2{w) as D2(w) = w — w" and — w + w". When D2(,w) —
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which coincides with D2(T) = ± 7 q= T", we find, by solving the system (41)-(44)
for n ^ —3, that

, a(n+3)2

C" = ± ^ T T 7 ' Do = a (45)

with

Z = k2(a(n + 3)/c(/7 - i)y<<»-'>M»+3»-- + £3j (46)

W = (2k2/{\ - /J))e(r("-|)/a("+3))ru;, (47)

where k2 and £3 are arbitrary constants. For n = —3, we have only trivial solutions to
the system (41)-(44).

Let

a(n + 3) .-(1,-11 2w .I,,-D
Xl = —/ J-e^dz + - -e^-dw, (48)

c(n - 1) ( l - « )
X2 = dz. (49)

From (48) and (49), we have [X,, X2] = ((1 - n)/a{n + 3))cX,. This shows that
we can use only Xt for transforming equation (3) for the choice of D2(w) as shown
above. Correspondingly, by using Xu we get the following change of variables
transformation:

a(n + 3) ( 5 0 )
x e w e

c{n - 1)

On making use of equation in (38) with the choices of D2(w) that we have assumed
for obtaining the generators X, and X2, we find

D0Y"TY"=0, (51)

under the condition given in equation (45). It is worth mentioning that for n = 2,
(51) becomes a reduction of the Fisher equation with the condition c2 = ±D0(25/6) .
The corresponding form (51) is the Weierstrass elliptic equation. So the general
solution of (51) for n = 2 can be written in terms of Weierstrass elliptic functions.
Thus the Fisher equation equation is integrable1. Similar comments can be made for
the case n = 3. For n = 3, we have from (51) the reduction corresponding to the
Newell-Whitehead equation. This case produces the Jacobi elliptic equation. Hence
the general solution of the Newell-Whitehead equation can be written in terms of
Jacobi elliptic functions. Hence the Newell-Whitehead equation is integrable1 under

'See Section 4 for the integrability property of the cases /; = 2, 3
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the condition c2 = ±D0(9/2). In general for all n, we can obtain quadrature, which
is obvious.

When the constant of integration in the first integral of equation (51) is zero, then
we have a particular solution to equation (51) and it is given as }

Y = ±
2

(52)

where d\ is a constant of integration. The solution given in (52) is not valid for n = 1.
The negative sign inside the square root is allowable when Do assumes negative
values. On combining (50) and (51), we get

<53>

a new solution to equation (2) for the form D2(T) = T — T", which corresponds to the
choice we made for positive sign in ( ) ' / 2 in equation (52). A similar solution can be
obtained for the negative sign in (52), which is complex valued. This complex-valued
solution may become real-valued for Do < 0. The negative sign in (52) corresponds
to the case D2(T) = -T + T".

An interesting aspect of the solution (53) for n = 3 is that it reduces to the known
solution reported in Hereman andTakaoka [10] for — d\ = e±dl and Do = 1:

T(x, t) = ±(1/2) [1 - tanh(±(l/8)1/2(* T (9/2)i/2t + d2))]. (54)

Similarly, solution (53) becomes the solution of Wang [17] for n = 2 and it is given
for -(l/2)rf, = e±d} and Do = 1 by

T(x, t) = (1/4) [1 — tanh((±l/2)(l/6)1/2(x T (25/6)l/2f + d3))]
2. (55)

The general solution in the forms of (54) and (55) from (53) can be written as

T(x, t) = [(1/2>(1 - tanh((±(l/8A>(« + D))'/2(« - D(* - ct + d4)))]' , (56)

where r = 2/(n — 1) and dt = e±da. Thus, we have presented an exact solution in
the form of travelling waves to the generalised reaction-diffusion equation (2) when
D2(T) = ±7" q: T", via group analysis of (38) which is valid only when c, the wave
speed, satisfies the condition given in (45). We term this condition as the integrability
condition of equation (2) for the choice of D2(T) mentioned therein.
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Case 2: Equation (4).
As mentioned in Case 1, we obtain only the translations in the x and t directions

as isovectors (symmetries) for the functional choice of D2{T) that corresponds to the
Fitzhugh-Nagumo equation. On applying the value D2(w) = w(\ — w){w — a), a
constant, in (40) and collecting the coefficients of w'3, w'2, w' and the constant terms
and equating them to zero, we get a system of equations (41)-{44) for D2(w) =
w{\ — w)(w — a). On solving this system, we arrive at the following values of Z and
W:

