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Abstract
In this paper, together with the preceding Part I [10], we develop a framework for tame geometry on Henselian
valued fields of characteristic zero, called Hensel minimality. It adds to [10] the treatment of the mixed characteristic
case. Hensel minimality is inspired by o-minimality and its role in real geometry and diophantine applications. We
develop geometric results and applications for Hensel minimal structures that were previously known only under
stronger or less axiomatic assumptions, and which often have counterparts in o-minimal structures. We prove a
Jacobian property, a strong form of Taylor approximations of definable functions, resplendency results and cell
decomposition, all under Hensel minimality – more precisely, 1-h-minimality. We obtain a diophantine application
of counting rational points of bounded height on Hensel minimal curves.
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1. Introduction

1.1. Background

For a long time, there has been a search for adequate analogues of o-minimality in settings other than
for real geometry. Several notions have been put forward, each with certain strengths and weaknesses.
In Part I [10], together with this sequel paper, we put forward a notion for tame geometry on non-
Archimedean valued fields, called Hensel minimality, both simple and strong and providing a common
variant for the settings from, among others, [16; 18; 15; 17; 11].

Let us first explain the key flavor of the definition of Hensel minimality. Often, finding a correct
analogue involves some reformulations. Here is a way to reformulate o-minimality: a structure on the
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real field R is o-minimal if and only if for each definable subset X of R, there exists a finite set 𝐶 ⊂ R,
such that, for any x in R, the condition 𝑥 ∈ 𝑋 only depends on the signs of 𝑥 − 𝑐 for c in C, with the sign
being negative, zero, or positive. In an equicharacteristic zero valued field K, we replace the sign map
by the projection map rv : 𝐾 → 𝐾/(1 +M𝐾 ), where M𝐾 is the maximal ideal of the valuation ring of
K, and 𝐾/(1 +M𝐾 ) is the quotient of multiplicative semi-groups. In the mixed characteristic case, one
additionally uses ideals of the form 𝑁 · M𝐾 for nonzero integers N, instead of just M𝐾 itself. Apart
from replacing the sign map, we keep the condition of every definable subset of K being ‘controlled’
by a finite set 𝐶 ⊂ 𝐾 . In the real case, C is automatically definable over the same parameters as X; in
the valued field case, this is no longer automatic and needs to be imposed. Depending on the precise
kind of parameters one allows, one obtains the notion of 0-h-minimality, 𝜔-h-minimality or something
in-between: ℓ-h-minimality for integers ℓ > 0; see Section 2 for the detailed definitions. When we do
not want to be precise about the specific version, we just say ‘Hensel minimality’.

Hensel minimality is similar to o-minimality [13; 21] not only in its definition but also for having
strong consequences. In Part I [10], we focused on the equicharacteristic zero case. In this sequel, we
focus on the mixed characteristic case. We obtain analogues of many of the results from [10]. In addition,
in Section 4, we give a new diophantine application, similar to the results by Pila-Wilkie [20] from in
o-minimal case; for the moment, this application is for curves only. Many proofs from [10] adapt to the
mixed characteristic case in a rather straightforward way; nevertheless, many proofs are repeated in this
sequel, and for many others, we sketch the key ideas so that the reader has the choice between reading
the short version here or the detailed version in [10].

There are several ways to adapt the notions of Hensel minimality from [10] to the mixed characteristic
case, based on coarsenings, on compactness or on a more literal adapation of the definitions for the
equicharacteristic zero case. We treat several of these variants, and in one of the most important cases
(namely, 1-h-minimality), we show that they are equivalent. From this equivalence, we derive that many
of the geometric results of [10] also hold in the mixed characteristic case, with some strong results on
Taylor approximation of definable functions. In [23], equivalences of these notions are shown also in
other cases.

The name ‘Hensel minimality’ comes from the intuition that a Hensel minimal valued field behaves
as nicely as a henselian valued field in the pure valued field language. In equicharacteristic zero, this
is reflected by the fact that a pure valued field K is Hensel minimal if and only if K is henselian
(where any version of Hensel minimality can be used). In mixed characteristic, this is still true if K is
finitely ramified (see Remark 2.2.3), but in general, Hensel minimality only captures tameness from the
ramification degree on.

1.2. Overview

Let us give a short overview of the paper. In Section 2, we introduce several variants of Hensel minimality
(for both the mixed and the equicharacteristic cases), and we prove that all of them are equivalent in the
key case of 1-h-minimality (Theorem 2.2.8). We do this for a large part by classical strategies: coarsening
of valuations of mixed characteristic to equicharacteristic zero, and model theoretic compactness. A
combination of these classical strategies with new geometric and model theoretic arguments leads to our
strongest results, like Theorem 3.1.2 on Taylor approximation. It is precisely this result, Theorem 3.1.2
on Taylor approximation, that plays a key role in our diophantine application Theorem 4.0.7, where we
estimate the number of rational points of bounded height on transcendental curves. This is the Hensel
minimal analogue of point counting on transcendental curves case as treated by Bombieri and Pila [5]
and o-minimally by Pila-Wilkie [20], and it is the axiomatic analogue of point counting on subanalytic
sets as studied in [8] and [9], and on analytic sets in [4].

In Section 2.6, we develop some resplendency results analogous to the ones from [10, Section 4] –
namely, that Hensel minimality is preserved under certain expansions of the structure (e.g., arbitrary
expansions of the value group and the residue field). Those results are used to show the equivalences
of Theorem 2.2.8. It follows from the equivalence with item (4) in Theorem 2.2.8 that 1-h-minimality
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is preserved under coarsening of the valuation; such a coarsening result was previously known only for
𝜔-h-minimality by [10, Corollary 4.2.4]. Note that in [23], several results of this paper and of part I
[10] are extended from 1-h-minimality to ℓ-h-minimality for each ℓ ≥ 1 (for example, their preservation
under coarsenings of the valuation).

We end the paper with some open questions. One of the big challenges in the current framework
is to push our diophantine application farther towards arbitrary dimension and thus get a full Hensel
minimal analogue of the results by Pila-Wilkie [20]. Other main challenges are further developments of
the geometry, like t-stratifications building on and extending [10, Section 5.5]. It may also be interesting
to compare the notions of Hensel minimal structures with distal expansions on valued fields, as studied
recently in [1].

2. Hensel minimality in characteristic zero (including mixed characteristic)

In this whole section, we fix a theory T of valued fields of characteristic zero in a language L, expanding
the language Lval = {+, ·,O𝐾 } of valued fields. Note that T is allowed to be noncomplete and that each
model K of T is a valued field of characteristic zero, which includes both possibilities that K has mixed
characteristic or equicharacteristic zero.

In this section, we give four alternative definitions of 1-h-minimality for T (see Definitions 2.2.1,
2.2.4, 2.2.5, 2.2.7), and we show that they are equivalent in Theorem 2.2.8. To keep the generality
of [10], we will treat more generally ℓ-h-minimality for ℓ ≥ 0 either an integer or equal to 𝜔. The
first definition is a close adaptation of the main notion of Hensel minimality of [10, Definition 2.3.3].
Definitions 2.2.4 and 2.2.5 are based on coarsenings, and Definition 2.2.7 corresponds to the criterion
for 1-h-minimality from [10, Theorem 2.9.1]. Since for ℓ = 1 these notions coincide, we simply will
call them 1-h-minimality.

2.1. Basic terminology

We use the following terminology, notation and concepts from [10]. By a valued field we mean a
nontrivially valued field (i.e., the field of fractions of a valuation ring which is not a field itself). Any
valued field K is a structure in the language Lval = {+, ·,O𝐾 } of valued fields, where + and · are addition
and multiplication on K, and where O𝐾 is (a predicate for) the valuation ring of K. The maximal ideal
of O𝐾 is denoted by M𝐾 . We use multiplicative notation for the value group, which we denote by
Γ×

𝐾 , and we write Γ𝐾 := Γ×
𝐾 ∪ {0}. We write | · | : 𝐾 → Γ𝐾 for the valuation map. By an open ball,

we mean a set of the form 𝐵<𝜆 (𝑎) = {𝑥 ∈ 𝐾 | |𝑥 − 𝑎 | < 𝜆} for some 𝜆 in Γ×
𝐾 and some a in K. We

define radop 𝐵<𝜆 (𝑎) = 𝜆 to be the open radius of such a ball. Similarly, a closed ball is a set of the form
𝐵≤𝜆 (𝑎) = {𝑥 ∈ 𝐾 | |𝑥 − 𝑎 | ≤ 𝜆}. Its closed radius is radcl 𝐵≤𝜆(𝑎) = 𝜆.

For any proper ideal I of the valuation ring O𝐾 , we write RV𝐼 for the corresponding leading term
structure (i.e., the disjoint union of {0} with the quotient group 𝐾×/(1 + 𝐼), and rv𝐼 : 𝐾 → RV𝐼 for the
leading term map – that is, the quotient map extended by sending sending 0 to 0). When I is the open
ball {𝑥 ∈ 𝐾 | |𝑥 | < 𝜆} for some 𝜆 ≤ 1 in Γ×

𝐾 , we simply write RV𝜆 and rv𝜆 instead of RV𝐼 and rv𝐼 , and
we write RV and rv instead of RV1 and rv1.

We will sometimes also write RV𝐾 for RV and similarly RV𝐾,𝜆 for RV𝜆 if multiple fields are under
consideration.

Definition 2.1.1. Let 𝜆 ≤ 1 be an element of Γ×
𝐾 .

(1) Given an arbitrary set 𝑋 ⊂ 𝐾 and a finite nonempty set 𝐶 ⊂ 𝐾 , we say that X is 𝜆-prepared by C if
the condition whether some 𝑥 ∈ 𝐾 lies in X depends only on the tuple (rv𝜆 (𝑥 − 𝑐))𝑐∈𝐶 .

(2) We say that a ball 𝐵 ⊂ 𝐾 is 𝜆-next to an element 𝑐 ∈ 𝐾 if

𝐵 = {𝑥 ∈ 𝐾 | rv𝜆 (𝑥 − 𝑐) = 𝜉}

for some (nonzero) element 𝜉 of RV𝜆.
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(3) We say that a ball 𝐵 ⊂ 𝐾 is 𝜆-next to a finite nonempty set 𝐶 ⊂ 𝐾 if B equals
⋂

𝑐∈𝐶 𝐵𝑐 with 𝐵𝑐 a
ball 𝜆-next to c for each 𝑐 ∈ 𝐶.

One easily verifies that for fixed C and 𝜆, the set of all balls 𝜆-next to C forms a partition of 𝐾 \ 𝐶.
Moreover, a set 𝑋 ⊂ 𝐾 is 𝜆-prepared by C if and only if 𝑋 \ 𝐶 is a union of parts of this partition
(without any condition on 𝑋 ∩ 𝐶). Decreasing 𝜆 refines this partition (i.e., if 𝜆′ < 𝜆 and 𝐶 𝜆-prepares
X, then it also 𝜆′-prepares X). Similarly, if 𝐶 ′ ⊃ 𝐶 and 𝐶 𝜆-prepares X, then 𝐶 ′ also 𝜆-prepares X.
Example 2.1.2. Fix any 𝜆 ≤ 1 in Γ×

𝐾 .
(1) A finite set 𝑋 ⊂ 𝐾 is 𝜆-prepared by C if and only if C contains X.
(2) A subset 𝑋 ⊂ 𝐾 is 𝜆-prepared by the set 𝐶 = {0} if and only if X is a (possibly infinite) union of

fibers of the map rv𝜆 – that is, if it is of the form 𝑋 = rv−1
𝜆 (Ξ) for an arbitrary subset Ξ ⊂ RV𝜆.

(3) Every open ball 𝐵 = 𝐵<𝜆 (𝑎) of radius 𝜆 contained in O𝐾 is 𝜆-prepared by 𝐶 = {0}, though B might
not be 𝜆-next to C. (It is 𝜆-next to C if and only if |𝑎 | = 1.)

The following notation specific to mixed characteristic already appears in [10, Section 6].
Definition 2.1.3 (Equicharacteristic zero coarsening). Given a model 𝐾 |= T , we write O𝐾,ecc for the
smallest subring of K containing O𝐾 and Q, and we let | · |ecc : 𝐾 → Γ𝐾,ecc be the corresponding
valuation. (Thus, | · |ecc is the finest coarsening of | · | which has equicharacteristic zero; note that | · |ecc
can be a trivial valuation on K.) If | · |ecc is a nontrivial valuation (i.e., O𝐾,ecc ≠ 𝐾), then we also use the
following notation: rvecc : 𝐾 → RVecc is the leading term map with respect to | · |ecc. Given 𝜆 ∈ Γ𝐾,ecc,
rv𝜆 : 𝐾 → RV𝜆 is the leading term map with respect to 𝜆, and Lecc is the extension of L by a predicate
for O𝐾,ecc. More generally, for any nontrivial coarsening | · |𝑐 of the valuation on K, write L𝑐 for the
extension of L by a predicate for the valuation ring for | · |𝑐 .

2.2. Equivalent definitions

There are several natural notions of Hensel minimality in mixed characteristic. We give four possible
definitions. Theorem 2.2.8 states that these are all equivalent, in the case of 1-h-minimality.

We first adapt the main definition of Hensel minimality from [10, Definition 2.3.3] to include the
mixed characteristic case. Recall that T is a theory of valued fields of characteristic zero in a language
L ⊃ Lval.
Definition 2.2.1. Let ℓ ≥ 0 be either an integer or 𝜔. Say that T is ℓ-hmix-minimal if for each model
K of T , for each integer 𝑛 ≥ 1, each 𝜆 ≤ 1 in Γ×

𝐾 , each 𝐴 ⊂ 𝐾 , each finite 𝐴′ ⊂ RV𝜆 of cardinality
#𝐴′ ≤ ℓ and each (𝐴 ∪ RV |𝑛 | ∪ 𝐴′)-definable set 𝑋 ⊂ 𝐾 , there exists an integer 𝑚 ≥ 1 such that X is
|𝑚 |𝜆-prepared by a finite A-definable set 𝐶 ⊂ 𝐾 . If all models of T are of equicharacteristic zero, we
also call T simply ℓ-h-minimal.

As one sees from the definition, bigger values of ℓ yield stronger conditions (i.e., for ℓ < ℓ′, ℓ′-hmix-
minimality implies ℓ-hmix-minimality).

Clearly, if all models K of T are of equicharacteristic zero, then one can take 𝑛 = 𝑚 = 1, so the above
definition of ℓ-h-minimality agrees with [10, Definition 2.3.3]. In the mixed characteristic case, one is
obliged to take the valuation of integers into account in Definition 2.2.1. The general philosophy is that
𝜆-preparation in equicharacteristic zero becomes 𝜆 · |𝑚 |-preparation in mixed characteristic, for some
integer 𝑚 ≥ 1, as the following example illustrates.
Example 2.2.2. The set X of cubes in the 3-adic numbers Q3 cannot be 1-prepared by any finite set C,
since each of the infinitely many disjoint balls 27𝑟 (1 + 3Z3), 𝑟 ∈ Z, contains both cubes and non-cubes.
However, X is a union of (infinitely many) fibers of the map rv |3 | : Q3 → RV |3 | , so it is |3|-prepared by
the set {0}.

In [12], Dolich and Goodrick introduced the notion of a visceral structure (a structure equipped with
a uniformly definable topological base satisfying certain simple axioms) and showed several tameness
results in this abstract setting. It is easy to see that 0-hmix-minimality implies viscerality in this sense.
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Remark 2.2.3. In the equicharacteristic zero case, 0-h-minimality implies definable spherical com-
pleteness (meaning that every definable family of nested balls has nonempty intersection), and this in
turn implies henselianity (see [10], Lemma 2.7.1 and Theorem 2.7.2). A similar implication holds in
mixed characteristic if we restrict to finitely ramified fields K. If such a K is 0-hmix-minimal, then it is
definable spherical complete by [6, Proposition 1.4], and this in turn implies that K is henselian using
the usual argument via Newton approximation (see the proof of [10, Theorem 2.7.2] for details). In con-
trast, note that if K is not finitely ramified, then 0-hmix-minimality does not imply definable spherical
completeness; see Example 1.5 in [6].

The following two definitions use equicharacteristic zero coarsenings of the valuation to define mixed
characteristic Hensel minimality in terms of the equicharacteristic notions from [10, Definition 2.3.3]
(which we just recalled in Definition 2.2.1). We use notation from Definition 2.1.3.

Definition 2.2.4. Let ℓ ≥ 0 be either an integer or 𝜔. We say that T is ℓ-hecc-minimal if for every model
𝐾 |= T , the following holds. If the valuation | · |ecc on K is nontrivial, then the Lecc-theory of K, when
considered as a valued field with the valuation | · |ecc, is ℓ-h-minimal.

One can also require every equicharacteristic zero coarsening to be ℓ-h-minimal, leading to the
following definition.

Definition 2.2.5. Let ℓ ≥ 0 be either an integer or 𝜔. We say that T is ℓ-hcoars-minimal if for every model
𝐾 |= T and each nontrivial equicharacteristic coarsening | · |𝑐 of the valuation on K, the L𝑐-theory of
K, when considered as a valued field with the valuation | · |𝑐 , is ℓ-h-minimal.

Remark 2.2.6. Since in an equicharacteristic zero valued field K, we have O𝐾,ecc = O𝐾 , the theory of
such a field is ℓ-hecc-minimal if and only if it is ℓ-h-minimal, for each ℓ ≥ 0. For more subtle reasons,
𝜔-hcoars-minimality is equivalent to 𝜔-hecc-minimality by [10, Corollary 4.2.4]. Even more, in [23], it
is shown that in equicharacteristic zero, ℓ-hcoars-minimality is equivalent to ℓ-hecc-minimality for any
ℓ ≥ 1. In mixed characteristic, we will show the analogue of this (and more) for ℓ = 1 in Theorem 2.2.8.

By the usual play of compactness, preparation results that hold in each model of T also hold uniformly
for all models of T , and results in equicharacteristic zero can be transfered to mixed characteristic. We
will give examples in the proofs for Corollary 2.3.5 and Corollary 2.5.5 to illustrate how compactness
is used for these purposes.

In [10, Theorem 2.9.1], a geometric criterion for 1-h-minimality is given in equicharacteristic zero.
The following is a mixed characteristic version of that criterion.

Definition 2.2.7. Let 𝑓 : 𝐾 → 𝐾 be A-definable for some set 𝐴 ⊂ 𝐾 ∪ RV |𝑛 | , for some positive integer
n. We define the following two properties:

(T1mix) There exists a finite A-definable 𝐶 ⊂ 𝐾 and a positive integer m such that for every ball
𝐵 |𝑚 |-next to C, there exists 𝜇𝐵 ∈ Γ𝐾 such that for 𝑥, 𝑦 ∈ 𝐵, we have

𝜇𝐵 · |𝑚 | · |𝑥 − 𝑦 | ≤ | 𝑓 (𝑥) − 𝑓 (𝑦) | ≤ 𝜇𝐵 ·

���� 1
𝑚

���� · |𝑥 − 𝑦 |.

(T2) The set {𝑦 ∈ 𝐾 | 𝑓 −1(𝑦) is infinite} is finite.

We say that T satisfies (T1,T2) if for all f, A and n as above, the two conditions (T1mix) and (T2) hold.

We now have several variants of 1-h-minimality in mixed characteristic. The main result of this
section is the following, stating that all of the above definitions agree.

Theorem 2.2.8. The following are equivalent, for a theory T of valued fields of characteristic zero
(possibly of mixed characteristic) in a language L containing Lval.

(1) T is 1-hecc-minimal.
(2) T is 1-hmix-minimal.
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(3) T satisfies (T1,T2).
(4) T is 1-hcoars-minimal.
Therefore, we will call this common notion simply 1-h-minimality.

We will prove Theorem 2.2.8 in Section 2.7. Until then, we continue distinguishing between the four
notions.

