Impact of adapted physical activity on hippocampal N-Acetyl Aspartate in patients with schizophrenia

L. Metivier¹,², F. Briend³, M. Trehout⁴,†, L. Bigot¹, G. Quarc⁵, A. Herbinet⁶, E. Leroux¹ and S. Dollfus¹,³

¹ Calvados, Normandie Univ, UNICAEN, PhIND, UMR-S 1237, GIP CYCERON, Caen; ² Indre et Loire, UMR Inserm U 1253 – iBrain – Psychiatrie Neuro-Fonctionelle – Equipe 1, Tours; ³ Calvados, CHU de CAEN Normandie, Service de Psychiatrie, Centre Esquiroil; ⁴ Calvados, Mooven; ⁵ Calvados, Normandie Univ, UNICAEN/INSERM, UMR 1075, COMETE, PFRS, Caen and ⁶ Hérault, CSO, Mooven, Saint-Mathieu-de-Treviers, France

* Corresponding author.
doi: 10.1192/j.eurpsy.2023.961

Introduction: Adapted physical activity (APA) has beneficial neurobiological impact but the underlying pathophysiological mechanisms remain poorly described. APA is currently recognized as an adjuvant therapy to antipsychotic treatments in patients with schizophrenia (SCZs) to reduce the severity of negative symptoms and cognitive impairment. SCZs exhibit hippocampal N-acetylaspartate (NAA) reduction, a marker of neuronal viability and integrity whose concentrations can be assessed by proton magnetic resonance spectroscopy (¹H–MRS).

Objectives: The purpose of this study was to evaluate the impact of remote physical activity (e-APA) via the web on the NAA relative variations in the left hippocampus in SCZs compared to a patient control group benefiting from an health education program (HE). This study concerns one of the secondary objectives of the PEPsy V@SI study co-financed by the Pierre Deniker Foundation, the European Union and the Normandy Region within the framework of the FEDER/FSE 2014-2020 operational program.

Methods: Thirty-five SCZs were randomized in the e-APA active group or in the control group (HE). Participants received the interventions during 16 weeks, with two visioconference sessions per week. A ¹H–MRS sequence positioned on the left hippocampus (MRI-3T) was acquired before and after both interventions. Absolute NAA concentrations in the left hippocampus were obtained using Osprey software after partial volume correction. After checking the quality criteria, the spectra of 6 SCZs in the e-APA group and 8 SCZs in the HE group were analyzed. To test the difference between interventions on the NAA relative variations, a Wilcoxon–Mann–Whitney test and effect size were performed. Paired Wilcoxon tests were used in each group before and after the interventions.

Results: No significant difference was found in NAA relative variations in the left hippocampus between the e-APA group and the HE group (p = 0.18), although the effect size was 0.38 (considered as moderate). However, a trend towards an increase of NAA was observed in the e-APA group (before intervention: 12.08 International Units (I.U); after: 13.81 I.U) (p = 0.06) but not in the HE group (before intervention: 13.75 I.U; after: 13.83 I.U) (p = 0.84).

Conclusions: Our results showed a NAA significant increase in SCZs after an e-APA program, indicating a beneficial impact of e-APA on neuronal viability that might reflect an hippocampal plasticity. However, this increase did not differ significantly between active and control groups probably due to a weak statistical power.

Disclosure of Interest: None Declared

EPP0666

Capgras and Fregoli syndromes revisited through six different psychiatric clinical cases

L. Santa Marinha*, P. Felgueiras, A. Miguel, O. Nombora and A. Horta

Psychiatry, Centro Hospitalar de Vila Nova de Gaia/Esphinho, Vila Nova de Gaia, Portugal

* Corresponding author.
doi: 10.1192/j.eurpsy.2023.962

Introduction: Capgras and Fregoli syndromes are delusional misidentification syndromes, characterized by a belief in duplicates and replacements. Capgras delusion was first described by Capgras in 1923, reporting a belief that a person (usually a close relative) has been replaced by an exact double (imposter). On the other hand, Fregoli Syndrome was first described by Courbon and Fail in 1927, and holds a delusion that a familiar person is disguised as a strange...
person. Several explanatory models have been hypothesized, through myths, psychoanalytical and psychological interpretations, as well as neurobiological explanations.