Z = (3dk2/c)eu/3d): + k3, (57)

W = -k2e
u/3d)zw, (58)

where Do = d a constant and k2 and k3 are arbitrary constants. Equations (57) and
(58) are valid under the condition

2a2-5a+ 2 = 0. (59)

Obviously, a = 1/2, 2 satisfy (59). For a = — 1, this case reduces to the Newell-
Whitehead equation, which we have discussed earlier, when n ^ 3. If we write (57)
and (58) in the form of vector fields (as in (48) and (49)), we get

X, = (3d/c)ele/3d):3z + ((l+ a ) / 3 - w)elc/3d):dw, (60)

X2 = dz. (61)

From (60) and (61), we get [X\, X2] = const.X^. This shows that for obtaining the
change of variable transformation we can use X^ alone (Olver [13]). So X: yields

X = Qd/c)e-(c/3d):, Y(X) = eu/3d)2(w - (1 + a)/3). (62)

On applying the transformation given in (62) in (38) for the value of D2{w) =
w(\ — w)(w - a), which corresponds to the Fitzhugh-Nagumo equation, we get

Y" - {\/d)Y3 = 0. (63)

Equation (63) is a possible reduction of the Fitzhugh-Nagumo equation under the
change of variable transformation (62) only when a = 1/2, 2. This equation is the

• standard Jacobi elliptic equation. So the solutions to (63) can in general be written
in terms of Jacobi elliptic functions (see Arrigo et al. [3} for four different solutions
for the Jacobi equation). A particular solution to (63) leads to the travelling wave
solution to the equation of Fitzhugh-Nagumo of the form

T - (1 +cr)/3 = ±(1/2) [1 - tanh((a/8</)1/2(;c - ct) + (rf,/2))], (64)
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where (2/cty/2e±d" = c, is a constant of integration and c = (9/4)d. Here it is
important to note that a = 1/2, 2. Expression (64) is an exact solution to (4). Thus,
we have established the integrability of the Fitzhugh-Nagumo equation for three values
of the parameter a = 1/2, 2 and —1 via group analysis with exact solution (64) and
reduction to the standard Jacobi elliptic equation. In the following section we will
show and confirm the integrability conditions of the Fisher and Newell-Whitehead
equations via the Painlev6 analysis of their travelling wave reductions.

4. Painleve analysis of the Fisher and Newell-Whitehead equations

As it is very difficult to carry out Painleve analysis on (2) for the substitution
D2(T) = ± r =F T", we perform the said analysis only for n = 2 and 3. Correspond-
ingly, we have divided this section into Cases 1 and 2 respectively dealing with the
Painleve analysis of the Fisher and Newell-Whitehead equations.

Case 1 Painleve Analysis of the Fisher equation
Forn = 2 in D2(w) = w — w" putting (38), we obtain the travelling wave reduction

of the Fisher equation, which is given as

Dow" + cw' + w - w2 = 0. (65)

Using the algorithm for the application of Painlevf analysis to equation (65) one can
write

w(z) = ao(z - zoy + £ > ( z - zoy
+j, (66)

where a0 and p are determined from the balance of dominant terms, arbitrariness of
z0 corresponds to the root (— 1) of the resonance equation and rs is the largest root of
the last equation.

For the equation under consideration z0 is arbitrary and a0, p and rs are given by

a0 = 6D0, p = - 2 , r, = 6. (67)

Thus, the Laurent series expansion of w(z) as a general solution to equation (65) at
the level of (z — z0)

4 can be written as

w{z) = 36D0(z - z0)-2 + adz- zo)"' + o2(z - zo)° + a3(z - z0)
v°o)

+ a4(z - z0) +a5(z - zoy + ab(z - z0) .

