
Political Analysis (2019)
vol. 27:388–396

DOI: 10.1017/pan.2019.4

Published

11 April 2019

Corresponding author

Devin Caughey

Edited by

Justin Grimmer

c© The Author(s) 2019. Published
by Cambridge University Press
on behalf of the Society for
Political Methodology.

Dynamic Ecological Inference for Time-Varying

Population Distributions Based on Sparse,

Irregular, and Noisy Marginal Data

Devin Caughey 1 and Mallory Wang2

1 MIT, Political Science, 77 Massachusetts Ave., Room E53-463, Cambridge, MA 021040, USA. Email: devin.caughey@gmail.com
2 Uber, 555 Market Street 4th Floor, San Francisco, CA 94108, USA. Email: mallory.wang@gmail.com

Abstract
Social scientists are frequently interested in how populations evolve over time. Creating poststratification

weights for surveys, for example, requires information on the weighting variables’ joint distribution in the

target population. Typically, however, population data are sparsely available across time periods. Even

when population data are observed, the content and structure of the data—which variables are observed

and whether their marginal or joint distributions are known—differ across time, in ways that preclude

straightforward interpolation. As a consequence, survey weights are often based only on the small subset of

auxiliary variables whose joint population distribution is observed regularly over time, and thus fail to take

full advantage of auxiliary information. To address this problem, we develop a dynamic Bayesian ecological

inference model for estimating multivariate categorical distributions from sparse, irregular, and noisy data

on their marginal (or partially joint) distributions. Our approach combines (1) a Dirichlet sampling model

for the observed margins conditional on the unobserved cell proportions; (2) a set of equations encoding

the logical relationships among different population quantities; and (3) a Dirichlet transition model for

the period-specific proportions that pools information across time periods. We illustrate this method by

estimating annual U.S. phone-ownership rates by race and region based on population data irregularly

available between 1930 and 1960. This approach may be useful in a wide variety of contexts where scholars

wish to make dynamic ecological inferences about interior cells from marginal data. A new R package

estsubpop implements the method.

Keywords: ecological inference, survey weighting, demographic interpolation, Bayesian models, Dirichlet

dynamic model

1 Problem: Subpopulation Estimation with Irregular Data

Social scientists are often interested in how populations evolve over time. Estimating the

composition of populations is a central concern of demography as well as a frequent target

of ecological inference (EI). One common use of population estimates is as targets for weights

designed to make samples more representative of the population. Survey researchers, for

example, often poststratify poll samples so that the joint distribution of certain variablesmatches

the target population. Constructing suchmultivariate population targets is straightforward when

data on variables’ joint distribution can be derived from a single authoritative source, such as

the Integrated Public Use Microdata Series (IPUMS) of anonymized samples of individual U.S.

Census records (Ruggles et al. 2017). As long as the population data are observed in consistent

form across time, it is also simple to make these population targets dynamic by interpolating

between decennial IPUMS samples (e.g., Enns and Koch 2013).

Frequently, however, data on population distributions must be compiled from multiple

sources, whichmay exhibit inconsistencies due to sampling or measurement error. Moreover, the

structure of population datasets or the variables they include often differ across time periods.

Faced with such barriers to simple interpolation, scholars typically either use time-invariant
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Table 1. Phone ownership by race by region in 1940. Unobserved cell proportions are represented by π and
observedmarginal proportions by p . Subscripts indicate the presence (uppercase) or absence (lowercase) of
the three attributes.

population targets—which is obviously problematic for studies that span periods of substantial

demographic change—or confine their attention to the few variables whose joint distribution is

observed in consistent form across time (cf. Leeman andWasserfallen 2017).

As an alternative, we develop a Bayesian framework for estimating population cell proportions

over time, conditional on all available population data. The data may consist of marginal or joint

distributions, be observed irregularly over time, and come from multiple noisy or inconsistent

datasets. Extending the dynamic EI model of Quinn (2004), our approach uses a Dirichlet random

walk to allow past and future as well as contemporary data to inform the cell estimates for a given

year. Wemotivate thismodel with the example of estimating phone ownership by race and region

and implement it in a new R package, estsubpop (Caughey and Wang 2018a).

