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Abstract. We have studied oscillation frequencies of two-dimensional uniformly rotating zero-
age main sequence stellar models in the delta Scuti mass range. We identified 370 p and g
axisymmetric modes for non-rotating models and then traced their evolution as the rotational
velocity was increased. For each mass we considered a rotation sequence of ten models, with
the largest rotation rate being about 200 km s−1 . We constrained the models to have the same
surface shape, which can be characterized for uniform rotation by the ratio between the polar and
the equatorial radii. We find that scaling relationships exist among the oscillation frequencies
calculated for models with the same shape. For p modes, this scaling closely follows the period
root-mean-density relation found in spherical stars. The g modes also scale between models of
the same shape, with the scaling reflecting the change in properties outside the convective core
as the stellar mass increases. These scaling relationships can be particularly useful in finding
specific stellar models to match the oscillation frequencies of individual stars.

1. Introduction
The use of theoretical models to match observed oscillation frequencies of rotating stars

can be a lengthy and cumbersome process that in the end rarely ever leads to certain
conclusions. A number of challenges stand in the way of calculating these frequencies for
this type of stars, and most of them arise because rotation breaks the spherical symmetry
in the star. When this happens the horizontal and radial components of the eigenfunctions
in a linear pulsation analysis no longer decouple as they do for a non-rotating star. This
means that the latitudinal component of the eigenfunction can no longer be given by a
single Legendre polynomial, but must be regarded as a sum of Legendre polynomials.
This has led to two dimensional solutions to the eigenvalue problem (e.g., Clement 1998,
Yoshida & Eriguchi 2001, Espinosa 2004, Lignieres et. al. 2001, Lovekin & Deupree
2008, Lovekin et. al. 2009) but further studies are required to fully understand how to
properly calculate and compare theoretical oscillation frequencies of rotating stars with
observations.

In cases where there are reasonable rotating models to calculate theoretical oscillation
frequencies for comparison to those observed on actual rotating stars, it is unlikely that
any of these models will match what is observed as closely as desired. Corrections must
be made to the models in question to improve the agreement between the observed and
the oscillation frequencies of the models. This can be most easily performed if there
are scaling relations between the oscillation frequencies of two models, much like the
period-root mean density relation for non-rotating stars, to guide the correction process.
It is often assumed that the the period-root mean density relation can be applied in the
same way for rotating stars as its used for the non-rotating cases, but this remains to be
proven. In addition, g modes cannot be expected to follow this same relationship, and
it is of interest to see if a scaling relation exists for g modes. We present results that
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Table 1. Rotating models considered

Mass (M�)
1.875 2.000 2.250 2.500

Shape (Rpole/Req ) Velocities (km s−1 ) Teff ,pole/Teff ,eq
1.000 0.0 0.0 0.0 0.0 1.000
0.997 35.0 36.0 36.0 37.5 1.003
0.991 62.0 63.0 65.0 67.0 1.009
0.985 83.0 84.0 87.0 89.0 1.015
0.976 105.0 106.0 109.0 111.0 1.024
0.966 125.0 127.0 131.0 134.0 1.034
0.954 146.0 148.0 152.0 156.0 1.047
0.940 165.0 168.0 173.0 178.0 1.064
0.925 187.0 190.0 195.0 200.0 1.079
0.907 207.0 211.0 217.0 222.0 1.098

suggest that such scaling relationships exist for rotating stars but some considerations
need to be made before they can be applied.

2. Calculation of oscillation frequencies
The models considered are a subset of the models computed by Deupree (2011a).

They are uniformly rotating, zero-age main sequence (ZAMS) models of solar metallicity.
The masses selected cover the δ Scuti range: 1.875M� to 2.5M�. Finally, for each mass
we picked ten surface equatorial rotational velocities, keeping Rpole/Req of the model
constant between the different masses at every step in rotational velocity.

For each model we calculated 370 p and g axisymmetric oscillation modes using the
linear, adiabatic, non-radial pulsation code developed by Clement (1998). This particular
code can express the latitudinal part of the eigenfunctions of each mode as a sum of up
to the eight spherical harmonics we use here. We characterize each mode with the value
of � associated with the mode in the non-rotating case. While tracking the individual
modes as a function of rotation becomes difficult at higher rotation rates, identifying the
same mode in two models with the same surface shape but different masses is generally
quite straightforward.

3. Results
We present the ratio of the frequencies for modes with � � 6 for models with masses =

2 and 2.25M� in Figure 1 (left). It is clear that the p modes follow the period root mean
density relation (given by the horizontal line) relatively well. The g mode frequencies
at low frequency have the ratio determined from the asymptotic relation based on the
integration of the Brunt-Väisälä frequency (Tassoul 1980). The low latitudinal order g
modes have frequency ratios between those of the p mode and asymptotic g mode ratios.

It is often assumed that the period-root mean density relation remains true in rotating
stars. This is confirmed in Figure 1 (right), which shows the frequency ratio for the same
masses for reasonably rapid rotation. The g mode frequency ratio at low frequency is
also very close to that of the non-rotating models because the g mode frequencies are
determined in the interior regions outside the convective core where the rotational effects
are small. The individual modes which are most affected are the low radial order g modes
and mixed modes. Generally speaking, higher latitudinal order modes in this region are
more affected than lower ones. A number of the modes in this region show avoided
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Figure 1. Ratio between frequencies of two non-rotating models (left) and two rotating models
(right). The black horizontal line indicates the ratio between the root-mean densities of both
models.

crossings as the rotation rate increases, and some of these modes may be misidentified,
particularly when the mode in one mass has had an avoided crossing while the mode in
the other mass may not yet have had it.

4. Summary
We have examined the variation of both g mode and p mode oscillation frequencies in

intermediate mass, uniformly rotating, ZAMS stellar models. By comparing models of
different masses with the same surface shape we found that the ratio of the frequencies
of the same mode is relatively unaffected for the p modes. This is qualified by the same
restriction as the period-root mean density in non-rotating stars, namely that the relation
works well as long as the two models are somewhat “alike” in their internal structure
(e.g., both main sequence models). The other restriction is that the two rotating models
must have the same surface shape.

The g mode frequencies are much less affected by rotation because their frequencies
are determined in the region of the model between the convective core boundary and
the lower boundary of the second helium ionization region. The region closer to the
convective core is probably more important, but the entire region contributes to the
frequency determination. For sufficiently low frequencies, the frequency ratio of a given
mode for two masses is almost independent of the mode. There is a slight trend of
increasing frequency ratio with decreasing frequency as shown in Figure 1. The low order
g modes and mixed modes show much greater volatility in this dense part of the frequency
spectrum. This fact may be useful in mode classification if enough modes are observed
covering both the p and g mode parts of the spectrum.
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