On substituting equation (68) in (65) and equating the coefficients of the various
powers of (z — z0) and equating them to zero, we find that

ao = 6Do, a , = - ( 6 / 5 ) c , a2 = (l/50)(25 - c2/D0), a3 = -c'/250D2
0

a4 = (625D2 - 1 lc4)/25000Z^, a5 = (1375D2c - 790c5)/75000D4. (69)
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Analysis suggests that a6 has to be arbitrary. However, there exists an inconsistency
which is expressed as

c2{625Dl - 36c4) = 0. (70)

Equation (70) yields the values of c in terms of Do, which are given as c2 = ±25D0/6
and c = 0 (multiple). This shows that for these values of the wave speed, c, the Fisher
equation is integrable. We can see easily that for these values of c we have obtained a
two-parameter Lie group, namely, X, and X2 (Section 3). Further, this two-parameter
Lie group leads to the reduction of the Fisher equation to the Weierstrass elliptic
equation when c ^ 0. For c = 0, the equation is trivially integrable.

Case 2 Painleve Analysis for the Newell-Whitehead equation
Similar analysis (to Case 1) of the travelling wave reduction of the Newell-

Whitehead equation

w" + cw' + w(l -w2) = 0 , (71)

when Do = 1 in (38), results in the Laurent series expansion of the form

w(z) =ao(z-zoy
l + at(z - zo)° + a2(z - zoy + a3(z - z0)

3 + a4(z - z0)4. (72)

On substituting (72) in (71), we find that

ao = ±2l/2, a, = T ( l / 1 8 ) l / 2 c ,

a2 = ±(2/1296)1 / 2 (6-c2) , a3 = ±2l /2(9 - 8c2)/108. (73)

Since a4 has to be arbitrary, we get a condition on c of the form

c2(2c2 - 9) = 0. (74)

On solving (74), we find the values of c coincide with the one given in (46) for
Do = 1. If we assume Do = — 1, then, after repeating the procedure given in Case 1,
we may arrive at a negative value of c2. Hence, according to the Painleve analysis, the

. Newell-Whitehead equation is integrable, as stated in Section 3, for the values of c1

mentioned above. Recently, Cariello and Tabor [6] obtained the values c = ±(9/2) l / 2

for the wave speed. For c2 = -25D0/6, we can transform the Fisher equation to

W"±6W2 = 0 (75)

under the transformation

w(z) = 1 ± Z2W(Z), Z = ^'<i/6)"!-- ( 7 6 )
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As mentioned earlier, (75) is the standard Weierstrass elliptic equation. The general
solution of the Fisher equation can be written in terms of Weierstrass elliptic functions,
as in the case n — 2 of (51). The particular solution of (75) leads to a new solution of
the Fisher equation of the form

c2 =F 2c->e
T = 2 — - , (77)

rgT<l/6)"2<.v±i5(l/6)'/3<) -1- C 2 1 2 '

where c2 is a constant of integration. Equation (77) is complex-valued, which repres-
ents the travelling wave phenomenon.

Recently Nucci and Clarkson [12] performed group theoretic analysis, namely,
classical, direct and non-classical methods on the Fitzhugh-Nagumo equation in which
they have indicated the same conditions for a. Under those conditions, they have
derived exact solutions for the Fitzhugh-Nagumo equation, which we are not able to
recover in this paper. However, we have computed some exact solutions, which have
group theoretic connections.

5. Conclusion

Starting with the nonlinear diffusion equation with source term (equation (1)), we
have, using the isovector method, obtained an isogroup classification in the form of a
table (see Table 1) for the various choices of the functions D, (T) and D2(T). Through
these we have given symmetry reductions of the more general possible (solutions of
the system (23)-(26)) case, in which D\{T) and D2(T) takes power-law forms. For
this case, we have given an exact solution, which is new. Further study of (2), a
particular form of (1), via the group analysis of the travelling wave reduction of it
leads to many insights into this problem. That is, we have obtained and recovered
all the available solutions that have been obtained by different workers (Hereman
and Takaoka [10] and Wang [17]) through different techniques with integrability
conditions and group theoretic explanations for the Fisher, Newell-Whitehead and
Fitzhugh-Nagumo equations in addition to the solution for the general case (see
equation (56)). Furthermore, results obtained via group theoretic analysis have been
confirmed via Painleve analysis (see Section 4). A special mention in this study is
the integrability conditions obtained for the equations of Fisher, Newell-Whitehead
and Fitzhugh-Nagumo and the existence of two parameter groups, namely, Xu X2

with the property [X\, X2] = constant X{ and the relation between them as a one-
one correspondence. Finally, we have presented another exact solution to the Fisher
equation which is not derivable by group analysis but by an ad hoc method. This
solution is new and complex-valued (it may become real under certain circumstances).
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