2.3. Basic results under 1-hmix-minimality

Many basic results from [10] also hold in mixed characteristic with only minor changes. In particular,
this includes all the results of Sections 2.4–2.6 from [10], and those of Section 2.8 up to Lemma 2.8.5. In
the following, we state the precise version of the mixed characteristic results. When a proof is (almost)
identical to the corresponding one from [10], we only give a sketch so that the reader has the choice
between reading the short version here or the long version in [10].
Lemma 2.3.1. Assume that T is 0-hmix-minimal. The following results are true for any model K of T .
(1) (Adding constants [10, Lemma 2.4.1]). If 𝐴 ⊂ 𝐾 ∪ RVeq

|𝑛 |
, then ThL(𝐴) (𝐾) is 0-hmix-minimal. (And

similarly, if T is ℓ-hmix-minimal, then ThL(𝐴) (𝐾) is ℓ-hmix-minimal for any ℓ and any such A.)
(2) (Preparation is first order [10, Lemma 2.4.2]). If 𝑋𝑞 , 𝐶𝑞 are ∅-definable families of subsets of K

with q running over an ∅-definable Q in an arbitrary imaginary sort, and 𝐶𝑞 is finite for all q, then
the set of (𝑞, 𝜆) ∈ 𝑄 × Γ×

𝐾 with 𝜆 ≤ 1 such that 𝐶𝑞 𝜆-prepares 𝑋𝑞 is ∅-definable.
(3) (∃∞-elimination [10, Lemma 2.5.2]). Every infinite ∅-definable 𝑋 ⊂ 𝐾 contains an open ball.
(4) (Finite sets are RV-parametrized [10, Lemma 2.5.3]). If 𝐶𝑞 ⊂ 𝐾 is a ∅-definable family of finite

sets, for q in some arbitrary ∅-definable imaginary sort Q, then there is a ∅-definable family of
injections 𝑓𝑞 : 𝐶𝑞 → RV𝑘

|𝑛 | (for some 𝑘 ≥ 0 and 𝑛 ≥ 1).
(5) (𝜆-next balls as unions of fibres [10, Lemma 2.5.4]). Let 𝐶 ⊂ 𝐾 be a finite ∅-definable set. Then for

any 𝜆 ≤ 1, there is a {𝜆}-definable map 𝑓 : 𝐾 → RV𝑘
|𝑛 | × RV |𝑚 |𝜆 (for some k, n and m) such that

every ball 𝜆-next to C is a union of fibres of f. If, moreover, 𝜆 = |𝑛′ | for some integer 𝑛′ > 0, then
we can ensure that for some integer 𝑝 > 0, every ball |𝑝 |-next to C is contained in a fibre of f.

In (1) of Lemma 2.3.1, by RVeq
|𝑛 |

, we mean imaginary sorts of the form (RV |𝑛 | )
𝑚/∼, for some m and

some ∅-definable equivalence relations ∼.

Proof of Lemma 2.3.1. (1) and (2) are straightforward from the definition. (3) also follows directly by
preparing X.

(4) Using (3), we can assume that #𝐶𝑞 does not depend on q. We define 𝑎𝑞 := 1
#𝐶𝑞

∑
𝑥∈𝐶𝑞 𝑥 and

𝑓𝑞 : 𝐶𝑞 → RV |𝑛 | , 𝑥 ↦→ rv |𝑛 | (𝑥 − 𝑎𝑞) for some n which is a multiple of #𝐶𝑞 . This implies that 𝑓𝑞 is not
constant on 𝐶𝑞 . We then apply induction to the family consisting of all fibers of 𝑓𝑞 , for all q. (We take
the final n to be a multiple of all cardinalities #𝐶𝑞 appearing during this process.)

(5) For 𝑥 ∈ 𝐾 , define

𝜇(𝑥) = min{|𝑥 − 𝑐 | | 𝑐 ∈ 𝐶},

𝐶 (𝑥) = {𝑐 ∈ 𝐶 | |𝑥 − 𝑐 | = 𝜇(𝑥)},

𝑎(𝑥) =
1

#𝐶 (𝑥)

∑
𝑐∈𝐶 (𝑥)

𝑐.

The map 𝑎 : 𝐾 → 𝐾 has finite image, so by (4), we can find an injection 𝛼 : im 𝑎 → RV𝑘
|𝑛 | . Let

𝑚 = max{𝐶 (𝑥) | 𝑥 ∈ 𝐾}! and define the map f as

𝑓 (𝑥) :=

{
(𝛼(𝑎(𝑥)), rv |𝑚 |𝜆(𝑥 − 𝑎(𝑥))) if |𝑥 − 𝑎(𝑥) | ≥ 𝜇(𝑥)𝜆 |𝑚 |

(𝛼(𝑎(𝑥)), rv |𝑚 |𝜆(0)) if |𝑥 − 𝑎(𝑥) | < 𝜇(𝑥)𝜆 |𝑚 |.
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If x and 𝑥 ′ are in the same ball 𝜆-next to C, then 𝐶 (𝑥) = 𝐶 (𝑥 ′) and so 𝑎(𝑥) = 𝑎(𝑥 ′). If x and 𝑥 ′ are in
the same fibre of f and we are in the first case, then the fact that rv |𝑚 |𝜆(𝑥 − 𝑎(𝑥)) = rv |𝑚 |𝜆(𝑥

′ − 𝑎(𝑥 ′))
implies that rv𝜆 (𝑥−𝑐) = rv𝜆 (𝑥

′ −𝑐) for any 𝑐 ∈ 𝐶. Thus, any fibre of f is contained in a ball 𝜆-next to C.
If 𝜆 = |𝑛′ | for some integer 𝑛′, then one can take 𝑝 = 𝑛′ · 𝑚. Then f will be constant on any ball

|𝑝 |-next to C. �

The following proposition states that we can also prepare families, similarly to [10, Proposition
2.6.2]. That proposition will also be needed for 0-hmix-minimality, so we formulate it more generally.

Proposition 2.3.2 (Preparing families). Assume ℓ-hmix-minimality for T and some ℓ ≥ 0. Let K be a
model of T . Let 𝐴 ⊂ 𝐾 and let

𝑊 ⊂ 𝐾 × RV𝑘
|𝑛 | ×

⋃
𝜆≤1

RVℓ
𝜆

be (𝐴 ∪ RV |𝑛 | )-definable for some integers k and 𝑛 ≥ 1. Then there exists a finite A-definable set
𝐶 ⊂ 𝐾 and a positive integer m such that for any 𝜆 ≤ 1 and any ball B which is |𝑚 |𝜆-next to C, the set
𝑊𝑥,𝜆 := {(𝜉, 𝜉 ′) ∈ RV𝑘

|𝑛 | × RVℓ
𝜆 | (𝑥, 𝜉, 𝜉 ′) ∈ 𝑊} is independent of x as x runs over B.

Proof. For each 𝜆 and each (𝜉, 𝜉 ′) ∈ RV𝑘
|𝑛 | × RVℓ

𝜆, let 𝐶𝜆, 𝜉 , 𝜉 ′ be a finite A-definable set |𝑚𝜆, 𝜉 , 𝜉 ′ |𝜆-
preparing the fiber 𝑊𝜉 , 𝜉 ′ ⊂ 𝐾 . Using compactness, we may assume that for varying 𝜆, 𝜉, 𝜉 ′, there are
only finitely many different sets 𝐶𝜆, 𝜉 , 𝜉 ′ and integers 𝑚𝜆, 𝜉 , 𝜉 ′ . Let C be the union of the 𝐶𝜆, 𝜉 , 𝜉 ′ and m
be the least common multiple of the 𝑚𝜆, 𝜉 , 𝜉 ′ . �

Remark 2.3.3. In that proposition, instead of RV𝑘
|𝑛 | , we can have any product Z of sorts from RVeq

|𝑛 |

(including, in particular, Γ𝐾 ). Indeed, given such a 𝑊 ⊂ 𝐾 × 𝑍 ×
⋃

𝜆≤1 RVℓ
𝜆, we can apply Proposition

2.3.2 to the preimage of W in 𝐾 × RV𝑘
|𝑛 | ×

⋃
𝜆≤1 RVℓ

𝜆 under some quotient map RV𝑘
|𝑛 | → 𝑍 . The same

also applies to Corollary 2.3.4 below.

We will mostly apply the following special case of Proposition 2.3.2:

Corollary 2.3.4. Let K be a model of a 0-hmix-minimal theory T , let 𝐴 ⊂ 𝐾 and let

𝑊 ⊂ 𝐾 × RV𝑘
|𝑛 |

be (𝐴∪RV |𝑛 | )-definable, for some integers k and 𝑛 ≥ 1. Then there exists a finite A-definable set 𝐶 ⊂ 𝐾
and a positive integer m such that for any ball B which is |𝑚 |-next to C, the set 𝑊𝑥 := {𝜉 ∈ RV𝑘

|𝑛 | |

(𝑥, 𝜉) ∈ 𝑊} is independent of x as x runs over B.

Note that in the corollary, instead of saying that𝑊𝑥 is constant on each B, one could equivalently also
say that for each 𝜉 ∈ RV𝑘

|𝑛 | , the set 𝑊𝜉 := {𝑥 ∈ 𝐾 | (𝑥, 𝜉) ∈ 𝑊} is |𝑚 |-prepared by C. In applications,
we will sometimes use this point of view without further notice.

Yet another point of view of the corollary is obtained if W is the graph of a function 𝑓 : 𝐾 → RV𝑘
|𝑛 | .

In that case, the conclusion is that f is constant on each ball |𝑚 |-next to C.
We also obtain the following corollary about preparing families in all models K of the (possibly

noncomplete) theory T . The point here is that the integer m can be taken uniformly over all models.

Corollary 2.3.5 (of Proposition 2.3.2). Assume that T is ℓ-hmix-minimal for some ℓ ≥ 0, and suppose
that 𝜙 is an L-formula such that for every model 𝐾 |= T , 𝑊𝐾 := 𝜙(𝐾) is a subset of 𝐾 × RV𝑘

|𝑛 | × RVℓ
𝜆𝐾

for some k, n and some 𝜆𝐾 ≤ 1 in Γ×
𝐾 . Then there exists an L-formula 𝜓 and an integer 𝑚 ≥ 1 such

that for every model 𝐾 |= T , 𝐶𝐾 := 𝜓(𝐾) is a finite subset of K which 𝜆𝐾 · |𝑚 |-prepares 𝑊𝐾 in the
following sense: for every ball 𝐵 ⊂ 𝐾 which is 𝜆𝐾 · |𝑚 |-next to 𝐶𝐾 , the fiber

𝑊𝐾,𝑥 := {𝜉 ∈ RV𝑘
|𝑛 | × RVℓ

𝜆𝐾
| (𝑥, 𝜉) ∈ 𝑊𝐾 }

does not depend on x when x runs over B.
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Proof. Let 𝜙 be given as in the statement. Whether a pair (𝑚, 𝜓) works as desired in a model K can be
expressed by an L-sentence, by Lemma 2.3.1. By compactness and ℓ-hmix-minimality, we deduce that
there exist finitely many pairs (𝑚𝑖 , 𝜓𝑖) which cover all models. We may furthermore assume that the
sets 𝜓𝑖 (𝐾) are finite for each model K. We are done by letting m be the least common multiple of the
𝑚𝑖 (so that |𝑚 | ≤ |𝑚𝑖 | for each i) and 𝜓 be the disjunction of the 𝜓𝑖 . �

Proposition 2.3.2 also implies the following corollaries. Denote by RV• the disjoint union of all RV𝜆

for 𝜆 ≤ 1.

Corollary 2.3.6. Assume 1-hmix-minimality for T . The following hold for any model K of T .

(1) (RV-unions stay finite [10, Corollary 2.6.7]). Let 𝑊 ⊂ 𝐾 × RV𝑘
• be ∅-definable such that 𝑊𝜉 is

finite for any 𝜉 ∈ RV𝑘
• . Then the union

⋃
𝜉 𝑊𝜉 is also finite.

(2) (Finite image in K [10, Corollary 2.6.8]). The image of any ∅-definable 𝑓 : RV𝑘
• → 𝐾 is finite.

(3) (Removing RV-parameters [10, Corollary 2.6.10]). Let C be a finite 𝐴 ∪ RVeq
|𝑛 |

-definable set, for
some 𝐴 ⊂ 𝐾 and some integer 𝑛 > 0. Then there exists a finite A-definable set 𝐶 ′ containing C.

Proof. (1) The case 𝑘 = 1 follows by applying Proposition 2.3.2. (Each 𝑊𝜉 is contained in the set C
one obtains.) For 𝑘 ≥ 2, use induction (adding parameters to the language using Lemma 2.3.1 (1)).

(2) Apply (1) to the graph of f.
(3) C is a fiber of an A-definable subset 𝑊 ⊂ 𝐾 × RV𝑘

• , for some k. Apply (1) to W. �

To obtain (T1,T2) from 1-hmix-minimality for T , we follow [10, Section 2.8]. Here we have to be
slightly more careful in our formulations and proofs. First, we set some notation.

Definition 2.3.7. If B is an open ball in K, and 𝜆 is in Γ×
𝐾 , 𝜆 ≤ 1, then a 𝜆-shrinking of B is an open ball

𝐵′ ⊂ 𝐵 with

radop 𝐵
′ = 𝜆 radop 𝐵.

Lemma 2.3.8. Assume 1-hmix-minimality for T . Let K be a model of T and let 𝑓 : 𝐾 → 𝐾 be an
∅-definable function. Then the following hold.

(1) (Basic preservation of dimension [10, Lemma 2.8.1]). The set of 𝑦 ∈ 𝐾 for which 𝑓 −1(𝑦) is infinite,
is finite.

(2) (Piecewise constant or injective [10, Lemma 2.8.2]). There exists a finite ∅-definable set C and a
positive integer m such that on any ball 𝐵 |𝑚 |-next to C, f is either constant or injective.

(3) (Images of most balls are almost balls [10, Lemma 2.8.3]). There exists a finite ∅-definable set C and
positive integers 𝑚, 𝑛 such that for any open ball B contained in a ball |𝑚 |-next to C, either 𝑓 (𝐵) is
a singleton, or for any 𝑦 ∈ 𝑓 (𝐵), there are open balls 𝐵′, 𝐵′′ for which 𝑦 ∈ 𝐵′ ⊂ 𝑓 (𝐵) ⊂ 𝐵′′ and

radop 𝐵
′ ≥ |𝑛| radop 𝐵

′′.

(4) (Preservation of scaling factor [10, Lemma 2.8.4]). Suppose that there are 𝛼, 𝛽 in Γ×
𝐾 , 𝛼 < 1, such

that for every open ball 𝐵 ⊂ M𝐾 of radius 𝛼, the image 𝑓 (𝐵) is contained in an open ball of radius
𝛽. Assume, moreover, that there is an integer p and open balls 𝐵′, 𝐵′′ such that 𝐵′ ⊂ 𝑓 (M𝐾 ) ⊂ 𝐵′′

and

radop 𝐵
′ ≥ |𝑝 | radop 𝐵

′′.

Then 𝑓 (M𝐾 ) is contained in an open ball of radius at most 𝛽
|𝑛 |𝛼 for some positive integer n.

Proof. (1) Suppose for contradiction that f has infinitely many infinite fibers. Let 𝑋 ⊂ 𝐾 be the subset
of the domain of f where f is locally constant (i.e, of points 𝑥 ∈ 𝐾 such that f is constant on 𝐵<𝜆 (𝑥) for
some 𝜆 ∈ Γ×

𝐾 ). Since each infinite fiber of f contains a ball (by preparation of the fiber), the restriction
of f to X still has infinite image.
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Let 𝐶 ⊂ 𝐾 be a finite set |𝑚 |-preparing X, for some integer 𝑚 ≥ 1. Then enlarge C and m in such
a way that for each 𝜆 ∈ Γ×

𝐾 , whether f is constant on 𝐵<𝜆 (𝑥) only depends on the ball |𝑚 |-next to C
containing x. This is possible by applying Corollary 2.3.4 (and Remark 2.3.3) to the set 𝑊 ⊂ 𝐾 × Γ×

𝐾
of those (𝑥, 𝜆) for which f is constant on 𝐵<𝜆 (𝑥).

By Corollary 2.3.6 (1), there exists a ball 𝐵0 ⊂ 𝑋 |𝑚 |-next to C such that 𝑓 (𝐵0) is still infinite. Fix
such a 𝐵0, and also fix a 𝜆0 ∈ Γ×

𝐾 such that f is constant on every open ball of radius 𝜆0 contained in 𝐵0.
The family of all those balls can definably be parametrized by a subset 𝑍 ⊂ RV𝜆1 , for 𝜆1 =

𝜆0/radop 𝐵0. Now f induces a map from Z to K with infinite image, contradicting Corollary 2.3.6 (1).
(2) First, find C and m such that 𝐶 |𝑚 |-prepares every infinite fiber of f (using (1) to see that there

are only finitely many infinite fibers). Then apply Lemma 2.3.1 (4) to the family of finite fibers of f to
obtain an injective map from each finite fiber of f to RV𝑘

|𝑛 | for some n and k. We put all those maps
together to one single map 𝑔 : 𝑌 → RV𝑘

|𝑛 | , where Y is the union of all finite fibers of f. Enlarge C and
m in such a way that g is constant on each ball 𝐵 ⊂ 𝑌 |𝑚 |-next to C (by applying Corollary 2.3.4 to the
graph of g). Then, for each ball 𝐵 |𝑚 |-next to C, either B is entirely contained in an infinite fiber of f
(and hence f is constant on B, as desired) or 𝐵 ⊂ 𝑌 and g is constant on B. In that case, f is injective on
B since 𝑓 (𝑥1) = 𝑓 (𝑥2) for 𝑥1, 𝑥2 ∈ 𝐵 would imply that 𝑥1 and 𝑥2 lie in the same fiber of f, contradicting
that g is injective on each fiber of f.

(3) Use (2) to obtain a finite ∅-definable set C and an integer m such that on any ball |𝑚 |-next to C, f
is either constant or injective. Let 𝑊0 ⊂ 𝐾 × (Γ×

𝐾 )2 consist of those (𝑥, 𝜆, 𝜇) with 𝜇 ≤ 1 such that for
every 𝑦 ∈ 𝑓 (𝐵<𝜆 (𝑥)), there are open balls 𝐵′, 𝐵′′ with 𝑦 ∈ 𝐵′ ⊂ 𝑓 (𝐵<𝜆 (𝑥)) ⊂ 𝐵′′ and

radop 𝐵
′ ≥ 𝜇 radop 𝐵

′′.

We enlarge C and m, such that C also |𝑚 |-prepares this set 𝑊0.
The set C is already as desired, but m will later be enlarged to some 𝑚 · 𝑚′′. Note that we already

simplified the statement we will need to prove. First, it suffices to consider balls B which are contained
in a ball 𝐵1 |𝑚 |-next to C on which f is injective, and secondly, for each 𝜆 ≤ 1, it suffices to find a single
𝜆 · |𝑚′′ |-shrinking B of 𝐵1 for which the lemma holds (using some n which we still need to specify).
Indeed, the fact that 𝐶 𝑚-prepares 𝑊0 implies that then the lemma also holds for all translates of B
within 𝐵1 (using the same n).

Before we can continue, we need to do some preparation on the range side of f. We want to find a
finite ∅-definable D and a positive integer p such that for every 𝜆 ≤ 1 and every ball 𝐵 𝜆 |𝑚 |-next to C,
the set 𝑓 (𝐵) is 𝜆 |𝑝 |-prepared by D. To see that such a D exists, first note that by Lemma 2.3.1 (5), there
exists a 𝜆-definable map 𝑔𝜆 : 𝐾 → RV𝑘

|𝑛′ |
× RV |𝑚′ | ·𝜆 such that every ball 𝜆 |𝑚 |-next to C is a union of

fibers of 𝑔𝜆. We may assume (by compactness) that the maps 𝑔𝜆 form a ∅-definable family. Now apply
Proposition 2.3.2 to the set

𝑊 := {( 𝑓 (𝑥), 𝜆, 𝑔𝜆 (𝑥)) ∈ 𝐾 × Γ×
𝐾 × RV𝑘

|𝑛′ | ×
⋃
𝜇

RV𝜇 | 𝑥 ∈ 𝐾, 𝜆 ≤ 1}

and let D and p be the result. To see that this works, let 𝜆 ≤ 1 and 𝐵 𝜆 |𝑚 |-next to C be given. We have
𝐵 = 𝑔−1

𝜆 (Ξ) for Ξ := 𝑔𝜆 (𝐵), and the image 𝑓 (𝐵) consists of those 𝑦 ∈ 𝐾 for which the fiber 𝑊(𝑦,𝜆) is
not disjoint from Ξ. Since this fiber is constant when y runs over a ball 𝐵′ 𝜆 |𝑝 |-next to D, we either have
𝐵′ ⊂ 𝑓 (𝐵) or 𝐵′ ∩ 𝑓 (𝐵) = ∅, as desired.