2 Motivation: Phone Ownership by Race and Region

As motivation, consider the challenge faced by Berinsky et al. (2011), who constructed survey

weights for quota-sampled opinion polls fielded between 1936 and 1945. To ameliorate the

sampling biases of the polls, the authors sought to poststratify the samples by region, race, and

indicators of class status. But because poststratification (a.k.a. cell weighting) requires knowledge

of theweighting variables’ joint distribution in thepopulation, theseauthors couldnotpoststratify

on variables for which only marginal distributions were available, such as phone ownership.

They were thus forced to choose to either drop phone ownership as a weighting variable or

abandon poststratification in favor of raking weights, which match variables’ marginal but not

joint distributions.1

Table 1 illustrates the structure of the problem Berinsky et al. faced, using data from 1940. It

presents a 2 × 2 × 2 array of cells defined by the binary variables South, Black, and Phone. Cells’

population proportions are representedbyπ, whose subscripts indicate the presence (uppercase)

or absence (lowercase) of the three attributes. If these cell proportionswere known, they could be

used to create poststratificationweights by dividing themby the cells’ corresponding proportions

in the sample. But data on the joint distribution of these three variables is not available until the

1960 IPUMS, when phone-ownership rates weremuch higher than in 1936–45. All that is available

in the 1936–45 period is information on themarginal distributions of Phone and Blackwithin each

region.2 These observedmarginal proportions are represented by p .

If race and phone ownership were independent within region, the cell proportions could be

estimated by multiplying the corresponding marginal proportions. Under this assumption, the

phone-ownership rate in the South in 1940 would be naively estimated to be 19% for both blacks

andwhites. Unfortunately, this assumption is highly implausible, for phoneownershipwas almost

certainly much more common among whites. This racial disparity is clear in the 1960 IPUMS,

which reports aphone-ownership rateof 70% forSouthernwhites versus 39%forSouthernblacks.

1 Berinskyetal. (2011) ultimatelydecided tocreate rakingweights forphoneownership, butdiscourageduseof theseweights

in favor of poststratification weights based on education or occupation.

2 The 1940 IPUMS contains Black × South. Phone × South can be derived from AT&T corporate records.
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The problem, then, is how to formally incorporate the 1960 information on the joint distribution

of South, Black, and Phone into our cell estimates two decades earlier.

3 Related Problems and Methods

The problem illustrated in the previous section is closely related to classic problems in EI, such

as the oft-studied example of voter registration by race. (In EI, the quantities of interest are often

definedas conditional rates rather thancell proportions, but the latter are a functionof the former;

King 1997, 29–31.)3 EI is unreliablewithout supplementary data or prior information, andBayesian

models offer a convenient way of incorporating additional information. Most relevantly, Quinn

(2004) develops a dynamic EI model that shrinks estimates across time periods, which he notes

are a powerful source of such information when data are temporally dependent. Quinn’s model,

however, is designed for situations where themargins of the same 2 × 2 table are observed in the
same form in each time period. By contrast, we are interested in applications where there may

be multiple (possibly inconsistent) data sources available in a given year, and the structure and

content of the data may differ across years. We therefore augment Quinn’s approach with ideas

borrowed from demography (e.g., Bryant and Graham 2013), specifically the idea of combining (1)

multiple observationmodels for different data sources; (2) a “demographic account” that encodes

the logical relationships among different population quantities; and (3) a transition model for

change in population parameters across time periods.4

4 A Bayesian Model for Dynamic Population Estimation

Estimating the joint population distribution of V nonnested categorical variables is equivalent

to estimating the population proportions of C =
∏V

v Lv cells, where Lv indicates the number

of possible values that variable v can take. Let π t = (πt1, . . . πtc , . . . , πtC )
′ denote the simplex

of cell proportions in period t ∈ {1 . . .T }. In each period, population data are available on the

joint distribution of Mt � 0 subsets of the V variables. Each variable subset m ∈ {1 · · ·Mt }

contains Vtm � V variables, whose levels define Gtm =
∏Vtm

w Lw groups, each composed of

Htmg � 1 cells. The population data for each variable subsetm in period t consist of the simplex

ptm = (ptm1, . . . ptmg , . . . , ptmGtm )
′. Each group proportion ptmg is an estimate of group g ’s true

population proportionφtmg , the sum of the proportions πtc of the cells that compose group g .

For intuition, consider the problem of using the 1960 IPUMS and the 1940 data in Table 1 to

estimate phone ownership by race and region between 1940 and 1960. This example involves

V = 3 auxiliary variables (South, Black, and Phone), each with Lv = 2 levels. Of interest are the

populationproportionsπtc ofC = 2× 2× 2 = 8 cells ineachofT = 21years. In 1940 (t = 1), dataon

the joint distribution ofM1 = 2 variable subsets are available: {South, Black} and {South, Phone}.