Objectives: Through six different clinical cases and a narrative review, we aim to revisit the concepts of Capgras and Fregoli syndromes, emphasizing their complexity and heterogeneity.

Methods: We conducted a non-systematic review of recent evidence on Capgras and Fregoli syndromes and expose exemplary clinical cases.

Results: Capgras and Fregoli syndromes are complex psychotic experiences involving a great number of brain areas, with many heterogeneous clinical manifestations and comorbidities. Even though they were initially encompassed in pure psychotic disorders, today they are mainly understood as neurological disorders, in which the delusion primarily results from organic brain lesions or degeneration. Nevertheless, we present several distinct clinical cases with psychiatric diagnoses that include these curious phenomena: a 39-year-old man with schizophrenia; a 67-year-old woman with late-onset schizophrenia; a 24-year-old woman with schizoaffective disorder; a 48-year-old woman with first episode of acute and transient psychotic disorder; a 76-year-old woman with psychotic depression; and a 25-year-old woman with psychosis and intellectual development disorder.

Conclusions: Our review highlights the complexity of the delusional misidentification syndromes. We expose different patients with different psychiatric diagnosis, showing the diversity of pathologies in which these syndromes can fit. Although they seem to be very common in non-psychiatric disorders, little is known about the prognosis and response to treatment or whether there are systematic differences between delusional misidentification syndromes associated with "functional" and "organic" disorders, which should encourage further studies in order to address this gap and provide appropriate care.

Disclosure of Interest: None Declared

EPP0667

Alteration of plasma phospholipids distinguish schizophrenic patients from controls: A targeted metabolomics study

M. Naifar1,*, T. Abdellah2, D. Franklin2, P. Carine2, T. Plichet2, M. Maalej3, W. Guidara1, M. Maalej4, F. Ayadi1 and S. Bekri2

1Biochemistry Laboratory "Molecular Basis of Human Diseases", LR19ES13, Sfax Medicine College, University of Sfax, Sfax, Tunisia; 2Department of Metabolic Biochemistry, UNIROUEN, INSERM U1245, Rouen, France; 3Psychiatry C- Department, Hedi Chaker University Hospital, University of Sfax, Sfax, Tunisia and 4Psychiatry C- Department, Hedi Chaker University Hospital, University of Sfax, Sfax, France

*Corresponding author.

doi: 10.1192/j.eurpsy.2023.963

Introduction: Schizophrenia (SCZ) is one of the most severe mental disorders. Several elements involved in pathogenesis have been characterized recently. However, tools for diagnosis and risk prediction are limited. Elucidation of the underlying genomic and molecular mechanisms of SCA remains a challenge.

Objectives: In this study, we aimed to identify plasma biomarkers for SCZ using targeted metabolomics.

Methods: All enrolled patients were drug-free for at least 3 months prior to admission. Plasma from 31 SCZ patients and 70 matched controls were analyzed using the LC/MS- Api 4000 QTrap Sciex. A total of 188 targeted metabolites, including 21 amino acids, 21 biogenic amines and 145 lipids or lipid-related metabolites were analyzed. All data modeling and analysis is done using MetaboAnalyst 5.0.

Results: There was no significant difference in the studied groups regarding BMI. Plasma Triglycerides, LDL-C, total proteins levels were significantly decreased in SCZ compared to controls. Heatmap identified 2 clusters with 25 significantly differentially expressed metabolites (FDR <0.05) between the drug-naïve group and the matched controls. The OPLS-DA score plot showed that the groups are clearly separated according to plasma phospholipids concentrations. Among these differential metabolites, the expression level of very long chain Phosphatidylcholines (PC 36 ~ PC 42) and acylcarnitines were significantly decreased in SCZ compared to controls, whereas sphingomyelin (SM) and lysoPC were significantly lower in drug-naïve patients.

Conclusions: In this study, we found that plasma phospholipids were significantly dysregulated in the SCZ patients and could be a promising pathway to explore SCZ.

Disclosure of Interest: None Declared