Now that we constructed D and p (on the range side of f ), we construct another set 𝐶 ′ and integer 𝑚′

on the domain side of f. For 𝜆 ∈ Γ×
𝐾 , 𝜆 ≤ 1, use Lemma 2.3.1 to get a map ℎ𝜆 : 𝐾 → RV𝑘

|𝑝 |
× RV𝜆 |𝑛′′ |

such that each fibre is contained in a ball 𝜆 |𝑝 |-next to D. We may assume that ℎ𝜆 is a ∅-definable family
of maps, with a parameter 𝜆. Let 𝐶 ′ be a finite ∅-definable set which 𝜆 |𝑚′ |-prepares every map ℎ𝜆 ◦ 𝑓 .
This can again be done using Proposition 2.3.2.

We need one last ingredient before we can verify that the lemma holds. Since 𝐶 ′ is finite, there exists
an integer 𝑝′ ≥ 1 such that every ball 𝐵1 |𝑚𝑚′ |-next to C has a |𝑝′ |-shrinking 𝐵′

1 ⊂ 𝐵1 disjoint from 𝐶 ′.
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We now claim that the lemma holds using C, |𝑚𝑚′𝑝′ | and 𝑛 = 𝑚′𝑝′. According to the beginning
of the proof, it suffices to check that given a ball 𝐵1 |𝑚 |-next to C on which f is injective, and given a
𝜆 ≤ 1, there exists a 𝜆 · |𝑝′𝑚′ |-shrinking B of 𝐵1 for which the claim holds. Choose a |𝑝′ |-shrinking 𝐵′

1
of 𝐵1 disjoint from 𝐶 ′ and choose B to be any 𝜆 |𝑚′ |-shrinking of 𝐵′

1. To finish the proof, we show that
the lemma holds for this B.

On the one hand, since B is a 𝜆 · |𝑚′ |-shrinking of 𝐵′
1 (and 𝐵′

1 is disjoint from 𝐶 ′), B is contained
in a ball 𝜆 · |𝑚′ |-next to 𝐶 ′. By definition of 𝐶 ′, this means that ℎ𝜆 ◦ 𝑓 is constant on B, and hence (by
definition of ℎ𝜆), 𝑓 (𝐵) is contained in a ball 𝐵′′ 𝜆 |𝑝 |-next to D.

On the other hand, B is 𝜆 |𝑚𝑚′𝑝′ |-next to C, so that 𝑓 (𝐵) is 𝜆 |𝑝𝑚′𝑝′ |-prepared by D (by definition
of D). Thus, for any 𝑦 ∈ 𝑓 (𝐵), we obtain that the entire ball 𝐵′ 𝜆 |𝑝𝑚′𝑝′ |-next to D containing y is
contained in 𝑓 (𝐵). This ball 𝐵′ is just the (unique) |𝑚′𝑝′ |-shrinking of 𝐵′′ containing y; in particular,
radop 𝐵

′ = |𝑚′𝑝′ | radop 𝐵
′′, as desired.

(4) If the residue field of K has characteristic zero, then this is exactly [10, Lemma 2.8.4]. So we
may assume that we are in mixed characteristic (though the following proof easily also adapts to the
equicharacteristic zero case.) The family of radius 𝛼 open balls in M𝐾 can be definable parametrized
by the set Λ = rv𝛼 (M𝐾 ). Namely, for 𝜉 ∈ Λ, let 𝐵𝜉 ⊂ M𝐾 be the unique open ball of radius 𝛼
containing rv−1

𝛼 (𝜉). Using 1-hmix-minimality, we can find a finite set 𝐶 ⊂ 𝐾 and a positive integer m
such that 𝐶 |𝑚 |𝛼-prepares every set 𝑓 (𝐵𝜉 ), for every 𝜉 ∈ Λ. In other words, if 𝜉 ∈ Λ, and if 𝐵′ is an
open ball |𝑚 |𝛼-next to C then either 𝐵′ ⊂ 𝑓 (𝐵𝜉 ) or 𝐵′ ∩ 𝑓 (𝐵𝜉 ) = ∅. Now, if 𝐵′ has radius strictly larger
than 𝛽, then it follows that 𝐵′ ∩ 𝑓 (𝐵𝜉 ) = ∅. Therefore, 𝑓 (M𝐾 ) is contained in the union of C and all
balls |𝑚 |𝛼-next to C of radius at most 𝛽. This union is equal to the finite union of all closed balls of
the form 𝐵≤𝛽/( |𝑚 |𝛼) (𝑐), 𝑐 ∈ 𝐶. In particular the open ball 𝐵′ is contained in this finite union of closed
balls of radius 𝛽/(|𝑚 |𝛼). Since we are in mixed characteristic, there exists some positive integer q such
that radop 𝐵

′ ≤ 𝛽/(|𝑞 |𝛼). But then 𝐵′′ is an open ball containing 𝑓 (M𝐾 ) of radius at most 𝛽/(|𝑝𝑞 |𝛼),
finishing the proof. �

Finally, we can prove an approximate valuative Jacobian property in mixed characteristic. The lemma
and its proof are similar to [10, Lemma 2.8.5] and are sharpened to an actual Jacobian property below
in Corollary 3.1.3. Note that the sharpened version is obtained only using a huge detour, involving
approximations by second degree Taylor polynomials. We do not see a more direct proof of this
sharpened version.
Lemma 2.3.9 (Approximate valuative Jacobian property). Assume that T is 1-hmix-minimal. Let K be
a model of T and let 𝑓 : 𝐾 → 𝐾 be an A-definable function, for some 𝐴 ⊂ 𝐾 ∪RV |𝑛 | . Then there exists
a finite A-definable set C and a positive integer m such that for every ball 𝐵 |𝑚 |-next to C, there exists a
𝜇𝐵 ∈ Γ𝐾 such that for all 𝑥, 𝑦 ∈ 𝐵 we have

𝜇𝐵 |𝑚 | |𝑥 − 𝑦 | ≤ | 𝑓 (𝑥) − 𝑓 (𝑦) | ≤ 𝜇𝐵

���� 1
𝑚

����|𝑥 − 𝑦 |.

Proof. We may assume that 𝐴 = ∅ by Lemma 2.3.1. Using Lemma 2.3.8 (3), we can find a finite
∅-definable set 𝐶0 and positive integers 𝑚, 𝑛 such that
◦ f is constant or injective on balls |𝑚 |-next to 𝐶0, and
◦ if B is an open ball contained in a ball |𝑚 |-next to 𝐶0, then either 𝑓 (𝐵) is a singleton or there are open

balls 𝐵′ ⊂ 𝑓 (𝐵) ⊂ 𝐵′′ such that the radii of 𝐵′ and 𝐵′′ differ by at most |𝑛|.
For an open ball 𝐵 = 𝐵<𝛼 (𝑥) contained in a ball |𝑚 |-next to C on which f is injective, define 𝜇(𝑥, 𝛼) to be
the (convex) set of 𝜇 ∈ Γ×

𝐾 for which 𝑓 (𝐵) is contained in an open ball of radius 𝜇 and contains an open
ball of radius |𝑛|𝜇. Note that we have |𝑛|𝜇(𝑥, 𝛼) ≤ 𝜇(𝑥, 𝛼), in the sense that for every 𝜈 ∈ |𝑛|𝜇(𝑥, 𝛼)
and every 𝜈′ ∈ 𝜇(𝑥, 𝛼), we have 𝜈 ≤ 𝜈′. (In the following, inequalities between convex subsets of Γ𝐾

are always meant in this sense.) Also define

𝑠(𝑥, 𝛼) = {𝜇/𝛼 | 𝜇 ∈ 𝜇(𝑥, 𝛼)}.

(An element 𝜈 ∈ 𝑠(𝑥, 𝛼) is a kind of ‘scaling factor’: the ball 𝐵<𝛼 (𝑥) is sent into a ball of radius 𝛼𝜈.)
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We will now enlarge C and m to obtain the following claim. As a side remark, note that we will keep
n fixed for the entire proof so that the definitions of 𝜇(𝑥, 𝛼) and 𝑠(𝑥, 𝛼) are unaltered.

Claim 1. By possibly enlarging C and m, we can achieve that

(1) 𝜇(𝑥, 𝛼) and 𝑠(𝑥, 𝛼) are independent of x as x runs over a ball |𝑚 |-next to C,
(2) if 𝐵<𝛼 (𝑥) and 𝐵<𝛽 (𝑦) are open balls contained in the same ball |𝑚 |-next to C and 𝛼 ≤ 𝛽, then

𝑠(𝑦, 𝛽) ≤ 𝑠(𝑥, 𝛼)/|𝑚 |.

To prove Claim 1, let 𝑊 ⊂ 𝐾 × (Γ×
𝐾 )2 consist of those (𝑥, 𝜆, 𝜇) such that 𝑓 (𝐵<𝜆 (𝑥)) is contained in

a ball 𝐵′ of radius 𝜇, and contains a ball of radius |𝑛|𝜇. Enlarge C and m such that 𝐶 |𝑚 |-prepares this
set W. Note that item (1) of the claim then holds by preparation. Let B be |𝑚 |-next to C. If f is constant
on B, then there is nothing to check, so we can assume that f is injective on B. By item (1), 𝜇(𝑥, 𝛼) and
𝑠(𝑥, 𝛼) are constant when x runs over B and 𝛼 ≤ radop 𝐵 is fixed, so we write simply 𝜇(𝛼) and 𝑠(𝛼).
It remains to prove item (2) of Claim 1 (after possibly enlarging m once more). Fix 𝜇 ∈ 𝜇(𝛼) and take
𝛼 ≤ 𝛽 ≤ radop 𝐵. Then any ball of radius 𝛼 inside B has image under f contained in a ball of radius
at most 𝜇. Hence, by a rescaled version of Lemma 2.3.8(4), there exists an integer 𝑝 ≥ 1 such that for
𝑥 ∈ 𝐵, the image 𝑓 (𝐵<𝛽 (𝑥)) is contained in an open ball of radius 𝜇 ·𝛽

|𝑝 | ·𝛼 . In particular, we have

|𝑛|𝜇(𝛽) ≤
𝜇(𝛼) · 𝛽

|𝑝 | · 𝛼
.

But this means precisely that

𝑠(𝛽) ≤ 𝑠(𝛼)/|𝑛𝑝 |,

which proves Claim 1 (after replacing m by, for example, 𝑚𝑛𝑝).
To prove the lemma, we also need an inequality opposite to the one of Claim 1 (2).

Claim 2. After possibly further enlarging C and m, in Claim 1 (2), we can additionally obtain

𝑠(𝑦, 𝛼) ≤ 𝑠(𝑥, 𝛽)/|𝑚 |.

The idea of the proof of Claim 2 is to apply Claim 1 to 𝑓 −1 (which, in reality, only exists piecewise).
This is made precise as follows:

Denote by Y the set of 𝑦 ∈ 𝐾 for which 𝑓 −1(𝑦) is finite. This is a cofinite ∅-definable set in K, by
Lemmas 2.3.1 and 2.3.8 (1). Use Lemma 2.3.1 (4) to obtain a ∅-definable family of injections

ℎ𝑦 : 𝑓 −1(𝑦) → RV𝑘
|𝑛0 |

,

for 𝑦 ∈ 𝑌 . For 𝜂 ∈ RV𝑘
|𝑛0 |

, define

𝑌𝜂 = {𝑦 ∈ 𝑌 | 𝜂 ∈ im ℎ𝑦},

𝑔𝜂 : 𝑌𝜂 → 𝐾 : 𝑦 ↦→ ℎ−1
𝑦 (𝜂).

Then we have that ⋃
𝑦∈𝑌

{𝑦} × 𝑓 −1(𝑦) =
⊔

𝜂∈RV𝑘
|𝑛0 |

graph(𝑔𝜂).

For each 𝜂, apply Lemma 2.3.8 (3) to 𝑔𝜂 (extended by 0 outside of 𝑌𝜂) to obtain a finite 𝜂-definable set
𝐷𝜂 and integers 𝑚𝜂 , 𝑛𝜂 . By compactness, we may take 𝑛′ := 𝑛𝜂 independent of 𝜂. Now enlarge 𝐷𝜂

and 𝑚𝜂 using Claim 1, so that (1) and (2) hold for 𝑔𝜂 (where the corresponding 𝜇 and s are defined
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using 𝑛′). We may, moreover, assume that 𝐷𝜂 |𝑚𝜂 |-prepares 𝑌𝜂 (enlarging 𝐷𝜂 and 𝑚𝜂 once more, if
necessary). After that, apply compactness once more to make 𝑚′ := 𝑚𝜂 independent of 𝜂 and to turn
(𝐷𝜂)𝜂 into a ∅-definable family. By Corollary 2.3.6, the union 𝐷 =

⋃
𝜂 𝐷𝜂 is a finite ∅-definable set.

Using Lemma 2.3.1 (5), take a ∅-definable function 𝜒 : 𝐾 → RV𝑘′

|𝑛1 |
such that every ball |𝑚′ |-next to

D is a union of fibres of 𝜒. Then choose 𝐶2 and 𝐶3 such that, after possibly enlarging m, 𝐶2 |𝑚 |-prepares
the family of sets 𝑓 −1(𝜒−1(𝜂)) for 𝜂 ∈ RV𝑘′

|𝑛1 |
, and 𝐶3 |𝑚 |-prepares the family of images 𝑔𝜂 (𝑌𝜂). We

will now prove that Claim 2 holds after replacing C by𝐶∪𝐶2∪𝐶3 (and some further enlargement of m).
So suppose that we have open balls 𝐵1, 𝐵 with radop 𝐵1 = 𝛼 ≤ radop 𝐵 = 𝛽 which are contained in

the same ball |𝑚 |-next to C. If f is constant on B, then we are done, so assume that f is injective on B.
We may assume that 𝐵1 ⊂ 𝐵 since 𝜇(𝑥, 𝛼) is independent of x as x runs over B. Let 𝐵′ ⊂ 𝑓 (𝐵) ⊂ 𝐵′′ be
open balls whose radii differ by at most |𝑛|. By definition of 𝐶2, 𝜒 ◦ 𝑓 is constant on B, so (by definition
of 𝜒), 𝑓 (𝐵) is contained in a ball |𝑚′ |-next to D. Perhaps after shrinking 𝐵′′, we can assume that also
𝐵′′ is contained in a ball |𝑚′ |-next to D. By definition of 𝐶3, there is a (unique) 𝜂 ∈ RV𝑘

|𝑛0 |
such that

𝐵 ⊂ 𝑔𝜂 (𝑌𝜂); this implies that 𝑓 |𝐵 and 𝑔𝜂 | 𝑓 (𝐵) are mutually inverse bijections between B and 𝑓 (𝐵).
Using that we applied Lemma 2.3.8 to 𝑔𝜂 , take open balls �̃�′ ⊂ 𝑔𝜂 (𝐵

′) ⊂ 𝐵
′ whose radii differ by at

most |𝑛′ | and do the same with open balls �̃�′′ ⊂ 𝑔𝜂 (𝐵
′′) ⊂ 𝐵

′′. Note that we have a chain of inclusions

�̃�′ ⊂ 𝑔𝜂 (𝐵
′) ⊂ 𝑔𝜂 ( 𝑓 (𝐵)) = 𝐵 ⊂ 𝑔𝜂 (𝐵

′′) ⊂ 𝐵
′′
.

Choose similar balls corresponding to 𝐵1: 𝐵′
1, 𝐵

′′
1 , �̃�

′
1, . . . . We may certainly assume that radop 𝐵

′
1 ≤

radop 𝐵
′′. Therefore, our application of Claim 1 to 𝑔𝜂 yields that

radop 𝐵
′′

radop 𝐵′′
≤

radop 𝐵
′

1
|𝑚′ | radop 𝐵

′
1
.

Combining this with radop 𝐵 ≤ radop 𝐵
′′, |𝑛′ | radop 𝐵

′

1 ≤ radop �̃�
′
1 ≤ radop 𝐵1 and |𝑛| radop 𝐵

′′
1 ≤

radop 𝐵
′
1, we obtain

radop 𝐵

radop 𝐵′′
≤

radop 𝐵
′′

radop 𝐵′′
≤

radop 𝐵
′

1
|𝑚′ | radop 𝐵

′
1
≤

radop 𝐵1

|𝑛′𝑚′ | radop 𝐵
′
1
≤

radop 𝐵1

|𝑛𝑛′𝑚′ | radop 𝐵
′′
1
.

Since radop 𝐵′′
1

radop 𝐵1
∈ 𝑠(𝛼) and radop 𝐵′′

radop 𝐵 ∈ 𝑠(𝛽), we deduce

𝑠(𝛼) ≤ 𝑠(𝛽)/|𝑛3𝑛′𝑚′ |

(where the additional factor 𝑛2 takes into account the length of the convex sets 𝑠(𝛼) and 𝑠(𝛽)). This
finishes the proof of Claim 2 (where we take m to be a multiple of 𝑛3𝑛′𝑚′).

We are now ready to prove the lemma itself. Take 𝑥, 𝑦 in the same ball 𝐵 |𝑚 |-next to C. Denote by 𝛽
the open radius of B. Let 𝜇 ∈ 𝜇(𝑥, 𝛽), so that 𝑓 (𝐵) is contained in a ball of radius 𝜇 and contains a ball
of radius |𝑛|𝜇. We will show that we can take 𝜇𝐵 = 𝜇/𝛽.

If we choose 𝛼 > |𝑥 − 𝑦 |, then x and y are contained in an open ball of radius 𝛼. If we, moreover,
choose 𝜇′ ∈ 𝜇(𝑥, 𝛼), then 𝑓 (𝑥), 𝑓 (𝑦) are contained in an open ball of radius 𝜇′. Thus,

| 𝑓 (𝑥) − 𝑓 (𝑦) |/𝛼 < 𝜇′/𝛼 ≤
1
|𝑚 |

𝜇/𝛽.

Since this holds for any 𝛼 > |𝑥 − 𝑦 |, this gives that

| 𝑓 (𝑥) − 𝑓 (𝑦) | ≤
1
|𝑚 |

𝜇

𝛽
|𝑥 − 𝑦 |.
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For the other inequality, set 𝛼 = |𝑥 − 𝑦 | and denote by 𝐵′ the open ball of radius 𝛼 around x. By
the injectivity of f on B, 𝑓 (𝑦) is not in 𝑓 (𝐵′). But 𝑓 (𝐵′) contains an open ball of radius |𝑛|𝜇′ (for
𝜇′ ∈ 𝜇(𝑥, 𝛼), as before) and so

| 𝑓 (𝑥) − 𝑓 (𝑦) |/𝛼 ≥ |𝑛|𝜇′/𝛼 ≥ |𝑛𝑚 |𝜇/𝛽.

Thus,

| 𝑓 (𝑥) − 𝑓 (𝑦) | ≥ |𝑚𝑛|
𝜇

𝛽
|𝑥 − 𝑦 |.

This proves the Lemma. �

We now already obtain a part of Theorem 2.2.8.

Corollary 2.3.10. Any 1-hmix-minimal theory T satisfies (T1,T2).