For each variable subset m,V1,m = 2, G1,m = 4, and H1,mg = 2 �g . We observe M1 = 2 vectors

of group proportions p1,m , which are estimates of φ1,m and which correspond to the marginal

proportions in Table 1 (with different notation). In 1960 (t = 21), M21 = 1 variable subset is

available: {South, Black, Phone}. For this subset, V21,m = 3, G21,m = 8, and H21,mg = 1 �g . No

data are available for years between 1940 and 1960, soMt = 0 �t � {1, 21}.
Our goal is to use the observed group proportions ptm to make inferences about the true cell

proportions π t . We do so with a Bayesian model that combines two submodels: an observation

model linking π t (viaφtm ) to the data ptm and a transition model specifying how π t evolves over

3 For example, the phone-ownership rate among Southern blacks, βBS = Pr(Phone�South, Black), is equal to πSBP /(πSBP +
πSBp ).

4 Also related is the work of Leeman and Wasserfallen (2017), who address the problem of using multilevel regression and

poststratification when the joint population distribution is unknown. Leeman and Wasserfallen’s proposed solution is to

combinemarginal populationdatawith survey data to create a “synthetic” joint distribution. Theirmethod canbe thought

of as a static version of our approach, which can incorporate data from multiple points in time as well as from multiple

sources (including surveys).
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Figure 1. Plate diagram of the dynamic EI model. Shaded nodes indicate variables that are observed or set

by the analyst.

time (see Figure 1 for an overview).5 The observation model allows for measurement error in the

observed group proportions ptm relative to the true proportionsφtm . We represent this stochastic

relationship between ptm andφtm using the Dirichlet distribution,

ptm ∼ Dir(φtmn
samp
tm ). (1)

Under this model, the expected value of ptmg is φtmg . The precision of the sampling distribution

is determined by n
samp
tm , which is specified by the analyst (e.g., based on the actual sample size of

the data source for ptm ).6

Each group proportion φtmg is the sum of the proportions of the Htmg cells that compose it.

The relationship betweenφtm and π t is thus compactly described by the equation

φtm = Atmπ t , (2)

where Atm is aGtm × C indicator matrix in which a 1 in row g and column c indicates that group

g contains cell c. In Table 1, for example, the M1940 = 2 vectors of observed (estimated) group

proportions are

p1940,South×Black = (pSB+, pSb+, psB+, psb+)

p1940,South×Phone = (pS+P, pS+p, ps+P, ps+p),

5 This setup is similar to a state-space model, which implicitly defines a latent state ξ with two equations: a measurement
equation for the observed data conditional on ξt and a transition equation for ξt conditional on ξt−1 (e.g., Jackman 2009,
471).

6 Alternatively, the observation model can be written using a multinomial sampling distribution. This requires rounding

n
samp
tm ptm to the nearest integer, but this minor inaccuracy maybe necessary if there are empty elements in ptm because

the Dirichlet cannot accommodate zero values.
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and the corresponding unobserved (true) proportions are

φ1940,South×Black = (πSBP + πSBp, πSbP + πSbp, πsBP + πsBp, πsbP + πsbp)

= A1940,South×Blackπ1940

φ1940,South×Phone = (πSBP + πSbP, πSBp + πSbp, πsBP + πsbP, πsBp + πsbp)

= A1940,South×Phoneπ1940.

The observed group proportions can be directly linked to the unobserved cell proportions by

substituting (2) into (1), leading to the observation model

ptm ∼ Dir(Atmπ t n
samp
tm ). (3)

The model defined by (3) does not distinguish among cells in the same group g , so without

further information the posterior distributions over the cell proportions will be equal within

groups. If there is only Mt = 1 set of auxiliary variables, the posterior estimate of each cell

proportion πtc in group g will converge to the maximum likelihood estimate ptmg /Htmg , yielding

weights identical to those that would be obtained with poststratification. If there are data on

multiple sets of auxiliary variables, as in Table 1, then each of the Mt > 1 observation models

will inform the cell estimates, yielding weights similar to those created by raking or calibration on

theMt vectors of marginal proportions ptm .
In general, however, there may be not only multiple sets of auxiliary variables available in a

given year but also different sets across years. Data fromother years can thus provide information

distinguishing cells forwhich no individuating data are available in year t . To pool this information

across timeperiods,wemodel the temporal evolutionof theproportion vectorπ t using aDirichlet

transition model (cf. Grunwald, Raftery, and Guttorp 1993),

π t ∼ Dir(π t−1nevol), (4)

where πt−1,c is the expected value of πtc .7 In periods with no data, π t will be interpolated with

values informed directly by the immediately adjacent periods and, indirectly, by all previous and

subsequent estimates.

Since the variance of the Dirichlet is inversely proportional to the sample size, the

hyperparameter nevol governs the degree of pooling across periods. It is possible either to set nevol

exactly (as depicted in Figure 1) or to give it a hyperprior, but either way it should be specified

with care because the degree of pooling over time can substantially affect inferences. In our

application, we found that with a diffuse prior, nevol was usually estimated to be less than 2,000,

which is too low to propagate much information across our three-decade period of interest.8 We

therefore recommend that analysts use substantive judgement to select a value or informative

prior for nevol. In general, nevol should be set large enough to propagate information across

years without data, but not so large as to outweigh data when they are observed. One way to

think through particular values of nevol is to reason backward from a “typical” yearly change. For

instance, the expectation that a cell that currently constitutes half the population will change by

a percentage point between years implies a choice of nevol = 0.5 × (1 − 0.5)/0.012 = 2,500. For an

illustration of the consequences of different choices of nevol, see Supplementary Appendix A.1.3.

7 In t = 1, πt ∼ Dir(π0n
prior), where π0 is a simplex of user-specified prior means and nprior is the prior “sample size.” A

natural default is a uniform prior with nprior = C , which leads to πt ∼ Dir(1C ).
8 The implied sample size of the dynamic prior is proportional to the number of intervening time periods. Thus, if nevol =

1,000, data measured 30 periods away has the same informativeness as a sample size of 33 (1000/30).
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5 Validation

Tovalidateourmodel,weexaminehowaccurately it recovers theknowncross-tabulationofSouth,

Black, and Phone in the 1960, 1970, 1980, and 1990 IPUMS based on partial information about the

joint distribution.9 We compare estimates based on four data configurations:

(1) One-way marginal distributions in each year;

(2) Marginals in each year for Black × South and Phone × South but not Black × Phone;
(3) Three-way crosstab in 1960 but otherwise the same two-way marginals as 2 above;

(4) Three-way crosstabs in all years.

Case 3 closely mirrors the data structure in our substantive application except that the 1960

crosstab data are used to inform estimates for future rather than past years. For all cases we set

π0c = 1/8 �c, nprior = 8, and nevol = exp(10) ≈ 22,026.10 We estimate the model in the Bayesian

simulation program Stan (Stan Development Team 2018), as called from R by estsubpop.11

Figure 2 plots the key comparison, case 3 (with 1960 crosstabs) versus case 2 (without),

focusing the estimated population percentages of phone-owning and non-phone-owning blacks

in each region. Despite sharing the same data as case 2 in 1970, 1980, and 1990, case 3’s credible

intervals (CIs) track the true IPUMS targets in these years muchmore closely. This is due to 1960’s

information on phone ownership by race, which is propagated forward in time. The performance

of all four sets of estimates is formally compared in Figure 3. As one would hope, estimates based

on the full joint distribution in every year (case 4) perform best in terms of root mean squared

error (RMSE) and CI noncoverage.12 However, the case 3 estimates (dotted line) are very accurate

as well and clearly outperform cases 2 and 1. Not only are case 3’s RMSEs a tenth as large as case

2’s, but its CIs also do not exhibit false precision. In short, this simulation validates the usefulness

of a model that can accommodate varying data structures over time, without which the crosstab

data from 1960 could not be utilized.

6 Application

We now apply this approach to a more elaborate version of our running example, estimating the

joint distribution of South, Black, and Phone in each year between 1930 and 1960. Table 2 details

thepopulationdataweuse to informour estimates.Whilemarginal data somewhatmore frequent

in this application than in the validation example, the key similarity is that data on full distribution

are available only for 1960, well outside our main period of interest (1936–45).