Proof. This is direct from Item (1) from Lemma 2.3.8 and Lemma 2.3.9. �

2.4. Basic results under (T1,T2)

We now prove some consequences of T satisfying (T1,T2) in the sense of Definition 2.2.7. First note that
by applying (T1mix) to the characteristic function of an A-definable set 𝑋 ⊂ 𝐾 , for some 𝐴 ⊂ 𝐾 ∪RV |𝑛 | ,
we obtain a finite A-definable set 𝐶 ⊂ 𝐾 |𝑚 |-preparing X for some 𝑚 ≥ 1. In Lemma 2.4.1, we will
see that in (T1mix), we can even take C to be (𝐴 ∩ 𝐾)-definable, so that T is 0mix-h-minimal. For the
moment, note that the above weaker statement already suffices to obtain ∃∞-elimination (namely, (3) of
Lemma 2.3.1).

Lemma 2.4.1. Assume that T satisfies (T1,T2). Let K be a model of T . Then

(1) (RV𝜆-unions stay finite [10, Lemma 2.9.4]). If 𝐶𝜉 ⊂ 𝐾 is a definable family (with parameters) of
finite sets, parametrized by 𝜉 ∈ RV𝑘

𝜆, then
⋃

𝜉 𝐶𝜉 is still finite.
(2) (Eliminating RV-parameters [10, Lemma 2.9.5]). If 𝑓 : 𝐾 → 𝐾 is A-definable for some 𝐴 ⊂

𝐾 ∪ RV |𝑛 | , then we can find a finite (𝐴 ∩ 𝐾)-definable set C and an integer m such that f satisfies
property (T1mix) with respect to C and m. In particular, T is 0-hmix-minimal.

The following proof is the same as in [10].

Proof of Lemma 2.4.1. (1) We induct on k, so first assume that 𝑘 = 1. Using ∃∞-elimination, we
may assume that the cardinality of 𝐶𝜉 is constant, say, equal to m. Let 𝜎1, . . . , 𝜎𝑚 be the elementary
symmetric polynomials in m variables, considered as functions on m-element-subsets of K. Then the
map 𝐾 𝑘 → 𝐾, 𝑥 ↦→ 𝜎𝑖 (𝐶rv𝜆 (𝑥) ) is locally constant everywhere except possibly at 0, so by (T2), it has
finite image. Since 𝜎1(𝐶𝜉 ), . . . , 𝜎𝑚(𝐶𝜉 ) together determine 𝐶𝜉 , there are only finitely many different
𝐶𝜉 .

For arbitrary k, consider 𝐶𝜉 as a definable family 𝐶𝜉1 , 𝜉2 with 𝜉1 ∈ RV𝜆 and 𝜉2 ∈ RV𝑘−1
𝜆 . Then by

induction on k, the union ∪𝜉𝐶𝜉 = ∪𝜉1∈RV𝜆 ∪𝜉2∈RV𝑘𝜆
𝐶𝜉1 , 𝜉2 is finite.

(2) Using (T1mix), we find an A-definable C. We consider C as an (𝐴 ∩ 𝐾)-definable family 𝐶𝜉 ,
parametrized by 𝜉 ∈ RV𝑘

|𝑛 | . Using (1), the union 𝐶 ′ = ∪𝜉 ∈RV𝑘
|𝑛|
𝐶𝜉 is (𝐴 ∩ 𝐾)-definable, finite, and f

satisfies (T1mix) with respect to 𝐶 ′. �

Now that we know that any theory T satisfying (T1,T2) is 0mix-h-minimal, we can use Corollary
2.3.4 and Lemma 2.3.1.

The following is a first adaptation of [10, Lemma 2.9.6]. In Corollary 3.1.3, we will obtain an
adaptation which is better in the sense that it has a more precise conclusion (and more similar to the
equi-characteristic 0 case).
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Lemma 2.4.2 (Images of balls). Assume that T satisfies (T1,T2). Let 𝑓 : 𝐾 → 𝐾 be A-definable, for
some 𝐴 ⊂ 𝐾 ∪ RV |𝑛 | . Then there exists a finite A-definable C and a positive integer m such that (T1mix)
holds for f and C and m and such that the following holds for any ball 𝐵 |𝑚 |-next to C. Let 𝐵′ ⊂ 𝐵 be
an open ball and let 𝜇𝐵 be as in (T1mix). Then for every 𝑥 ∈ 𝐵′, there are open balls 𝐵1, �̃�1 such that
𝑓 (𝑥) ∈ �̃�1 ⊂ 𝑓 (𝐵′) ⊂ 𝐵1, and moreover,

|𝑚 |𝜇𝐵 radop (𝐵
′) ≤ radop (�̃�1) ≤ radop(𝐵1) ≤

���� 1
𝑚

����𝜇𝐵 radop (𝐵
′).

Proof. Using Lemma 2.3.1 we may as well assume that 𝐴 = ∅. Take a finite ∅-definable set C and an
integer m such that (T1mix) holds for f with respect to C and m. Let 𝜒 : 𝐾 → RV𝑘

|𝑝 |
be a ∅-definable

map coming from Lemma 2.3.1(5) for 𝐶, 𝑚. So every ball |𝑚 |-next to C is a union of fibres of 𝜒 and
every ball |𝑛′ |-next to C is contained in a fibre of 𝜒. Let D be a finite ∅-definable set |𝑛|-preparing the
family ( 𝑓 (𝜒−1(𝜂)))𝜂∈RV𝑘

|𝑝 |
; here, we use Corollary 2.3.4. Let 𝜓 : 𝐾 → RV𝑘′

|𝑝′ |
be a ∅-definable map

such that every ball |𝑛|-next to D is a union of fibres of 𝜓 and every ball |𝑛′′ |-next to D is contained in
a fibre of 𝜓. Finally, use Corollary 2.3.4 again to |𝑞 |-prepare the family ( 𝑓 −1(𝜓−1 (𝜂)))𝜂∈RV𝑘′

|𝑝′ |
with a

finite ∅-definable set 𝐶0.
We claim that 𝐶 ′ = 𝐶 ∪ 𝐶0 suffices. So let 𝐵′ be a ball |𝑞 |-next to 𝐶 ′ and let B be the ball |𝑚 |-next

to C containing 𝐵′. We can assume that 𝜇𝐵 ≠ 0, for else f is constant on B. Fix any open ball 𝐵′′ in 𝐵′

and let 𝑥, 𝑦 ∈ 𝐵′′. Then

| 𝑓 (𝑥) − 𝑓 (𝑦) | ≤
𝜇𝐵

|𝑚 |
|𝑥 − 𝑦 | <

𝜇𝐵

|𝑚 |
radop 𝐵

′′.

Therefore, if we denote by 𝐵′′
1 the open ball of radius 𝜇𝐵

|𝑚 |
radop 𝐵

′′ around 𝑓 (𝑥), then 𝑓 (𝐵′′) is contained
in 𝐵′′

1 . By definition of 𝐶0, 𝑓 (𝐵′) is contained in a ball 𝐵1 |𝑛|-next to D. However, 𝑓 (𝐵) is |𝑛|-prepared
by D. Since 𝐵1 ∩ 𝑓 (𝐵) ≠ ∅, we have

𝑓 (𝐵′′) ⊂ 𝑓 (𝐵′) ⊂ 𝐵1 ⊂ 𝑓 (𝐵).

Using property (T1mix), we see that

radop 𝐵1 ≥ |𝑚 |𝜇𝐵 radop 𝐵
′.

Now take 𝑧 ∈ 𝐾 such that | 𝑓 (𝑥) − 𝑧 | < |𝑚 |𝜇𝐵 radop 𝐵
′′. Then we have 𝑧 ∈ 𝐵1 ⊂ 𝑓 (𝐵), and so there is

some 𝑥 ′ ∈ 𝐵 with 𝑓 (𝑥 ′) = 𝑧. Applying (T1mix) one more time yields that

|𝑥 − 𝑥 ′ | ≤
1

|𝑚 |𝜇𝐵
| 𝑓 (𝑥) − 𝑓 (𝑥 ′) | < radop 𝐵

′′.

We conclude that 𝑓 (𝐵′′) contains the open ball of radius |𝑚 |𝜇𝐵 radop 𝐵
′′ around 𝑓 (𝑥). �

2.5. Basic results under 1-hecc-minimality

We provide the tools necessary to transfer preparation results to mixed characteristic, starting from
1-hecc-minimality. We prove part of Theorem 2.2.8 which states that 1-hecc-minimality implies 1-hmix-
minimality.

Notation 2.5.1. The notion of balls 𝜆-next to a finite set 𝐶 ⊂ 𝐾 now has different meanings for | · | and
for | · |ecc, with notation from Definition 2.1.3. To make clear which of the valuations we mean, we either
write |1|-next or |1|ecc-next (instead of just 1-next).

https://doi.org/10.1017/fms.2023.91 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.91


Forum of Mathematics, Sigma 15

Remark 2.5.2. Suppose that | · |ecc is nontrivial on K. For any 𝑥, 𝑥 ′ ∈ 𝐾 , we have

|𝑥 |ecc ≤ |𝑥 ′ |ecc ⇐⇒ ∃𝑚 ∈ N≥1 : |𝑚 · 𝑥 | ≤ |𝑥 ′ |, (2.5.1)

and given a finite set 𝐶 ⊂ 𝐾 , the points x and 𝑥 ′ lie in the same ball |1|ecc-next to C if and only if for
every integer 𝑚 ≥ 1, they lie in the same ball |𝑚 |-next to C.

Assuming 1-hecc-minimality of K as an Lecc-structure, we will be able to find finite Lecc-definable
sets. To get back to the smaller language L, we will use the following lemma:

Lemma 2.5.3 (From Lecc-definable to L-definable). Let T be 1-hecc-minimal. Let K be a model of T
which is ℵ0-saturated and strongly ℵ0-homogeneous as an Leq-structure. (Note that this, in particular,
implies that | · |ecc is nontrivial.) Then, any finite Lecc-definable set, 𝐶 ⊂ 𝐾 is already L-definable.

Remark 2.5.4. It is a standard result that every model K has an elementary extension satisfying the
properties of the lemma. Indeed, any model which is special in the sense of [22, Definition 6.1.1]
is strongly ℵ0-homogeneous by [22, Theorem 6.1.6], and it is easy to construct ℵ0-saturated special
models.

Proof of Lemma 2.5.3. It suffices to prove that for any 𝑎 ∈ 𝐶, all realizations of 𝑝 := tpL (𝑎/∅) lie in C;
indeed, by ℵ0-saturation, this then implies that p is algebraic (using that C is finite) and hence isolated
by some formula 𝜙𝑝 (𝑥). Therefore, C is defined by the disjunction of finitely many such 𝜙𝑝 (𝑥).

So now suppose for contradiction that there exist 𝑎 ∈ 𝐶 and 𝑎′ ∈ 𝐾 \ 𝐶 which have the same L-
type over ∅. Then by our homogeneity assumption, there exists an L-automorphism of K sending a
to 𝑎′ (and hence not fixing C setwise). Such an automorphism also preserves Oecc and hence is an
Lecc-automorphism, but this contradicts C being Lecc-definable. �

We obtain yet another part of Theorem 2.2.8.

Corollary 2.5.5. Assume that T is 1-hecc-minimal. Then T is 1-hmix-minimal.

Proof. By Remark 2.5.4, we may consider a model K of T which is sufficiently saturated and sufficiently
homogeneous (as in Lemma 2.5.3). Consider an integer n, 𝜆 ∈ Γ×

𝐾 , 𝐴 ⊂ 𝐾 , 𝜉 ∈ RV𝜆, 𝜂 ∈ RV𝑘
|𝑛 | for

some integers 𝑘, 𝑛 > 0, and an L(𝐴 ∪ {𝜂, 𝜉})-definable set 𝑋 ⊂ 𝐾 . We have to show that X can be
|𝑚 | · 𝜆-prepared by some finite L(𝐴)-definable set C for some integer 𝑚 > 0.

Let 𝜆ecc be the image of 𝜆 in Γ𝐾,ecc. Since 𝐵<𝜆ecc (1) ⊂ 𝐵<𝜆 (1), we have a canonical surjection
RV𝜆ecc → RV𝜆. Similarly, there is a canonical surjection RVecc → RV |𝑛 | . We fix any preimage
(𝜉ecc, 𝜂ecc) ∈ RV𝜆ecc × RV𝑘

ecc of (𝜉, 𝜂), so that X is L(𝐴 ∪ {𝜉ecc, 𝜂ecc})-definable. By 1-h-minimality for
the Lecc-structure on K, there exists a finite Lecc(𝐴)-definable set C such that for every pair 𝑥, 𝑥 ′ in the
same ball 𝜆ecc-next to C, we have 𝑥 ∈ 𝑋 ⇐⇒ 𝑥 ′ ∈ 𝑋 . By Lemma 2.5.3, C is already L(𝐴)-definable;
we claim that it is as desired. Suppose for contradiction that there exists no m as in the corollary; that is,
for every integer 𝑚 ≥ 1, there exists a pair of points (𝑥, 𝑥 ′) ∈ 𝐾2 which lie in the same ball 𝜆 · |𝑚 |-next to
C such that 𝑥 ∈ 𝑋 but 𝑥 ′ ∉ 𝑋 . By ℵ0-saturation (in the language L), we find a single pair (𝑥, 𝑥 ′) ∈ 𝐾2 of
points with 𝑥 ∈ 𝑋 but 𝑥 ′ ∉ 𝑋 and which lie in the same ball 𝜆 · |𝑚 |-next to C for every 𝑚 ≥ 1. The latter
implies that x and 𝑥 ′ lie in the same ball 𝜆ecc-next to C (by Remark 2.5.2), so we get a contradiction to
our choice of C. �

2.6. Resplendency

In order to prove that (3) implies (1) in Theorem 2.2.8, we will need a way to add the coarsened
valuation ring to the language. This is made possible via a mixed characteristic resplendency result, as
in [10, Section 4]. All proofs in this subsection work exactly as in [10]; one just needs to replace RV𝐼

by
⋃

𝑛 RV𝑛𝐼 everywhere (where I is an ideal of O𝐾 ). For completeness, we nevertheless give most of
the details.
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Fix a∅-definable ideal I ofO𝐾 which is neither {0} nor equal toO𝐾 . Call a languageL′ an
⋃

𝑛 RV𝑛𝐼 -
expansion of L if L′ is obtained from L by adding (any) predicates which live on Cartesian products of
the (imaginary) definable sets RV𝑛𝐼 for some 𝑛 > 0. (Recall that RV𝐼 has been defined in 2.1.)

In the following, we assume that K is 𝜅-saturated for some 𝜅 > |L|; we call a set ‘small’ if its
cardinality is less than 𝜅, and ‘large’ otherwise.

Definition 2.6.1 (Mixed-I-preparation). We say that K has mixed- I-preparation if for every integer n,
every set 𝐴 ⊂ 𝐾 and every (𝐴 ∪ RV𝑛𝐼 )-definable subset 𝑋 ⊂ 𝐾 , there exists a finite A-definable set
𝐶 ⊂ 𝐾 and an integer m such that X is 𝑚𝐼-prepared by C.

We say that K has resplendent mixed- I-preparation if for every set 𝐴 ⊂ 𝐾 , for every
⋃

𝑛 RV𝑛𝐼 -
expansion L′ of L and for every L′(𝐴)-definable subset 𝑋 ⊂ 𝐾 , there exists an integer m and a finite
L(𝐴)-definable set 𝐶 ⊂ 𝐾 such that X is 𝑚𝐼-prepared by C.

Clearly, resplendent mixed-I-preparation implies mixed-I-preparation.
We consider the language L as having the sorts K and RVnI for each 𝑛 > 0. Moreover, let LI be the

language with the same sorts but consisting only of the additive group on K and the maps rvnI .

Lemma 2.6.2 (Preparation and partial isomorphisms). Let 𝐴 ≤ 𝐾 be a small Q-sub-vector space. The
following are equivalent:

(i) Any L(𝐴∪
⋃

𝑛 RV𝑛𝐼 )-definable set 𝑋 ⊂ 𝐾 can be 𝑚𝐼-prepared, for some integer m, by some finite
set 𝐶 ⊂ 𝐴.

(ii) For every small subset 𝐴2 ⊂ 𝐾 , 𝑐1, 𝑐2 ∈ 𝐾 and all (potentially large) sets 𝐵1, 𝐵2 ⊂
⋃

𝑛 RV𝑛𝐼

with
⋃

𝑛 rv𝑛𝐼 (〈𝐴, 𝑐1〉) ⊂ 𝐵1, if 𝑓 : 𝐴𝐵1𝑐1 → 𝐴2𝐵2𝑐2 is a partial L𝐼 -isomorphism sending 𝑐1 to
𝑐2 whose restriction 𝑓 |𝐴𝐵1 is a partial elementary L-isomorphism, then the entire f is a partial
elementary L-isomorphism.

(iii) For all 𝑐1, 𝑐2 ∈ 𝐾 and all (potentially large) sets 𝐵 ⊂ RV𝑛𝐼 which contain
⋃

𝑛 rv𝑛𝐼 (〈𝐴, 𝑐1〉), any
partial L𝐼 (𝐴∪ 𝐵)-isomorphism 𝑓 : {𝑐1} → {𝑐2}, is a partial elementary L(𝐴∪ 𝐵)-isomorphism.

Proof. (i) ⇒ (iii): Let f be as in (iii). We have to check that for every L(𝐴 ∪ 𝐵)-definable set 𝑋 ⊂ 𝐾 ,
𝑐1 ∈ 𝑋 if and only if 𝑐2 ∈ 𝑋 . By (i), there exists a finite 𝐶 ⊂ 𝐴 and an integer m such that X is 𝑚𝐼-
prepared by C. Since f is an L𝐼 (𝐴 ∪ 𝐵)-isomorphism and B contains rv𝑚𝐼 (〈𝐴, 𝑐1〉), for all 𝑎 ∈ 𝐶 and
all 𝑟 ≥ 1, we have

rv𝑚𝐼 (𝑐2 − 𝑎) = rv𝑚𝐼 ( 𝑓 (𝑐1) − 𝑎) = 𝑓 (rv𝑚𝐼 (𝑐1 − 𝑎)) = rv𝑚𝐼 (𝑐1 − 𝑎).

Since X is I-prepared by C, it follows that 𝑐1 ∈ 𝑋 if and only if 𝑐2 ∈ 𝑋 .
(iii) ⇒ (ii): Let f be as in (ii). Since f is L-elementary if and only its restriction to every finite

domain is, we may assume 𝐵𝑖 small. Using the assumption that 𝑓 |𝐴𝐵1 is L-elementary, we can extend
( 𝑓 |𝐴𝐵1)

−1 L-elementarily to some g defined at 𝑐2. Let 𝑐′1 := 𝑔(𝑐2). Then 𝑔◦ 𝑓 : {𝑐1} → {𝑐′1} is a partial
L𝐼 (𝐴 ∪ 𝐵1)-isomorphism. Since

⋃
𝑛 rv𝑛𝐼 (〈𝐴, 𝑐1〉) ⊂ 𝐵1, it follows by (iii) that 𝑔 ◦ 𝑓 is an elementary

L-isomorphism. As g is also L-elementary, so is f.
(ii) ⇒ (i): Let X be as in (i), and let 𝐵 ⊂

⋃
𝑛 RV𝑛𝐼 be a finite subset such that X is L(𝐴∪𝐵)-definable.

Let L′
𝐼 denote the expansion of LI by the full L(A)-induced structure on

⋃
nRVnI .

Consider any 𝑐1, 𝑐2 ∈ 𝐾 which have the same qf-L′
𝐼 -type over 𝐴∪𝐵. Then the map 𝑓 : 𝑐1 → 𝑐2 is an

L′
𝐼 (𝐴 ∪ 𝐵)-isomorphism and extends to 𝑓 : 𝐴𝐵1𝑐1 → 𝐴2𝐵2𝑐2, where 𝐵𝑖 := 𝐵 ∪

⋃
𝑛 rv𝑛𝐼 (〈𝐴, 𝑐𝑖〉). By

definition of L′
𝐼 , the restriction 𝑓 |𝐴𝐵1 is L-elementary, so by (ii), the map f is L-elementary. Moreover,

since f is the identity on 𝐴 ∪ 𝐵, this implies that 𝑐1 and 𝑐2 have the same L-type over 𝐴 ∪ 𝐵.
We just proved that the L(𝐴∪ 𝐵)-type of any element 𝑐 ∈ 𝐾 is implied by its qf-L′

𝐼 (𝐴∪ 𝐵)-type. By
a classical compactness argument (cf. the proof of [22, Theorem 3.2.5]), it follows that any L(𝐴 ∪ 𝐵)-
formula in one valued field variable is equivalent to a quantifier free L′

𝐼 (𝐴 ∪ 𝐵)-formula. In particular,
this applies to our set X. Since L′

𝐼 (𝐵) is an
⋃

𝑛 RV𝑛𝐼 -expansion of L𝐼 , X is indeed mI-prepared by some
finite C ⊆ A. �

We can now prove, exactly as in [10, Lemma 4.1.16]:
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Lemma 2.6.3 (Back and forth over
⋃

𝑛 RV𝑛𝐼 ). Let K have mixed-I-preparation. Then the set of partial
elementary L-isomorphisms 𝑓 :

⋃
𝑛 RV𝑛𝐼 ∪ 𝐴1 →

⋃
𝑛 RV𝑛𝐼 ∪ 𝐴2 (where 𝐴1, 𝐴2 run over all small

subsets of K) has the back-and-forth (i.e., given such an f and a 𝑐1 ∈ 𝐾 \ 𝐴1, f can be extended to a
partial elementary L-isomorphism on

⋃
𝑛 RV𝑛𝐼 ∪ 𝐴1 ∪ {𝑐1}).

Proof. Let 𝐴1, 𝐴2, 𝑓 , 𝑐1 be given. We may assume that acl𝐾 𝐴𝑖 = 𝐴𝑖 . Set 𝐵1 :=
⋃

𝑛 rv𝑛𝐼 (〈𝐴1, 𝑐1〉Q). We
claim that we can extend f by setting 𝑓 (𝑐1) := 𝑐2 for any 𝑐2 ∈ 𝐾 realizing 𝑓∗qftpL𝐼 (𝑐1/𝐴1𝐵1). To see
this, we use 2.6.2 (i)⇒(ii) (i.e., we need to verify that 𝑓 |𝐴1𝐵1 is a partial elementary L-automorphism
(this is clear by assumption) and that f is a partial L𝐼 -isomorphism). This follows from the restrictions
𝑓 |𝐴1𝐵1𝑐1 and 𝑓 |⋃

𝑛 RV𝑛𝐼 being partial L𝐼 -isomorphisms, since the only L𝐼 -interaction between 𝐴1𝑐1 and⋃
𝑛 RV𝑛𝐼 is via 𝐵1. �

And finally, as in [10, Proposition 4.1.7], we have the following:

Proposition 2.6.4. Assuming K is 𝜅-saturated for some 𝜅 > |L|, the following are equivalent:

(i) K has mixed-I-preparation.
(ii) K has resplendent mixed-I-preparation.

Proof. (ii) ⇒ (i) is trivial, so we assume (i) and prove (ii). Let L′ ⊃ L be an
⋃

𝑛 RV𝑛𝐼 -expansion and
suppose that 𝑋 ⊂ 𝐾 is L′(𝐴)-definable, for some 𝐴 ⊂ 𝐾 . We need to find a finite L(𝐴)-definable𝐶 ⊂ 𝐾
𝑚𝐼-preparing X for some 𝑚 ≥ 1. We may replace K by a sufficiently saturated elementary extension.
We may also assume that 𝐴 = aclL,𝐾 (𝐴) (since every finite aclL,𝐾 (𝐴)-definable set is contained
in a finite A-definable set). Now we are in the setting of Lemma 2.6.2. Applying the lemma for L′

shows that it suffices to verify that every partial L𝐼 ( �̃�)-isomorphism 𝑓 : {𝑐1} → {𝑐2} is an elementary
L′( �̃�)-isomorphism, for �̃� := 𝐴 ∪

⋃
𝑛 RV𝑛𝐼 , and applying the lemma for L shows that such an f is an

elementary L( �̃�)-isomorphism. Thus, we can finish the proof by showing (more generally) that any
elementary L( �̃�)-isomorphism 𝑓 : 𝐵1 → 𝐵2 is already an elementary L′( �̃�)-isomorphism, for small
sets 𝐵1, 𝐵2 ⊂ 𝐾 . We show that such f preserve every L′( �̃�)-formula, by induction over the structure of
the formula. For quantifier free formulas, this is clear. To deal with an existence quantifier, use Lemma
2.6.3 to extend f to a realization of the existential quantifier. �

We now get the analogue of [10, Theorem 4.1.19] (about
⋃

nRVn-expansions preserving Hensel
minimality), where the case with ℓ = 1 is replaced by conditions (T1,T2). Once we will have proved
Theorem 2.2.8 in full, we recover the case ℓ = 1 as well.

Proposition 2.6.5.

(i) If T is ℓ-hmix-minimal for some ℓ ∈{0, 𝜔}, then any
⋃

nRVn-expansion also is ℓ-hmix-minimal.
(ii) If T satisfies (T1,T2), then any (

⋃
𝑛 RV𝑛)-expansion of T also satisfies (T1,T2).

Proof. (i) follows easily from Proposition 2.6.4 (applied in sufficiently saturated models 𝐾 |= T ), using
𝐼 = M𝐾 in the case ℓ = 0, and using 𝐼 = 𝐵<𝜆 (0) for every 𝜆 ≤ 1 in the case ℓ = 𝜔. In the latter case, we
need to first add 𝜆 to the language and then get rid of it again using that RV-unions preserve finiteness
(Corollary 2.3.6 (1)). The full argument is as follows: to 𝜆-prepare a set 𝑋 ⊂ 𝐾 which is 𝐴 ∪ RV𝜆-
definable (where 𝐴 ⊂ 𝐾) in the

⋃
nRVn-expansion of K, apply Proposition 2.6.4 with 𝐼 = 𝐵<𝜆 (0) in the

language L(𝜆) to get a finite L(𝐴, 𝜆)-definable set 𝐶 ′ = 𝜙(𝐾, 𝜆) 𝜆-preparing X. By Corollary 2.3.6 (1),
the L(𝐴)-definable set 𝐶 =

⋃
𝜆′ 𝜙(𝐾, 𝜆′) is still finite (and it 𝜆-prepares X since it contains 𝐶 ′).

For (ii), let L′ be an (
⋃

𝑛 RV |𝑛 | )-expansion of the language L, and let K be a model of the expansion
of T . First of all, by part (i) (and Lemma 2.4.1 (2)) we know that ThL′ (𝐾) is still 0mix-h-minimal. Let
𝑓 : 𝐾 → 𝐾 be L′(𝐴)-definable for some 𝐴 ⊂ 𝐾∪RV𝑛. By Proposition 2.6.4, the L′(𝐴∪{𝑥})-definable
set { 𝑓 (𝑥)} can be prepared by a finite L(𝐴 ∪ {𝑥})-definable set 𝐶𝑥 ; note that this implies 𝑓 (𝑥) ∈ 𝐶𝑥 .
We may assume (using compactness) that 𝐶𝑥 is definable uniformly in x. By Lemma 2.3.1, we find an
L(𝐴)-definable family of injective maps 𝑔𝑥 : 𝐶𝑥 → RV𝑘

𝑚. We define ℎ : 𝐾 → RV𝑘
𝑚 : 𝑥 ↦→ 𝑔𝑥 ( 𝑓 (𝑥))
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and

𝑓 : 𝐾 × RV𝑘
𝑚 → 𝐾 : (𝑥, 𝜁) ↦→

{
𝑔−1

𝑥 (𝜁) if 𝜁 ∈ 𝑔𝑥 (𝐶𝑥),

0 else.

Note that 𝑓 (𝑥) = 𝑓 (𝑥, ℎ(𝑥)) for every 𝑥 ∈ 𝐾 and that h is L′(𝐴)-definable while 𝑓 is L(𝐴)-definable.
By Lemma 2.3.1, we can find an L(𝐴)-definable family of finite sets 𝐶𝜉 , for 𝜉 ∈ RV𝑘

𝑚 such that the
map 𝑥 ↦→ 𝑓 (𝑥, 𝜉) satisfies (T1mix) with integer p and (T2) with respect to 𝐶𝜉 . Let 𝐶1 be the union of
all of these 𝐶𝜉 , which is still finite by Lemma 2.4.1. By 0mix-h-minimality, there exists a finite L′(𝐴)-
definable set 𝐶2 ⊂ 𝐾 and a positive integer 𝑝′ such that h is constant on the balls |𝑝′ |-next to 𝐶2. Now
take 𝐶 = 𝐶1 ∪𝐶2 and let 𝑞 = 𝑝𝑝′. Then C is a finite L′(𝐴)-definable set for which f satisfies properties
(T1mix) and (T2) with respect to C (with integer q). �

Remark 2.6.6. After proving Theorem 2.2.8 (which will be done in the next subsection), the resplen-
dency statement (i) of Proposition 2.6.5 follows for ℓ = 1. Indeed, this is direct from (ii) of Proposition
2.6.5 and Theorem 2.2.8. Preservation of ℓ-h-minimality under RV-enrichment is generalized in [23,
Theorem 2.2.5] to all ℓ ≥ 0 in equicharacteristic zero.

2.7. Proof of Theorem 2.2.8

We are now ready to complete the proof of Theorem 2.2.8.

Proof of Theorem 2.2.8.

(1) implies (2). This is Corollary 2.5.5.
(2) implies (3). This is Corollary 2.3.10.
(3) implies (4). Let | · |𝑐 be a nontrivial equicharacteristic zero coarsening of the valuation | · |.

The coarsened valuation ring O𝐾,𝑐 is a pullback of some subset of RV. Hence, by Item (ii)
of Proposition 2.6.5, the theory of K in L′ = L ∪ {O𝐾,𝑐} still satisfies (T1,T2). We work in this
language L′.

We will use [10, Theorem 2.9.1], which says that the theory of K in L𝑐 with respect to the norm | · |𝑐
is 1-h-minimal if for every set 𝐴 ⊂ 𝐾 ∪ RV𝑐 and every A-definable function 𝑓 : 𝐾 → 𝐾 , the following
hold:

(1) there exists some finite A-definable set C such that for every ball B which is |1|𝑐-next to C, there is
a 𝜇𝐵 ∈ Γ𝐾,𝑐 such that for 𝑥, 𝑦 ∈ 𝐵,

| 𝑓 (𝑥) − 𝑓 (𝑦) |𝑐 = 𝜇𝐵 |𝑥 − 𝑦 |𝑐 , and

(2) the set {𝑦 ∈ 𝐾 | 𝑓 −1(𝑦) is infinite} is finite.

Let us say that a finite set C 𝔪𝑐-prepares a function f if (1) holds for f and C.
So let 𝑓 : 𝐾 → 𝐾 be A-definable for some 𝐴 ⊂ 𝐾 ∪ RV𝑐 . By adding parameters from K to the

language, we may as well assume that 𝐴 ⊂ RV𝑐 . We will find a finite ∅-definable C which 𝔪𝑐-prepares
f. We induct on 𝑟 = #𝐴. The case 𝑟 = 0 is clear. Indeed, in that case, there even exists a finite L-definable
set C such that f satisfies (T1) with respect to 𝐶, 𝑚. In particular, C will 𝔪𝑐-prepare f.

So suppose that 𝑟 > 0. Let 𝐴 = 𝐴′ ∪ {𝜁 } and consider an 𝐴′-definable family ( 𝑓𝑦)𝑦 for 𝑦 ∈ 𝐾
with 𝑓𝑦 = 𝑓 if rv𝑐 𝑦 = 𝜁 . Here, we use the fact that 𝔪𝑐 is ∅-definable. Let 𝑌 = rv−1

𝑐 (𝜁). By induction
on r, there exist for every 𝑦 ∈ 𝐾 a finite y-definable 𝐶𝑦 𝔪𝑐-preparing 𝑓𝑦 . Fix a y-definable injection
ℎ𝑦 : 𝐶𝑦 → RV𝑘

|𝑛0 |
for some integer 𝑛0. Such a map exists by Lemma 2.3.1(4) which holds under (T1,T2)

by Lemma 2.4.1. By compactness we may assume that both 𝐶𝑦 and ℎ𝑦 form ∅-definable families with
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a parameter y. For 𝜂 ∈ RV𝑘
𝑛0 , consider

𝑌𝜂 = {𝑦 ∈ 𝐾 | 𝜂 ∈ im(ℎ𝑦)}

𝑔𝜂 : 𝑌𝜂 → 𝐾 : 𝑦 ↦→ ℎ−1
𝑦 (𝜂).

Both of these are 𝜂-definable, and via compactness, we may assume that the entire family is ∅-definable
with a parameter. Note that ⋃

𝑦∈𝐾

{𝑦} × 𝐶𝑦 =
⊔

𝜂∈RV𝑘𝑛0

graph(𝑔𝜂).

Let 𝐷𝜂 be a finite 𝜂-definable set |𝑚0 |-preparing𝑌𝜂 and such that 𝑔𝜂 (extended by zero) satisfies Lemma
2.4.2 with respect to 𝐷𝜂 and 𝑚0. This is possible by Lemma 2.4.2. Moreover, take 𝐷𝜂 to 𝔪𝑐-prepare
the (𝐴′ ∪ {𝜂})-definable

𝑓𝜂 : 𝐾 → 𝐾 : 𝑦 ↦→ 𝑓𝑦 (𝑔𝜂 (𝑦)).

This is via induction on r together with the fact that we can add 𝜂 to the language and preserve (T1,T2).
By compactness, we have without loss that 𝐷𝜂 forms a ∅-definable family, with a parameter 𝜂, and that
𝑚0 does not depend on 𝜂. Now put 𝐷 = {0} ∪

⋃
𝜂∈RV𝑘

|𝑛0 |
𝐷𝜂 , which is a finite ∅-definable set by Lemma

2.3.1.
If 𝐷 ∩ 𝑌 ≠ ∅, then 𝐶 =

⋃
𝑦∈𝐷 𝐶𝑦 is a finite ∅-definable set which 𝔪𝑐-prepares f. So suppose that

𝐷 ∩ 𝑌 = ∅. Since 0 ∈ 𝐷 and as Y is an rv𝑐-fibre, we have that Y is 𝔪𝑐-next to D.
Use Lemma 2.3.1 to find integers 𝑝, 𝑘 ′ and a ∅-definable map

𝜒 : 𝐾 → RV𝑘′

|𝑝 |

such that any ball |𝑚0 |-next to D is a union of fibres of 𝜒. Use Corollary 2.3.4 to find a finite ∅-definable
set C and a positive integer 𝑛′ such that C |𝑛′ |-prepares every set 𝑔𝜂 (𝜒

−1 (𝜉)) for any 𝜂 ∈ RV𝑘
|𝑛0 |

and
any 𝜉 ∈ RV𝑘′

|𝑝 |
for which 𝜒−1 (𝜉) ⊂ 𝑌𝜂 . Then we have that for any ball B |𝑚0 |-next to D with 𝐵 ⊂ 𝑌𝜂

that 𝑔𝜂 (𝐵) is |𝑛′ |-prepared by C. We will prove that C 𝔪𝑐-prepares f.
We claim that C 𝔪𝑐-prepares 𝑔𝜂 (𝑌 ) for any 𝜂 ∈ RV𝑘

𝑛0 with 𝑌 ⊂ 𝑌𝜂 . To this end, we will show that
for any 𝜆 ∈ Γ×

𝐾 , 𝜆 ≤ 1, if 𝐵0 is a ball |𝑚0 |𝜆-next to D, then 𝑔𝜂 (𝐵0) is |𝑚2
0𝑛

′ |𝜆-prepared by C whenever
𝐵 ⊂ 𝑌𝜂 . So let 𝐵0 be |𝑚0 |𝜆-next to D for some 𝜆 ∈ Γ×

𝐾 , 𝜆 ≤ 1 and let B be the ball |𝑚0 |-next to D
containing 𝐵0. Suppose that 𝐵 ⊂ 𝑌𝜂 and let 𝜇𝐵 be as in (T1,T2) for 𝑔𝜂 on B. By Lemma 2.4.2, for
any 𝑥 ∈ 𝐵0, the open ball of radius |𝑚0 |𝜇𝐵 radop (𝐵0) around 𝑔𝜂 (𝑥) is contained in 𝑔𝜂 (𝐵). By the
same Lemma, 𝑔𝜂 (𝐵) is contained in an open ball of radius |1/𝑚0 |𝜇𝐵 radop (𝐵). Now let 𝐵′

0 be the ball
|𝑚2

0𝑛
′ |𝜆-next to C containing 𝑔𝜂 (𝑥) and let 𝐵′ be the ball |𝑛′ |-next to C containing 𝐵′

0. Since 𝑔𝜂 (𝐵) is
|𝑛′ |-prepared by C, 𝐵′ ⊂ 𝑔𝜂 (𝐵). Hence,

radop 𝐵
′
0 = |𝑚2

0 |𝜆 radop 𝐵
′ ≤ |𝑚0 |𝜆𝜇𝐵 radop 𝐵 = |𝑚0 |𝜇𝐵 radop 𝐵0.

Therefore, 𝐵′
0 ⊂ 𝑔𝜂 (𝐵0), and we conclude that C |𝑚2

0𝑛
′ |𝜆-prepares 𝑔𝜂 (𝐵).

We now prove the claim that C 𝔪𝑐-prepares 𝑔𝜂 (𝑌 ) for any 𝜂 ∈ RV𝑘
𝑛0 with 𝑌 ⊂ 𝑌𝜂 . Fix such an 𝜂

and recall that Y is 𝔪𝑐-next to D. Let 𝐵0 be the ball |𝑚0 |-next to D containing Y. By property T1, 𝑔𝜂 is
either injective or constant on 𝐵0. If 𝑔𝜂 is constant on 𝐵0, there is nothing to show, so assume that 𝑔𝜂

is injective on 𝐵0. Let 𝐵′ be a ball 𝔪𝑐-next to C. If 𝐵′ ∩ 𝑔𝜂 (𝑌 ) = ∅, then there is nothing to show. So
we may assume that 𝑔𝜂 (𝑦) and 𝐵′ are not disjoint. Assume that the claim is false, so there exists some
𝑧 ∈ 𝐵′ \ 𝑔𝜂 (𝑌 ). Now 𝐵′ is contained in a ball |𝑛|-next to C, which is, in turn, contained in 𝑔𝜂 (𝐵0) by
construction of C. By injectivity of 𝑔𝜂 on 𝐵0, there is a unique 𝑥 ∈ 𝐵0 with 𝑔𝜂 (𝑥) = 𝑧. We necessarily
have that 𝑥 ∉ 𝑌 . Take an open ball 𝐵1 around Y not containing x. This ball is |𝑚0 |𝜆-next to D for some
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𝜆 ≤ 1 in Γ×
𝐾 . Since Y is 𝔪𝑐-next to D, we have that the image of |𝑚0 |𝜆 is 1 under the map Γ×

𝐾 → Γ×
𝐾,𝑐 .

By the previous paragraph, 𝑔𝜂 (𝐵1) is |𝑚2
0𝑛

′ |𝜆-prepared by C. Now similarly, |𝑚2
0𝑛

′ |𝜆 becomes 1 in Γ×
𝐾,𝑐

and so 𝐵′ ⊂ 𝑔𝜂 (𝐵1). But then 𝑧 ∈ 𝑔𝜂 (𝐵1), contrary to assumption.
We now prove that C 𝔪𝑐-prepares f. Suppose the result is false and let B be a ball 𝔪𝑐-next to C on

which the result does not hold. So there exist distinct 𝑥, 𝑥 ′, 𝑥 ′′ ∈ 𝐵 and 𝜇1, 𝜇2 ∈ Γ𝐾,𝑐 with 𝜇1 ≠ 𝜇2 and

| 𝑓 (𝑥) − 𝑓 (𝑥 ′) |𝑐 = 𝜇1 |𝑥 − 𝑥 ′ |𝑐

| 𝑓 (𝑥) − 𝑓 (𝑥 ′′) |𝑐 = 𝜇2 |𝑥 − 𝑥 ′′ |𝑐 .