As inSection5,we setπ0c = 1/8 �c,nprior = 8, andnevol = exp(10) ≈ 22,026 (seeSupplementary
Appendix A.1.3 for a sensitivity analysis).13 Estimating the model with these data generates C = 8

estimated proportions in each of the T = 31 years. We transform these cell proportions into

implied phone-ownership percentages by race and region and plot their posterior medians and

50% CIs in Figure 4. Notwithstanding the general growth in phone ownership after 1935, the

ownership rate among blacks is always estimated to be lower than non-blacks in the same

region. Note that because only a small percentage of non-Southerners in this period were African

American, the ownership rate among non-Southern blacks is estimated much less precisely than

that of the other three groups.

9 Replication materials for this article can be downloaded from Caughey and Wang (2018b).

10 A version of the simulations with nevol =100,000 yielded very similar point estimates but overly narrow credible intervals.
Giving nevol a vague prior resulted in an estimated nevol between 1,000 and 2,000. Cell CIs from models with nevol of this
magnitude tended to be overly conservative.

11 Since validation targets are available only in census years, we estimate cell proportions only in those years. We adjust for

this by dividing nevol by the number of skipped years (10) between estimates.
12 By noncoveragewemean that the CI for a parameter does not include the true value of that parameter.

13 Weestimated4 chains, eachwith 10,000 iterations (half devoted towarmup). Standarddiagnostics indicated convergence.

Computationwas done on aMacProwith 32 GB of RAM and a 3.5 GHz processor. Three chains finished in less than an hour,

but one chain took 80 hours. In our experience, such variability in computation time across chains is not uncommonwhen

sampling from these models.
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Figure 2. Cell estimates for Southern and non-Southern blacks, based on data with (bottom) and without

(top) the full crosstab in 1960. Crosshairs and dotted lines indicate IPUMS targets. Shaded regions indicate

90% credible intervals.

In addition to their substantive plausibility, the estimates are roughly consistent with other

sources from this period. For example, a 1935–36 government study of consumer purchases found

that non-black Southerners were 3.3 times more likely to own a phone than black Southerners,

which is not far from our estimated ratio of around 2.8.14 This convergence, combined with

the analogous model’s accuracy in Section 5’s validation analysis, bolsters our confidence that

our subpopulation estimates are much more accurate than if phone ownership and race were

assumed to be independent.

14 This survey was high quality for the time but still overestimated the regional phone-ownership rate by about 10 points

relative to the AT&T data we use. See ICPSR Study #8909 (doi:10.3886/ICPSR08908).
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Figure 3. Accuracy of estimates based on different data configurations. The middle and right panels

respectively report the proportion of true cell proportions not covered by the 50% and 90% CIs.

Table 2. Population data for example application.

Year Available data Data source

1930
Black × South IPUMS

Phone AT&T

1935 Phone AT&T

1937 Phone × South AT&T

1940
Black × South IPUMS

Phone × South AT&T

1945 Phone × South AT&T

1950 Black × South IPUMS

1960 Black × Phone × South IPUMS

Figure 4. Phone ownership by race and region, 1930–60. Vertical dotted lines indicate years for which

population data are available.

7 Conclusion

The basic approach outlined above can be applied in a variety of empirical settings. Our original

motivation was creating dynamic population targets for creating survey weights, and we have

used the model to create dynamic population targets for as many as 2,302 demographic types

defined by the cross-classification of six variables over three decades (Caughey and Wang 2014).

In addition to survey weights, such population targets may be used for multilevel regression and

poststratification (Park, Gelman, and Bafumi 2004) or for generalizing causal effect estimates
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(Hartman et al. 2015). Moreover, as Section 6 showed, the same model can be used to estimate

conditional rates—the traditional focus of EI—in settings where the data structure is too irregular

for conventional EI models.

The model itself could be extended and improved in various ways. One area for improvement

is computational efficiency, which can become a problem as the number of cells grows. For

example, in order to obtain satisfactory estimates for over 2,000 cells, we had to let Stan

run for several weeks. It is possible that this problem could be overcome with approximate

inference such as variational Bayes, or perhaps by reparameterizing the model so as to ease

the computational difficulty of estimating proportions very close to 0. One natural alternative

parameterization would be the logistic-normal distribution in place of the Dirichlet (Cargnoni,

Muller, and West 1997). In addition to possible computational benefits, the logistic normal would

allow for more flexible patterns of dependence across cells than the Dirichlet, whose assumption

of independence across components may be undesirable in some applications.

Supplementarymaterial

For supplementary material accompanying this paper, please visit

https://doi.org/10.1017/pan.2019.4.
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