Assume that |𝑥 − 𝑥 ′ |𝑐 ≥ |𝑥 − 𝑥 ′′ |𝑐 and let 𝐵1 be the smallest closed ball containing 𝑥, 𝑥 ′ for | · |𝑐 . Fix a
𝑦0 ∈ 𝑌 . Since 𝐶𝑦0 𝔪𝑐-prepares 𝑓𝑦0 = 𝑓 and since 𝑥, 𝑥 ′, 𝑥 ′′ ∈ 𝐵1, we have 𝐶𝑦0 ∩ 𝐵1 ≠ ∅. So let 𝜂 ∈ RV𝑘

be such that 𝑔𝜂 (𝑦0) ∈ 𝐵1. Recall that Y is a maximal ball disjoint from D for the coarsened norm. By
our construction of D, 𝑔𝜂 is defined on all of Y. We claim that since D 𝔪𝑐-prepares 𝑓𝜂 , 𝑔𝜂 (𝑌 ) cannot
contain all of 𝐵1. Indeed, suppose to the contrary that 𝑔𝜂 (𝑦) = 𝑥, 𝑔𝜂 (𝑦

′) = 𝑥 ′ and 𝑔𝜂 (𝑦
′′) = 𝑥 ′′ for

some 𝑦, 𝑦′, 𝑦′′ ∈ 𝑌 . Then there are 𝜇𝑔𝜂 , 𝜇 𝑓𝜂
∈ Γ𝐾,𝑐 such that

| 𝑓 (𝑥) − 𝑓 (𝑥 ′) |𝑐 = 𝜇1 |𝑥 − 𝑥 ′ |𝑐 = 𝜇1𝜇𝑔𝜂 |𝑦 − 𝑦′ |𝑐

= | 𝑓𝜂 (𝑦) − 𝑓𝜂 (𝑦
′) |𝑐 = 𝜇 𝑓𝜂

|𝑦 − 𝑦′ |𝑐 .

Hence, 𝜇1 = 𝜇 𝑓𝜂
/𝜇𝑔𝜂 . But exactly the same reasoning works for 𝜇2, contrary to our assumption that 𝜇1

and 𝜇2 are distinct. Thus, 𝑔𝜂 (𝑌 ) cannot contain all of 𝐵1.
Therefore,

radop,ecc(𝑔𝜂 (𝑌 )) ≤ radcl,ecc(𝐵1) = |𝑥 − 𝑥 ′ |𝑐 .

Now C 𝔪𝑐-prepares 𝑔𝜂 (𝑌 ), so there exists some 𝑐 ∈ 𝐶 with

|𝑔𝜂 (𝑦0) − 𝑐 |𝑐 ≤ radop,ecc(𝑔𝜂 (𝑌 )) ≤ |𝑥 − 𝑥 ′ |𝑐 .

So we have

|𝑥 − 𝑐 |𝑐 ≤ max{|𝑥 − 𝑔𝜂 (𝑦0) |𝑐 , |𝑔𝜂 (𝑦0) − 𝑐 |𝑐} ≤ |𝑥 − 𝑥 ′ |𝑐 .

But this would mean that x and 𝑥 ′ are not in the same ball 𝔪𝑐-next to C, a contradiction.
(4) implies (1). Trivial. �

3. Geometry of definable sets in 1-h-minimal structures

In this section, we develop our main geometrical results under 1-h-minimality, often using the equiva-
lences of Theorem 2.2.8.

3.1. Taylor approximation

Results which simply state that every definable set or function of a certain kind has some nice (language-
independent) properties immediately follow for valued fields of mixed characteristic via coarsenings;
in particular, we have a good dimension theory, similar to [10, Section 5.3]. Here, the dimension of
a (nonempty) definable set 𝑋 ⊂ 𝐾𝑛 is the maximal integer m such that there is a K-linear function
ℓ : 𝐾𝑛 → 𝐾𝑚 for which ℓ(𝑋) has nonempty interior. We denote it by dim 𝑋 and put dim ∅ = −∞.

More generally, we have the following.

Proposition 3.1.1 (Language-independent properties). Let T be a 1-h-minimal theory. Then the con-
clusions of the following results hold for any model K of T :
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(1) (Almost everywhere continuity [10, Theorem 5.1.1]). For every definable function 𝑓 : 𝑋 ⊂ 𝐾𝑛 → 𝐾 ,
the set of 𝑢 ∈ 𝑋 at which f is continuous in a neighbourhood of u is dense in X.

(2) (Almost everywhere 𝐶𝑘 [10, Theorem 5.1.5]). For every definable function 𝑓 : 𝑋 ⊂ 𝐾𝑛 → 𝐾 , the
set of 𝑢 ∈ 𝑋 at which f is 𝐶𝑘 in a neighbourhood of u is dense in X.

(3) (Dimension theory [10, Proposition 5.3.4]). Let 𝑋,𝑌 ⊂ 𝐾𝑛, 𝑍 ⊂ 𝐾𝑚 be nonempty and definable,
and let 𝑓 : 𝑋 → 𝑍 be definable. Then the following hold:
(1) We have dim 𝑋 ≥ 𝑑 if and only if there is a coordinate projection 𝜋 : 𝐾𝑛 → 𝐾𝑑 such that 𝜋(𝑋)

has a nonempty interior.
(2) dim(𝑋 ∪ 𝑌 ) = max{dim 𝑋, dim𝑌 }.
(3) For any integer d, the set of 𝑧 ∈ 𝑍 such that dim 𝑓 −1(𝑧) = 𝑑 is definable over the same

parameters of f.
(4) If all fibres of f have dimension d, then dim 𝑋 = 𝑑 + dim 𝑍 .
(5) There exists an 𝑥 ∈ 𝑋 such that for every open ball 𝐵 ⊂ 𝐾𝑛 around x, dim 𝑋 = dim(𝑋 ∩ 𝐵).
(6) We have that dim(𝑋 \ 𝑋) < dim 𝑋 where 𝑋 is the closure of X.

Proof. We may work in a model 𝐾 |= T such that | · |ecc is nontrivial. Then every L-definable object
is in particular Lecc-definable, so all of the above equicharacteristic zero results apply to the definable
objects in question and yield the desired mixed-characteristic result, except in the case of Item 3.c.
(Concerning [10, Theorem 5.1.1] and [10, Theorem 5.1.5], note that | · | and | · |ecc induce the same
topology and hence equivalent notions of continuity and derivatives.)

Now Item 3.c (definability of dimension) can easily be reproved directly in L, using Lemma 2.3.1
and that 0-dimensional is equivalent to finite. �

Recall that if 𝑓 : 𝐾 → 𝐾 is a function which is 𝐶𝑟 at a point 𝑥0 ∈ 𝐾 , then we define the order r
Taylor polynomial of f at 𝑥0 as

𝑇 ≤𝑟
𝑓 ,𝑥0

(𝑥) =
𝑟∑

𝑖=0

𝑓 (𝑖) (𝑥0)

𝑖!
(𝑥 − 𝑥0)

𝑖 .

Now we find back the precise analogue of [10, Theorem 3.2.2] on Taylor approximation.

Theorem 3.1.2 (Taylor approximation). Suppose that T is 1-h-minimal and let K be a model of T . Let
𝑓 : 𝐾 → 𝐾 be an A-definable function, for 𝐴 ⊂ 𝐾 ∪ RV |𝑛 | , and let 𝑟 ∈ N be given. Then there exists a
finite 𝐴∩𝐾-definable set C and an integer 𝑚 ≥ 1 such that for every ball B |𝑚 |-next to C, f is (𝑟 +1)-fold
differentiable on B, | 𝑓 (𝑟+1) | is constant on B and we have

| 𝑓 (𝑥) − 𝑇 ≤𝑟
𝑓 ,𝑥0

(𝑥) | =

���� 1
(𝑟 + 1)!

𝑓 (𝑟+1) (𝑥0) · (𝑥 − 𝑥0)
𝑟+1

���� (3.1.1)

for every 𝑥0, 𝑥 ∈ 𝐵.

Proof. As usual, we may simply assume that 𝐴 = ∅ since we can add parameters from 𝐾 ∪ RV |𝑛 | to L
and preserve 1-h-minimality. We first prove a slightly weaker version of this result, where the conclusion
states that

| 𝑓 (𝑥) − 𝑇 ≤𝑟
𝑓 ,𝑥0

(𝑥) | ≤

���� 1
𝑚

· 𝑓 (𝑟+1) (𝑥0) · (𝑥 − 𝑥0)
𝑟+1

����, (3.1.2)

for some positive integer m. Proceeding as in the proof of Corollary 2.5.5, we assume that K is sufficiently
saturated and sufficiently homogeneous, and we use [10, Theorem 3.2.2] and Lemma 2.5.3 to find a
finite L-definable set C such that f is differentiable away from C, and such that for 𝑥0, 𝑥 in the same ball
|1|ecc-next to C, we have

| 𝑓 (𝑥) − 𝑇 ≤𝑟
𝑓 ,𝑥0

(𝑥) |ecc ≤ | 𝑓 (𝑟+1) (𝑥0) · (𝑥 − 𝑥0)
𝑟+1 |ecc. (3.1.3)
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Now suppose that there exists no 𝑚 ≥ 1 satisfying the condition involving (3.1.2). As before, we then
use ℵ0-saturation to find a pair (𝑥0, 𝑥) ∈ 𝐾2 of points which lie in the same ball |1|ecc-next to C and
such that (3.1.1) fails for every m. The latter means that (3.1.3) fails for 𝑥0, 𝑥, so we have a contradiction
to our choice of C.

For the weakened theorem, it remains to ensure that | 𝑓 (𝑟+1) | is constant on balls |𝑚 |-next to C. By
applying Corollary 2.3.4 to the graph of 𝑥 ↦→ rv( 𝑓 (𝑟+1) (𝑥)), we can enlarge C so that this works for balls
|𝑚′ |-next to C, for some𝑚′ ≥ 1. Now the weaker statement holds using𝑚 ·𝑚′ (since |𝑚 ·𝑚′ | ≤ |𝑚 |, |𝑚′ |).

We now explain how to get the statement with (𝑟+1)! instead of m. We can find a finite 𝐴∩𝐾-definable
C and an integer m such that f satisfies the weakened version of this theorem with order 𝑟 + 1. We now
enlarge C and find an integer n such that 𝑓 (𝑟+1) satisfies the conclusion of Lemma 2.4.2 with respect to
C and n. Moreover, we may assume by Lemma 2.3.2 that rv ◦ 𝑓 (𝑟+1) is constant on balls |𝑛|-next to C.
Then there exists an integer 𝑛′ such that for any ball B |𝑛|-next to C and any 𝑥0 ∈ 𝐵, we have that

| 𝑓 (𝑟+2) (𝑥0) | radop 𝐵 ≤
1
|𝑛′ |

| 𝑓 (𝑟+1) (𝑥0) |.

Now at the cost of enlarging n (and making B smaller), we obtain

| 𝑓 (𝑟+2) (𝑥0) | radop 𝐵 ≤ |𝑚 | | 𝑓 (𝑟+1) (𝑥0) |.

Thus, we obtain for 𝑥, 𝑥0 ∈ 𝐵 that

| 𝑓 (𝑥) − 𝑇 ≤𝑟+1
𝑓 ,𝑥0

(𝑥) | ≤

���� 1
𝑚

𝑓 (𝑟+2) (𝑥0) · (𝑥 − 𝑥0)
𝑟+2

���� ≤ | 𝑓 (𝑟+1) (𝑥0) (𝑥 − 𝑥0)
𝑟+2 |

radop(𝐵)
.

But since |𝑥 − 𝑥0 | < radop(𝐵), we get that

| 𝑓 (𝑥) − 𝑇 ≤𝑟+1
𝑓 ,𝑥0

(𝑥) | < | 𝑓 (𝑟+1) (𝑥0) (𝑥 − 𝑥0)
𝑟+1 |.

Now, apply the ultrametric triangle inequality to get

| 𝑓 (𝑥) − 𝑇 ≤𝑟
𝑓 ,𝑥0

(𝑥) | ≤ max{| 𝑓 (𝑥) − 𝑇 ≤𝑟+1
𝑓 ,𝑥0

(𝑥) |,

���� 𝑓 (𝑟+1) (𝑥0)

(𝑟 + 1)!
(𝑥 − 𝑥0)

𝑟+1
����}

=

���� 1
(𝑟 + 1)!

���� · | 𝑓 (𝑟+1) (𝑥0) (𝑥 − 𝑥0)
𝑟+1 |.

�

Surprisingly, this implies an exact version of property (T1mix) and of Lemma 2.3.9 – namely, an exact
valuative Jacobian property similar to [10, Corollary 3.1.6] – and we get an ever finer version with rv in
Corollary 3.1.4.

Corollary 3.1.3 (Valuative Jacobian property). Let T be a 1-h-minimal theory. Let K be a model of T
and let 𝑓 : 𝐾 → 𝐾 be A-definable, for some 𝐴 ⊂ 𝐾 ∪ RV |𝑛 | . Then there exists a finite ∅-definable set
C and an integer m such that for any ball B |𝑚 |-next to C, f is differentiable on B, | 𝑓 ′ | is constant on B,
and for all 𝑥, 𝑥 ′ ∈ 𝐵, one has

| 𝑓 (𝑥) − 𝑓 (𝑥 ′) | = | 𝑓 ′(𝑥) | · |𝑥 − 𝑥 ′ |.

Moreover, we can ensure that if 𝐵′ ⊂ 𝐵 is an open ball, then 𝑓 (𝐵′) is either a singleton or an open ball
of radius

| 𝑓 ′(𝑥) | · radop 𝐵
′.

Proof. Apply Theorem 3.1.2 for 𝑟 = 0 for the first statement. For the moreover part, follow the proof of
[10, Lemma 2.9.6]. �
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The following finer variant with rv instead of the valuation is useful for motivic integration, for the
change of variables formulas and for Fourier transforms.

Corollary 3.1.4 (Jacobian property). Let T be a 1-h-minimal theory. Let K be a model of T and let
𝑓 : 𝐾 → 𝐾 be A-definable for some 𝐴 ⊂ 𝐾 ∪ RV |𝑛 | . Then there exists a finite A-definable set C and an
integer m such that for every 𝜆 ∈ Γ×

𝐾 , 𝜆 ≤ 1 and every ball |𝑚 |𝜆-next to C, we have the following:

(1) The derivative 𝑓 ′ exists on B and rv𝜆 ◦ 𝑓
′ is constant on B.

(2) For any 𝑥, 𝑥 ′ ∈ 𝐵, we have rv𝜆

(
𝑓 (𝑥)− 𝑓 (𝑥′)

𝑥−𝑥′

)
= rv𝜆( 𝑓

′).
(3) If 𝐵′ ⊂ 𝐵 is any open ball, then 𝑓 (𝐵′) is either a point or an open ball.

Proof. Identical to [10, Corollary 3.2.7] (whose proof is below [10, Definition 3.2.8]). �

3.2. Algebraic Skolem functions

We show that as in the equicharacteristic zero case, one can obtain acl = dcl by an
⋃

𝑛 RV𝑛-expansion.
Recall that a theory satisfies acl = dcl if for for any model K and any subset 𝐴 ⊂ 𝐾 , we have
acl𝐾 (𝐴) = dcl𝐾 (𝐴). Equivalently, this means that algebraic Skolem functions exist in any model of the
theory. The following is the analogue of [10, Proposition 2.6.12].

Lemma 3.2.1. Suppose that Th(𝐾) is 0-h-minimal (possibly of mixed characteristic) and let 𝐴 ⊂ 𝐾 .
Let 𝑋 ⊂ RV𝑘

|𝑚 |
be an A-definable set, for some integers 𝑘, 𝑚. Then X is dcl∪𝑛RV|𝑛|

(𝐴)-definable.

Proof. We can assume that A is finite and induct on #𝐴. The case where 𝐴 = ∅ is clear, so write
𝐴 = �̂� ∪ {𝑎}. Then we find an �̂�-definable family

𝑌 ⊂ 𝐾 × RV𝑘
|𝑚 |

such that 𝑌𝑎 = 𝑋 . Using Proposition 2.3.2, we find a finite �̂�-definable set C and an integer p such that
either 𝑎 ∈ 𝐶, or for every 𝑎′ ∈ 𝐾 in the same ball |𝑝 |-next to C, we have 𝑌𝑎′ = 𝑌𝑎 = 𝑋 . In both cases,
we use Lemma 2.3.1(5) to find an �̂�-definable map 𝑓 : 𝐾 → RV𝑘′

|𝑞 |
for some integers 𝑞, 𝑘 ′ such that

any ball |𝑝 |-next to C is a union of fibres of f. Then 𝑌𝑎 = 𝑋 is definable over �̂� ∪ { 𝑓 (𝑎)}, so there is a
family 𝑍 ⊂ RV𝑘

|𝑚 |
× RV𝑘′

|𝑞 |
such that 𝑋 = 𝑍 𝑓 (𝑎) . By induction, Z is definable over dcl∪𝑛RV|𝑛|

( �̂�). Since
𝑓 (𝑎) ∈ RV𝑘′

|𝑞 |
is definable over A, we find that X is definable over dcl∪𝑛RV|𝑛|

(𝐴). �

Lemma 3.2.2. Suppose that Th(𝐾) is 0-h-minimal (possibly of mixed characteristic) and that for any
integer m and any set 𝐴 ⊂ RV |𝑚 | , we have acl∪𝑛RV|𝑛|

(𝐴) = dcl∪𝑛RV|𝑛|
(𝐴). Then for any set 𝐴 ⊂ 𝐾 , we

have acl𝐾 (𝐴) = dcl𝐾 (𝐴).

Proof. See also [10, Lemma 4.3.1]. Let 𝐶 ⊂ 𝐾 be a finite A-definable set. By Lemma 2.3.1(4), there
exists an A-definable bijection 𝑓 : 𝐶 → 𝐶 ′ ⊂ RV𝑘

|𝑛 | for some integers 𝑛, 𝑘 . By the previous lemma,
𝐶 ′ is already definable over dcl∪𝑝RV|𝑝 |

(𝐴). So by the assumption 𝐶 ′ is contained in dclRV|𝑛|
(𝐴), and by

pulling back via f, we have that 𝐶 ⊂ dcl𝐾 (𝐴). �

Proposition 3.2.3. Suppose that Th(𝐾) is 1-h-minimal of possibly mixed characteristic in a language
L. Then there exists a ∪𝑛RV𝑛-expansion L′ of L such that ThL′ (𝐾) is still 1-h-minimal, and for any
model 𝐾 ′ of ThL′ (𝐾) and any subset 𝐴 ⊂ 𝐾 ′, we have

aclL′,𝐾 ′ (𝐴) = dclL′,𝐾 ′ (𝐴).

Proof. This is identical to [10, Proposition 4.3.3]. We simply let L′ be the extension of L by a predicate
for every subset of RV𝑘

|𝑛 | (for all integers 𝑛, 𝑘). The theory remains 1-h-minimal in view of Proposition
2.6.5. By construction, we have for every model 𝐾 ′ of ThL′ (𝐾) and every subset 𝐴 ⊂ RV𝑘

|𝑚 |
that

acl∪𝑛RV|𝑛|
(𝐴) = dcl∪𝑛RV|𝑛|

(𝐴), so that we can conclude by the previous lemma. �
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By an ∪𝑛RV𝑛-expansion of the language as in Proposition 3.2.3, we can thus always obtain acl = dcl.
The following lemma provides a tool for returning to the original language.

Lemma 3.2.4 (Undoing RV-expansions). Suppose that ThL (𝐾) is 0-h-minimal and that L′ is an
∪𝑛RV |𝑛 |-expansion of L. Let 𝜒′ : 𝐾𝑛 → RV𝑘′

|𝑚′ |
be an L′-definable map (for some positive integers 𝑘 ′

and 𝑚′). Then there exists an L-definable map 𝜒 : 𝐾𝑛 → RV𝑘
|𝑚 |

(for some k and m) such that 𝜒′ factors
over 𝜒 (i.e., 𝜒′ = 𝑔 ◦ 𝜒) for some function 𝑔 : RV𝑘

|𝑚 |
→ RV𝑘′

|𝑚′ |
(which is automatically L′-definable).

Proof. The proof is similar to [10, Lemma 4.3.4].
We induct on n. The case 𝑛 = 0 is clear, so let 𝑛 > 0, and for 𝑎 ∈ 𝐾 , define 𝜒′

𝑎 : 𝐾𝑛−1 → RV𝑘′

|𝑚′ |
: 𝑥 ↦→

𝜒′(𝑎, 𝑥). By induction and compactness, we find an L-definable family of maps 𝜒𝑎 : 𝐾𝑛−1 → RVℓ
|𝑚 |

with a parameter 𝑎 ∈ 𝐾 such that for every 𝑎 ∈ 𝐾 , we have 𝜒′
𝑎 = 𝑔𝑎 ◦ 𝜒𝑎 for some L′-definable family

of maps 𝑔𝑎. Now consider the set

𝑊 = {(𝑎, 𝜁 ′, 𝑔𝑎 (𝜁
′)) | 𝑎 ∈ 𝐾, 𝜁 ′ ∈ RV𝑘

|𝑚 | }

and use Lemma 2.3.2 to uniformly |𝑝 |-prepare W with some finiteL′-definable set𝐶 ′. Using Proposition
2.6.4, we find a finite L-definable set C containing 𝐶 ′. By Lemma 2.3.1(5), we find 𝑓 : 𝐾 → RVℓ′

|𝑞 |
an

L-definable map such that every ball |𝑝 |-next to C is a union of fibres of f. We can assume that |𝑞 | ≤ |𝑚 |,
and so by lifting 𝜒𝑎 to a map 𝐾𝑛−1 → RVℓ

|𝑞 |
, the L-definable map 𝜒(𝑎, 𝑥) = ( 𝑓 (𝑎), 𝜒𝑎 (𝑥)) will be as

desired. �

3.3. Cell decomposition and (higher dimensional) Jacobian property

As in [10, Section 5.2], we approach the cell decomposition results in a simpler way than usual
(compared to, for example, [19]), by imposing acl = dcl in K, or in other words, that we have algebraic
Skolem functions in K. This is harmless by Proposition 3.2.3 and Lemma 3.2.4. In fact, the assumption
that acl equals dcl does more than just simplify the arguments; it also allows one to formulate stronger
results like piecewise Lipschitz continuity results as in Theorem 3.3.6. This is similar to [9], where this
condition is also used for similar reasons.

In the following, for 𝑚 ≤ 𝑛, we denote the projection 𝐾𝑛 → 𝐾𝑚 to the first m coordinates by 𝜋≤𝑚,
or also by 𝜋<𝑚+1.

Definition 3.3.1 (Cells, twisted boxes). Fix any parameter set 𝐴 ⊂ 𝐾eq and consider a nonempty
A-definable set 𝑋 ⊂ 𝐾𝑛 for some n, an integer N, and for 𝑖 = 1, . . . , 𝑛, values 𝑗𝑖 in {0, 1} and A-
definable functions 𝑐𝑖 : 𝜋<𝑖 (𝑋) → 𝐾 . Then X is called an A-definable cell of depth |𝑁 |, with center
tuple 𝑐 = (𝑐𝑖)

𝑛
𝑖=1 and of cell-type 𝑗 = ( 𝑗𝑖)

𝑛
𝑖=1 if it is of the form

𝑋 = {𝑥 ∈ 𝐾𝑛 | (rv |𝑁 | (𝑥𝑖 − 𝑐𝑖 (𝑥<𝑖)))
𝑛
𝑖=1 ∈ 𝑅},

for a (automatically A-definable) set

𝑅 ⊂

𝑛∏
𝑖=1

( 𝑗𝑖 · RV×
|𝑁 | ),

where 𝑥<𝑖 = 𝜋<𝑖 (𝑥) and where 0 · RV×
|𝑁 |

= {0} ⊂ RV |𝑁 | , and 1 · RV×
|𝑁 |

= RV |𝑁 | \ {0}.
If X is such a cell, then for any 𝑟 ∈ 𝑅, the subset

{𝑥 ∈ 𝐾𝑛 | rv |𝑁 | (𝑥𝑖 − 𝑐𝑖 (𝑥<𝑖)))
𝑛
𝑖=1 = 𝑟}

of X is called a twisted box of the cell X. We also call X itself a twisted box if it is a cell consisting of a
single twisted box (i.e., if R is a singleton).
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Note that a cell of depth |𝑁 | is automatically also a cell of depth |𝑀 | for any |𝑀 | ≤ |𝑁 |, by taking
the preimage of the set R under the projection map RV𝑛

|𝑀 |
→ RV𝑛

|𝑁 |
.

Example 3.3.2. Consider the set of nonzero cubes X in Q3 from Example 2.2.2. This is a (1)-cell of
depth |3| with cell center 0. Indeed, X is a union of fibres of the map rv |3 | : Q3 → RV |3 | .

For a two-dimensional example, let 𝑌 ⊂ Q2
3 be the set of (𝑥, 𝑦) ∈ Z2

3 for which 𝑦 − 𝑥 is a nonzero
cube. This is a (1, 1)-cell of depth |3| with cell tuple 𝑐1 = 0 and 𝑐2 (𝑥) = 𝑥. In more detail, let 𝑅 ⊂ RV |3 |
be the set rv |3 | (𝑋) of rv |3 |-values of cubes in Q3. Then we have that

𝑌 = {(𝑥, 𝑦) ∈ Z2
3 | (rv |3 | (𝑥 − 0), rv |3 | (𝑦 − 𝑥)) ∈ RV |3 | × 𝑅}.

As in [10, Section 5.2], we first state the simplest version of cell decomposition and then formulate
stronger versions as addenda.

Theorem 3.3.3 (Cell decomposition). Suppose that acl equals dcl in Th(𝐾) and that Th(𝐾) is 1-h-
minimal. Consider a ∅-definable set 𝑋 ⊂ 𝐾𝑛 for some n. Then there exists a cell decomposition of X –
namely, a partition of X into finitely many ∅-definable cells 𝐴ℓ of some depth 𝑁 > 0.

Example 3.3.4. Here is an example of a cell decomposition for which one needs the condition that
acl = dcl. Let K be a field of equicharacteristic zero which contains cube roots of unity. Let 𝑍 ⊂ 𝐾2 be
the set of (𝑥, 𝑦) in (𝐾×)2 for which 𝑥 = 𝑦3. This is a 1-dimensional set, but it is not a cell. Denote by
𝑋 ⊂ 𝐾 the set of nonzero cubes. This set X is a union of fibres of the map rv : 𝐾 → RV, so it is a cell
with cell center 0. By using acl = dcl we find three definable maps 𝑓1, 𝑓2, 𝑓3 : 𝑋 → 𝐾 such that for any
𝑥 ∈ 𝑋 , { 𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥)} is the set of cube roots of x. Then Z is the union of three (1, 0)-cells (of
depth 1) – namely the sets

𝑍𝑖 = {(𝑥, 𝑦) ∈ 𝐾2 | (rv(𝑥 − 0), rv(𝑦 − 𝑓𝑖 (𝑥))) ∈ rv(𝑋) × {0}}, for 𝑖 = 1, 2, 3.

Addendum 1 (Preparation of RV |𝑀 |-sets). On top of the assumptions from Theorem 3.3.3, let also a
∅-definable set 𝑃 ⊂ 𝑋 × RV𝑘

|𝑀 |
be given for some k and 𝑀 > 0. We consider P as the function sending

𝑥 ∈ 𝑋 to the fiber 𝑃𝑥 := {𝜉 ∈ RV𝑘
|𝑀 |

| (𝑥, 𝜉) ∈ 𝑃}.
Then the cells 𝐴ℓ from Theorem 3.3.3 can be taken such that moreover P (seen as function) is

constant on each twisted box of each cell 𝐴ℓ .

Addendum 2 (Continuous functions). On top of the assumptions from Theorem 3.3.3 (with Addendum
1, if desired), suppose that finitely many ∅-definable functions 𝑓 𝑗 : 𝑋 → 𝐾 are given. Then the 𝐴ℓ can
be taken such that, moreover, the restriction 𝑓 𝑗 |𝐴ℓ of each function 𝑓 𝑗 to each cell 𝐴ℓ is continuous, and
that each component 𝑐𝑖 : 𝜋<𝑖 (𝐴ℓ) → 𝐾 of the center tuple of 𝐴ℓ is continuous.

In the one-dimensional case, we can prepare the domain and the image of the functions in a compatible
way.

Addendum 3 (Compatible preparation of domain and image). Under the assumptions of Addendum 2,
if 𝑛 = 1, we may moreover impose that there exists an integer M such that for each ℓ and each j, 𝑓 𝑗 |𝐴ℓ is
either constant or injective, 𝑓 𝑗 (𝐴ℓ) is a ∅-definable cell of depth N and for every twisted box R of 𝐴ℓ ,
there are twisted boxes 𝑆 ⊂ 𝑆′ of 𝑓 𝑗 (𝐴ℓ) of depth 𝑁𝑀 , respectively N, such that

𝑆 ⊂ 𝑓 𝑗 (𝑅) ⊂ 𝑆′.

In [23], this result is generalized in equicharacteristic zero to higher dimensions, where one can
compatibly prepare the domain and image of a definable map 𝐾𝑚 → 𝐾 .

We recall the usual notion of Lipschitz continuity.

Definition 3.3.5 (Lipschitz continuity). For a valued field K and an element 𝜆 in its value group Γ×
𝐾 , a

function 𝑓 : 𝑋 ⊂ 𝐾𝑛 → 𝐾𝑚 is called Lipschitz continuous with Lipschitz constant 𝜆 if for all x and 𝑥 ′
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in X, one has

| 𝑓 (𝑥) − 𝑓 (𝑥 ′) | ≤ 𝜆 |𝑥 − 𝑥 ′ |,

where the norm of tuples is, as usual, the sup-norm. We call such f shortly 𝜆-Lipschitz.
Call f locally 𝜆-Lipschitz, if for each 𝑥 ∈ 𝑋 , there is an open neighborhood U of x such that the

restriction of f to U is 𝜆-Lipschitz.

Addendum 4 (Lipschitz centers). Theorem 3.3.3 (with Addenda 1 and 2 if desired) is also valid in the
following variant. Instead of imposing that 𝐴ℓ itself is a cell in the sense of Definition 3.3.1, we only
impose that 𝜎ℓ (𝐴ℓ) is a cell for some coordinate permutation 𝜎ℓ : 𝐾𝑛 → 𝐾𝑛. With this extra freedom
given by the choice of 𝜎ℓ , we can moreover ensure that there is an integer 𝑀 > 0 such that 𝜎ℓ (𝐴ℓ)

is of cell-type (1, . . . , 1, 0, . . . , 0) and that each component 𝑐𝑖 of the center tuple (𝑐𝑖)𝑖 of 𝜎ℓ (𝐴ℓ) is
|1/𝑀 |-Lipschitz.

Closely related to that addendum, we also have the following reformulation of the piecewise continuity
result of [9] in the Hensel minimal setting.

Theorem 3.3.6 (Piecewise Lipschitz continuity). Suppose that acl equals dcl in Th(𝐾) and that Th(𝐾)
is 1-h-minimal. Consider a ∅-definable set 𝑋 ⊂ 𝐾𝑛 for some n and a ∅-definable function 𝑓 : 𝑋 → 𝐾 .
Suppose that f is locally 1-Lipschitz. Then there exist an integer 𝑀 > 0 and a finite partition of X into
∅-definable sets 𝐴ℓ such that the restriction of f to 𝐴ℓ is 1/|𝑀 |-Lipschitz, for each ℓ.

Definition 3.3.7 (Supremum Jacobian property). Let integers 𝑚 > 0 and 𝑛 ≥ 0 be given. For 𝑋 ⊂ 𝐾𝑛

open and 𝑓 : 𝑋 → 𝐾 a function, we say that f has the |𝑚 |-supremum Jacobian Property on X if f is 𝐶1

on X, and f is either constant on X, or for every x and y in X with 𝑥 ≠ 𝑦, we have

| (grad 𝑓 ) (𝑥) − (grad 𝑓 ) (𝑦) | < |𝑚 · (grad 𝑓 ) (𝑦) | (3.3.1)

and

| 𝑓 (𝑥) − 𝑓 (𝑦) − (grad 𝑓 ) (𝑦) · (𝑥 − 𝑦) | < |𝑚 · (grad 𝑓 ) (𝑦) | · |𝑥 − 𝑦 |. (3.3.2)

In the definition, as usual, one considers (grad 𝑓 ) (𝑦) as a matrix with a single row with entries
(𝜕 𝑓 /𝜕𝑥𝑖) (𝑦), which is multiplied with the column vector 𝑥 − 𝑦.

Theorem 3.3.8 (Sup-Jac-preparation). Suppose that Th(𝐾) is 1-h-minimal. Let integers𝑚 > 0 and 𝑛 ≥ 0
be given. For every ∅-definable function 𝑓 : 𝐾𝑛 → 𝐾 , there exists a ∅-definable map 𝜒 : 𝐾𝑛 → RV𝑘

|𝑁 |
(for some integers 𝑘 ≥ 0 and 𝑁 ≥ 1) such that for each fiber F of 𝜒 which is n-dimensional, F is open
and f restricted to F has the |𝑚 |-supremum Jacobian property on F.

To prove these results, we first prove the cell decomposition theorem together with Addendum 1
directly. Although it is possible to prove the other addenda in a similar way, we give an alternative recipe
for transferring cell decompositions via coarsening.

Proof of Theorem 3.3.3 with Addendum 1. We induct on n. For the base case 𝑛 = 1, we use Proposition
2.3.2 to find a finite ∅-definable set C and an integer N such that C |𝑁 |-prepares P. By our assumption
that acl = dcl, every element of C is ∅-definable. For each ball B |𝑁 |-next to C, we can definable pick
𝑐(𝐵) ∈ 𝐶 such that B is |𝑁 |-next to 𝑐(𝐵). The desired cell decomposition consists of two cells for every
element 𝑐 ∈ 𝐶, namely the 0-cell {𝑐} and the 1-cell consisting the union of all balls B |𝑁 |-next to C for
which 𝑐(𝐵) = 𝑐.

Now assume that 𝑛 > 1. For every 𝑎 ∈ 𝐾𝑛−1, we apply the case 𝑛 = 1 to the set

𝑃𝑎 = {(𝑏, 𝜉) ∈ 𝐾 × RV𝑘
|𝑀 | | (𝑎, 𝑏, 𝜉) ∈ 𝑃}.
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Using compactness, we find for each 𝑎 ∈ 𝐾𝑛−1 a finite set of cells of depth |𝑁 | adapted to 𝑃𝑎, where
we can moreover assume that the cell centers are ∅-definable functions 𝐾𝑛−1 → 𝐾 . Now consider the
set 𝑃′ ⊂ 𝐾𝑛−1 × RV |𝑁 | × RV𝑘

|𝑀 |
, where for each 𝑎 ∈ 𝐾𝑛−1, 𝑃′

𝑎 consists of the following:

(1) For each 0-cell {𝑐} ⊂ 𝐾 of 𝑃𝑎, the set {(0, . . . , 0) ∈ RV |𝑁 | } × 𝑃𝑎,𝑐 is in 𝑃′
𝑎.

(2) For each 1-cell X with center 𝑐 ∈ 𝐾 of 𝑃𝑎, let 𝑅 ⊂ RV |𝑁 | be the set from Definition 3.3.1. Then
the set

{(𝜁, 𝜉) ∈ RV |𝑁 | × RV𝑘
|𝑀 | | 𝜁 ∈ 𝑅, 𝜉 ∈ 𝑃𝑎,𝑏 for any 𝑏 ∈ 𝐾 with rv |𝑁 | (𝑏 − 𝑐) = 𝜁 }}

is in 𝑃′
𝑎.

We find the desired cell decomposition by applying the induction hypothesis to the set 𝑃′. �

The following lemma can be used to move from a cell decomposition in 𝐾ecc to one in K.

Lemma 3.3.9. Assume that acl equals dcl in K and that ThL (𝐾) is 1-h-minimal. Let A′ be an Lecc-
definable cell decomposition of 𝐾𝑛. Then there exists an L-definable cell decomposition A of 𝐾𝑛 of
depth |𝑁 |, for some N, such that every |1|ecc-twisted box of A is contained in a twisted box of A′.

By a |1|ecc-twisted box of A, we mean the following. Let (𝑐1, . . . , 𝑐𝑛) be the cell center of some cell
in A and let

{𝑥 ∈ 𝐾𝑛 | (rv |𝑁 | (𝑥𝑖 − 𝑐𝑖 (𝜋<𝑖 (𝑥))))
𝑛
𝑖=1 = 𝑟}

be a twisted box in this cell for some 𝑟 ∈ RV𝑛
|𝑁 |

. Then a |1|ecc-twisted box of A is a set of the form

{𝑥 ∈ 𝐾𝑛 | (rvecc(𝑥𝑖 − 𝑐𝑖 (𝜋<𝑖 (𝑥))))
𝑛
𝑖=1 = 𝑟 ′},

for any 𝑟 ′ ∈ RV𝑛
ecc reducing to r under the natural projection RVecc → RV |𝑁 | .

Proof of Lemma 3.3.9. We can do this one cell at a time, so let A be an Lecc-definable cell with cell
center (𝑐1, . . . , 𝑐𝑛). By [10, Corollary 4.1.17] (which holds in our context by Proposition 2.6.4), we
have that 𝑐𝑖 (𝜋<𝑖 (𝑥)) is always L(𝜋<𝑖 (𝑥))-definable. Let 𝐶𝑖 (𝜋<𝑖 (𝑥)) be an L-definable family of finite
sets, with parameter 𝜋<𝑖 (𝑥) ∈ 𝐾 𝑖−1, such that 𝑐𝑖 (𝜋<𝑖 (𝑥)) is an element of 𝐶𝑖 (𝜋<𝑖 (𝑥)). Using acl = dcl
in L, we can find several L-definable cells of depth |𝑁 |, for some N, whose cell center is among the 𝐶𝑖 .
This will be the desired cell decomposition. �

Proof of Theorems 3.3.6 and 3.3.8 the Addenda 2, 3, 4. We explain the use of compactness to prove
Theorem 3.3.8. Let f be given as in Theorem 3.3.8. We may suppose that K is saturated when we prove
the existence of 𝜒. Let Lecc be the RV-enrichment of L obtained by adding to Γ𝐾 the cut given by
the maximal ideal of O𝐾,ecc. Working in Lecc and applying [10, Theorem 5.4.10], we obtain an Lecc-
definable map 𝜒′ : 𝐾𝑛 → RV𝑘

ecc such that on the fibres of 𝜒′, f has the supremum Jacobian property
with respect to | · |ecc. We can assume that 𝜒′ comes from a Lecc-definable cell decomposition. Let A
be the L-definable cell decomposition of depth |𝑁 | of 𝐾𝑛 obtained from Lemma 3.3.9 on 𝜒′. We claim
that after enlarging N, f has the |𝑚 |-supremum Jacobian property on the twisted boxes of A. Suppose
the claim is false. By saturation, we can find 𝑥, 𝑦 ∈ 𝐾𝑛 which are in the same |𝑁 |-twisted box of A for
every integer N and such that either

| (grad 𝑓 ) (𝑥) − (grad 𝑓 ) (𝑦) | ≥ |𝑚 · (grad 𝑓 ) (𝑦) |

or

| 𝑓 (𝑥) − 𝑓 (𝑦) − (grad 𝑓 ) (𝑦) · (𝑥 − 𝑦) | ≥ |𝑚 · (grad 𝑓 ) (𝑦) | · |𝑥 − 𝑦 |.
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However, if x and y are in the same |𝑁 |-twisted box of A for every integer N, then they are also in the
same |1|ecc-twisted box of A, and hence also in the same fibre of 𝜒′. But this contradicts our choice of
𝜒′, proving the claim.

The proofs of the addenda and 3.3.6 can be proven in the same way using coarsening, or alternatively,
by direct adaptation of the proofs of [10, Theorems 5.2.4 and 5.2.8]. �

4. Diophantine application for 1-h-minimal transcendental curves

In this section, we give a diophantine application of Hensel minimality by bounding the number
of rational points of bounded height on transcendental curves that are definable in Hensel minimal
structures, in the spirit of [5], [20], [8] and [9]. In more detail, our Diophantine application for curves
resembles the results for curves from Bombieri-Pila [5] but allows for an axiomatic setting, analogous
to the results by Pila-Wilkie [20] (where o-minimality is used). It extends [8] and [9] to our axiomatic
setting of Hensel minimality, but only in the curve case. In [8] and [9], the analytic (and subanalytic)
situation is treated. These approaches all use Taylor approximation to finite order. In the one-dimensional
case, Theorem 3.1.2 is strong enough as Taylor approximation, but in higher dimensions, new and extra
work is needed which seems quite hard at the moment. See Section 5.4 for a discussion on the difficulties
to extend the axiomatic approach to higher dimensions.

Note that the finiteness result of [3] for the number of polynomials of bounded degree on the
transcendental part of non-Archimedean analytic and subanalytic sets X in 𝐾𝑛 with 𝐾 = C((𝑡)) no longer
needs to hold, in general, 1-h-minimal structures on K, and is specific to the subanalytic situation. See
[7] for such examples with infinitely many polynomials of bounded degree on the transcendental part
of a set definable in a Hensel minimal structure. We leave the discovery of higher dimensional variants
of Theorem 4.0.7 to the future.

We first define sets of rational points of bounded height, as in [8], [9].

Definition 4.0.1. For any integer 𝐻 > 0 and any set 𝑋 ⊂ 𝐾𝑛 with K a field extension ofQ𝑝 , write 𝑋 (𝐻)

for

𝑋 (𝐻) := {𝑥 ∈ 𝑋 ∩ Z𝑛 | 0 ≤ 𝑥𝑖 ≤ 𝐻 for each 𝑖}.

In the real setting, convexity together with bounds on𝐶𝑟 -norms leads to Taylor approximation results,
but in our setting, we have to control Taylor approximation in other ways (by lack of convexity and by
total disconnectedness). This is captured by the 𝑇𝑟 notion from [8] and [9].

Definition 4.0.2 (𝑇𝑟 maps). Fix a positive integer r. A function 𝑓 : 𝑈 ⊆ 𝐾𝑚 → 𝐾 is said to be 𝑇𝑟 if for
each 𝑦 ∈ 𝑈 there is a polynomial 𝑇<𝑟

𝑓 ,𝑦 (𝑥) of degree less than r and coefficients in K such that for each
𝑥, 𝑦 ∈ 𝑈,

| 𝑓 (𝑥) − 𝑇<𝑟
𝑓 ,𝑦 (𝑥) | ≤ |𝑥 − 𝑦 |𝑟 . (4.0.1)

A map 𝑓 : 𝑈 ⊆ 𝐾𝑚 → 𝐾𝑛 is called 𝑇𝑟 if each component function is.

We need some notation from [9, Section 5.1].

Definition 4.0.3. Let 𝛼 = (𝛼1, ..., 𝛼𝑚) ∈ N
𝑚 and define |𝛼 | = 𝛼1 + · · · + 𝛼𝑚. We define the following

sets and numbers:

◦ Λ𝑚 (𝑘) := {𝛼 ∈ N𝑚; |𝛼 | = 𝑘},
◦ Δ𝑚 (𝑘) := {𝛼 ∈ N𝑚; |𝛼 | ≤ 𝑘},
◦ 𝐿𝑚 (𝑘) := #Λ𝑚(𝑘) and 𝐷𝑚 (𝑘) := #Δ𝑚 (𝑘).

Note that 𝐿𝑚 (𝑘) (resp. 𝐷𝑚(𝑘)) is the number of monomials of degree exactly (resp. at most) k in m
variables.
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Fix an integer d and define, for all integers n and m such that 𝑚 < 𝑛 the following integers.

𝜇(𝑛, 𝑑) = 𝐷𝑛 (𝑑) 𝑟 (𝑚, 𝑑) = min{𝑥 ∈ Z; 𝐷𝑚(𝑥 − 1) ≤ 𝜇 < 𝐷𝑚 (𝑥)}

𝑉 (𝑛, 𝑑) =
𝑑∑

𝑘=0
𝑘𝐿𝑛 (𝑘) 𝑒(𝑛, 𝑚, 𝑑) =

𝑟−1∑
𝑘=1

𝑘𝐿𝑚 (𝑘) + 𝑟 (𝜇 − 𝐷𝑚 (𝑟 − 1)).
(4.0.2)

We recall [9, Lemma 5.1.3], amending it with a correction for the exponent (See Remark 4.0.5).

Lemma 4.0.4 (Counting algebraic hypersurfaces). For all positive integers d, n, m with 𝑚 < 𝑛, consider
the integers r, V, e and 𝜇 as defined above. Fix a finite field extension K of degree 𝜈 over Q𝑝 and with
𝑞𝐾 many elements in the residue field of K. Let a subset 𝑈 ⊆ O𝑚

𝐾 and a 𝑇𝑟 map 𝜓 : 𝑈 → O𝑛
𝐾 be given

and put 𝑋 = 𝜓(𝑈). Then for each 𝐻 ≥ 1, the set 𝑋 (𝐻) is contained in at most

𝑞𝑚
𝐾 (𝜇!)𝑚/𝑒𝐻𝜈𝑚𝑉 /𝑒 (4.0.3)

hypersurfaces of degree at most d. Moreover, when d goes to infinity, 𝑚𝑉/𝑒 goes to 0.

Remark 4.0.5. Note that the exponent 𝜈 of H in (4.0.3) is forgotten in the statement of [9, Lemma
5.1.3] in the characteristic zero case, but it comes up in the proof given there. This lemma is used for
the characteristic zero cases of Proposition 5.1.4 and Theorems B and 5.2.2 of [9], each of which can
be corrected by letting the implicit constants depend furthermore on 𝜈. The positive characteristic cases
of Lemma 5.1.3, Proposition 5.1.4 and Theorems B and 5.2.2 of [9] do not need any change. A sharper
variant of [9, Lemma 5.1.3] (under some extra conditions) that would recover the original Theorems B
and 5.2.2 from [9] may be found in the future.

The following lemma plays a similar role as Lemma 3.2.14 of [8] and Lemma 3.4.3 of [9]. Similarly,
as in the Yomdin-Gromov and Pila-Wilkie approaches [24] [14] [20], it states that composing with
well-chosen powers maps yields good Taylor approximation.

Lemma 4.0.6 (Composing with power maps). Let an integer 𝑟 > 0 and a finite field extension K of Q𝑝

be given. Let B be an open ball of the form 𝑑 (1 + 𝑁M𝐾 ) for some integer 𝑁 > 0 and some 𝑑 ∈ O𝐾 .
Let 𝑓 : 𝐵 → O𝐾 be a 𝑇1 function such that f and each of the iterated derivatives 𝑓 ′, 𝑓 ′′, . . . 𝑓 (𝑟 ) of f up
to order r has the Jacobian property, and such that f satisfies Taylor approximation up to level r as in
Theorem 3.1.2. Then there is an integer 𝑟 ′ ≥ 𝑟 such that the map

𝑥 ↦→ 𝑓 (𝑎 + 𝑏𝑥𝑟 ′ )

is 𝑇𝑟 on 𝐵′ for any choice of 𝑎, 𝑏 ∈ O𝐾 and any ball 𝐵′ ⊂ O𝐾 which maps into B under the map
𝑥 ↦→ 𝑎 + 𝑏𝑥𝑟 ′ .

The proof of Lemma 4.0.6 is similar to the proofs of Lemma 3.4.3 of [9] and Lemma 3.2.14 of [8],
where the analyticity condition is replaced by the Jacobian property for the functions 𝑓 , 𝑓 ′, 𝑓 ′′, . . . 𝑓 (𝑟 ) .
Slightly more details of the proof can be found in [8; 9].

Proof of Lemma 4.0.6. The Jacobian property for f and the 𝑓 (𝑖) and the fact that f is 𝑇1 imply that
| 𝑓 (𝑖) (𝑏 + 𝑏𝑁𝑥) | ≤ |𝑥 |1−𝑖 for all i with 0 < 𝑖 ≤ 𝑟 and all x with 𝑏 + 𝑏𝑁𝑥 ∈ 𝐵. Write 𝑓𝑟 ′,𝐵′ for a
composition of the form 𝑥 ∈ 𝐵′ ↦→ 𝑓 (𝑎 + 𝑏𝑥𝑟 ′ ) for some choice of 𝑟 ′, 𝑎, 𝑏 and 𝐵′ as in the lemma. By
the chain rule for differentiation, we find that | 𝑓 (𝑖)𝑟 ′,𝐵′ (𝑥) | ≤ |𝑟 ′/𝑁𝑟 | for all i with 0 < 𝑖 ≤ 𝑟 and all x in 𝐵′.
Since Taylor approximation up to level r as in Theorem 3.1.2 still holds for 𝑓𝑟 ′,𝐵′ since it is preserved
under compositions (see Lemma 3.2.7 of [8]), we are done for suitable choice of 𝑟 ′. �

Call an infinite set𝐶 ⊂ 𝐾𝑛 purely transcendental if every algebraic curve in 𝐾𝑛 has finite intersection
with C.
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Theorem 4.0.7. Let K be a finite field extension of Q𝑝 . Let 𝐶 ⊂ 𝐾𝑛 be a purely transcendental set
which is definable in a 1-h-minimal structure on K and which is of dimension 1 (i.e., there is a linear
projection 𝑝 : 𝐾𝑛 → 𝐾 such that 𝑝(𝐶) is infinite and such that p has finite fibers on C). Then for each
𝜀 > 0, there is a constant c such that for all 𝐻 ≥ 1, one has

#𝐶 (𝐻) ≤ 𝑐𝐻 𝜀 .

Moreover, the constant c can be chosen uniformly in a definable family of such curves in the following
sense. Consider a 1-h-minimal structure on K and a definable family {𝐶𝑦}𝑦∈𝑌 of definable sets𝐶𝑦 ⊂ 𝐾𝑛,
where y runs over some definable set 𝑌 ⊂ 𝐾𝑚. Then for each 𝜀 > 0, there is a constant c such that for
all 𝑦 ∈ 𝑌 and all 𝐻 ≥ 1, one has, if 𝐶𝑦 is of dimension 1 and purely transcendental,

#𝐶𝑦 (𝐻) ≤ 𝑐𝐻 𝜀 .

Proof. Let K and C be given as in the beginning of the theorem and fix 𝜀 > 0. Write 𝑛′ for
(𝑛
2
)
. Fix d

(and corresponding value for r, V and e) such that 𝜈𝑉/𝑒 < 𝜀/𝑛′, with notation from Lemma 4.0.4 for
plane curves (namely, the case of that lemma with 𝑚 = 1 and 𝑛 = 2). We may suppose that acl = dcl
by Proposition 3.2.3, and thus, we can speak more easily about cells. Clearly we may suppose that
𝐶 ⊂ O𝑛

𝐾 . By the Cell Decomposition Theorem 3.3.3 with Addendum 4 and possibly after composing
with 𝑥 → 𝑎 + 𝑀𝑥 for some 𝑎 ∈ O𝐾 to kill the factor |1/𝑀 | from the addendum, we may suppose that
we have N maps

𝜑𝑖 : 𝑃𝑖 ⊂ O𝐾 → 𝐶

the union of whose images equals C, and which are 1-Lipschitz. Indeed, by varying over finite choices
of a, we can ensure that the union of images equals C. Furthermore, after translation by the center, we
may suppose that each 𝑃𝑖 is a cell with center 0, that each of the component functions of each partial
derivative of 𝜑𝑖 up to order r has the Jacobian property and that each component functions of 𝜑𝑖 satisfies
Taylor approximation up to level r, as in Theorem 3.1.2. By Lemma 4.0.6, we find an integer 𝑟 ′ ≥ 𝑟
such that the map 𝑥 ↦→ 𝜑𝑖 (𝑎 + 𝑏𝑥𝑟 ′ ) is 𝑇𝑟 on 𝑃′

𝑖 , for any choice of 𝑎, 𝑏 ∈ O𝐾 and any cell 𝑃′
𝑖 which

is mapped into 𝑃𝑖 under 𝑥 ↦→ 𝑎 + 𝑏𝑥𝑟 ′ . Indeed, on any twisted box 𝐵′ in 𝑃′
𝑖 , this is exactly given by

Lemma 4.0.6, and obtaining Equation (4.0.1) on 𝑃′
𝑖 for x and y lying in different twisted boxes of 𝑃′

𝑖 is
easier. By varying over a, b and 𝑃′

𝑖 , we can ensure that the union of the images of the 𝜑𝑖 still equals C.
Hence, we may suppose that the maps 𝜑𝑖 are already 𝑇𝑟 themselves. Write 𝐶𝑖 for 𝜑𝑖 (𝑃𝑖). Apply

Lemma 4.0.4 to the sets 𝑝 𝑗 (𝐶𝑖) in 𝐾2 for each choice of coordinate projection 𝑝 𝑗 : 𝐾𝑛 → 𝐾2. This
yields 𝑁 ′ > 0 and for each 𝑖, 𝑗 and 𝐻 ≥ 1, a collection of at most 𝑁 ′𝐻 𝜀/𝑛′ algebraic curves 𝑆𝑖 𝑗ℓ of degree
d whose union contains 𝑝 𝑗 (𝐶𝑖) (𝐻). Since any intersection of the form

⋂
𝑗 𝑝

−1
𝑗 (𝑆𝑖 𝑗ℓ) is algebraic and

of dimension at most 1 (see, for example, the argument on transversal cylinders on page 45 of [8]), we
have for each 𝐻 ≥ 1 that the set 𝐶𝑖 (𝐻) is contained in no more than 𝑁 ′𝑛′

𝐻 𝜀 many algebraic curves (all
of bounded complexity in terms of d and n). Each such algebraic curve has finite intersection with 𝐶𝑖 by
the pure transcendence of 𝐶𝑖 . Since the intersections of 𝐶𝑖 with the mentioned algebraic curves appear
in a definable family of finite definable sets, and since one has uniform upper bounds on the size of finite
sets in definable families in 1-h-minimal structures by (3) of Lemma 2.3.1, the theorem follows. �

Remark 4.0.8. A version of Theorem 4.0.7 which works uniformly in all local fields K of large residue
field characteristic (namely, Q𝑝 and F𝑝 ((𝑡)) and their finite field extensions, for large p) can also be
formulated and proved along the same lines. This extends the one-dimensional case (with 𝑚 = 1, and
with implied constant as specified in Remark 4.0.5) of Theorem 5.2.2 of [9] to the 1-h-minimal situation
(instead of subanalytic).
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5. Some questions

We end the paper with some questions for future research.

5.1. RV-reducts

Suppose that L′ is an
⋃

nRVn-expansion of L. Then ℓ-hmix-minimality of ThL (𝐾) implies ℓ-hmix-
minimality of ThL′ (𝐾) for ℓ = 0, 1, 𝜔 (see Proposition 2.6.5 and Theorem 2.2.8).

Question 5.1.1. Does the converse also hold (i.e., does ℓ-h-minimality of ThL′ (𝐾) imply ℓ-h-minimality
of ThL (𝐾))?

Remark 5.1.2. Hensel minimality is not preserved by passing to reducts in general. Indeed, suppose
that ThL (𝐾) is 𝜔-h-minimal and that K is ℵ0-saturated. Fix a ball 𝐵 = 𝐵<𝜆 (𝑎) ⊂ 𝐾 which is strictly
contained in a ball disjoint from acl𝐾 (∅) (so that B cannot be prepared by a finite, ∅-definable 𝐶 ⊂ 𝐾).
Then ThL(𝑎,𝜆) (𝐾) is 𝜔-h-minimal, but the reduct ThL∪{𝐵} (𝐾) is not even 0-h-minimal (where by ‘B’,
we mean a predicate for that ball). It would be interesting to find a tameness notion which is preserved
on reducts.

5.2. Coarsened valuations

Suppose that Th(𝐾) is 𝜔-hecc-minimal and that we have a definable coarsening | · |𝑐 of the valuation;
write 𝐾𝑐 for K considered as a valued field with the coarsened valuation | · |𝑐 and write 𝑘𝑐 for the residue
field of 𝐾𝑐 , and put the full induced structure on 𝑘𝑐 . By [10, Corollary 4.2.4], resp. by Theorem 2.2.8,
one has

(1) if Th(𝐾) is𝜔-hecc-minimal, then so is Th(𝐾𝑐), and resp., if Th(𝐾) is 1-h-minimal, then so is Th(𝐾𝑐).

Question 5.2.1. (2) Does 𝜔-hecc-minimality of Th(𝐾) imply 𝜔-hecc-minimality of Th(𝑘𝑐)?
(3) Do𝜔-hecc-minimality of Th(𝐾𝑐) and𝜔-hecc-minimality of Th(𝑘𝑐) together imply𝜔-hecc-minimality

of K?
And one may ask (2) and (3) also for 1-h-minimality instead of 𝜔-hecc-minimality. One may also ask

whether (1) holds under other variants of Hensel minimality.

5.3. The Implicit Function Theorem

Any 𝐶1-function 𝑈 ⊂ R𝑛 → R also has a strict derivative (see [10, Definition 3.1.2]. This is not the
case in valued fields.

Example 5.3.1. Define 𝑓 : 𝐾2 → 𝐾 by 𝑓 (𝑥, 𝑦) = 𝑥2 if |𝑥 |4 ≤ |𝑦 | and 𝑓 (𝑥, 𝑦) = 𝑥3 otherwise. This
function is 𝐶1 everywhere, but at 0, the strict derivative does not exist, since 𝑓 (𝑥,𝑥4)− 𝑓 (𝑥,0)

𝑥4 = 𝑥−2 − 𝑥−1,
which diverges for 𝑥 → 0.

In view of this example, and by our knowledge that strict 𝐶1 is the better notion for rank one
valued fields for several reasons (see e.g. [2], and where strict 𝐶1 means that the strict derivative exists
everywhere and is continuous), one may try to build a good working notion of definable strict 𝐶1

submanifolds of 𝐾𝑛, assuming a suitable form of Hensel minimality. The following is a first question in
this direction.

Question 5.3.2. In what form could an Implicit Function Theorem hold for definable functions, say,
assuming 1-h-minimality? This should be considered knowing that a 1-h-minimal theory does not
automatically imply Hensel’s lemma in mixed characteristic, and knowing that, in some special situations
(like in [2]), it is known that strict 𝐶1 functions work well for the Implicit Function Theorem.
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5.4. Higher order Taylor Approximation

Theorem 3.3.8 can be seen as an order one Taylor approximations result for functions in several variables.
This viewpoint suggests that we might have the following variant of [10, Theorem 5.6.1] (which is a
result on higher order Taylor approximations of functions in several variables).

Question 5.4.1. Given a definable function 𝑓 : 𝐾𝑛 → 𝐾 in a 1-h-minimal structure and an integer 𝑟 ≥ 1,
does there exist a definable map 𝜒 : 𝐾𝑛 → RV𝑘

|𝑁 |
such that [10, Equation (5.6.1)] (or a similar kind of

Taylor approximation) holds on each n-dimensional fiber of 𝜒?

Such a result would be strictly stronger than [10, Theorem 5.6.1], which yields Taylor approximations
only on boxes disjoint from a lower-dimensional definable set C. Indeed, given 𝜒, one can easily find a
C such that every box disjoint from C is contained in a fiber of 𝜒 (namely by 1-preparing 𝜒 fiberwise
using Corollary 2.3.4). However, the family of maximal boxes disjoint from C cannot, in general, by
parametrized by a tuple from RV. An answer to Question 5.4.1 is important to generalize the diophantine
application of Section 4 to arbitrary dimension instead of just curves.
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