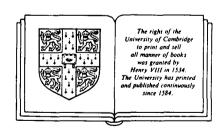
Ergodic theory and dynamical systems

EDITORS


John Franks Hillel Furstenberg Anthony Manning William Parry

EDITORIAL BOARD

- R. L. Adler (Thomas J. Watson Research Center, Yorktown Heights)
- L. A. Bunimovich (Georgia Institute of Technology)
- A. Connes (IHES)
- S. G. Dani (University of Göttingen)
- D. Fried (Boston University)
- M. R. Herman (Ecole Polytechnique, Palaiseau)
- A. B. Katok (Pennsylvania State University)
- U. Krengel (University of Göttingen)
- F. Ledrappier (University of Paris 6)
- R. Mañé (IMPA)

- G. A. Margulis (USSR Acad. of Sciences)
- J. Moser (ETH, Zürich)
- Ya. B. Pesin (Pennsylvania State University)
- F. Przytycki (Polish Academy of Sciences)
- S. M. Rees (University of Liverpool)
- D. J. Rudolph (University of Maryland)
- D. Ruelle (IHES)
- D. Salamon (University of Warwick)
- K. Schmidt (University of Warwick)
- J. P. Thouvenot (University of Paris 6)
- P. Walters (University of Warwick)

VOLUME 12 1992

CAMBRIDGE UNIVERSITY PRESS

CAMBRIDGE

LONDON NEW YORK PORT CHESTER MELBOURNE SYDNEY

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE

The Pitt Building, Trumpington Street, Cambridge CB2 1RP 40 West 20th Street, New York, NY 10011-4211, USA 10 Stamford Road, Oakleigh, Victoria 3166, Australia

© Cambridge University Press 1992

Printed in Great Britain by J. W. Arrowsmith Ltd, Bristol

Contents

PART 1 MARCH 1992

The return times and the Wiener-Wintner property for mean-bounded positive operators in L^p I. Assani	1
Absolutely continuous invariant measures and random perturbations for certain one-dimensional maps Benedicks, M. and Young, LS.	13
Meromorphic multifunctions in complex dynamics L. Baribeau and T. J. Ransford	39
Geometric measures for parabolic rational maps M. Denker and M. Urbański	53
Time-preserving conjugacies of geodesic flows U. Hamenstädt	67
There are no minimal homeomorphisms of the multi-punctured plane M. Handel	75
Random sets for the pointwise ergodic theorem Y. Huang	85
Dynamical properties of the shift maps on the inverse limit S. Li	95
On the topology manifolds with completely integrable geodesic flows G. P. Paternain	109
Dynamical systems with generalized hyperbolic attractors: hyperbolic, ergodic and topological properties Ya. B. Pesin	123
Lyapunov maps, simplicial complexes and the Stone functor J. W. Robbin and D. A. Salamon	153
PART 2 JUNE 1992	
A. Wiener-Wintner property for the helical transform I. Assani	185
Théorème ergodique pour les opérateurs positifs à moyennes bornées sur len espaces L_p $(1 A. Brunel$	195
The Bernoulli property of inner functions M. Craizer	209
A new proof of the Brouwer plane translation theorem J. Franks	217
When is an Anosov flow geodesic? L. W. Green	227
Diffeomorphisms in $\mathcal{F}^1(M)$ satisfy Axiom A S. Hayashi	233
The topological entropy of cellular automata is uncomputable L. P. Hurd. J. Kari and K. Culik	255

iv Contents

A classification of the isometric extensions of a multidimensional Bernoulli shift J. W. Kammeyer	267
Countable sections for locally compact group actions A. S. Kechris	283
Transfer operators for coupled map lattices G. Keller and M. Künzle	297
Positive Lyapunov exponents for a dense set of bounded measurable $SL(2,\mathbb{R})$ -cocycles O. Knill	319
Every convex polygon with rational vertices is a rotation set J. Kwapisz	333
Applications of the asymptotic range to analytic subalgebras of groupoid C^* -algebras $B.$ Solel	341
Rotation number and one-parameter families of circle diffeomorphisms M. Tsujii	359
D-function of a minimal set and an extension of Sharkovskii's theorem to minimal sets X. Ye	365
PART 3 SEPTEMBER 1992	
Accessible saddles on fractal basin boundaries K. T. Alligood and J. A. Yorke	377
Bifurcations of dynamic rays in complex polynomials of degree two P. Atela	401
A condition for unique ergodicity of minimal symbolic flows M. D. Boshernitzan	425
Homeomorphic restrictions of smooth endomorphisms of an interval K. M. Brucks, M. V. Otero-Espinar and C. Tresser	429
Random circle homeomorphisms T. Downarowicz, R. D. Maudlin and T. T. Warnock	441
An ergodic transformation with trivial Kakutani centralizer A. Fieldsteel and D. J. Rudolph	459
Pascal's triangle, dynamical systems and attractors F. v. Haeseler, HO. Peitgen and G. Skordev	479
Markov partitions and shadowing for non-uniformly hyperbolic systems with singularities T. Krüger and S. Troubetzkoy	487
A new maximal inequality and its applications J. M. Rosenblatt and M. Wierdl	509
Dynamics of periodically forced parabolic equations on the circle B. Sandstede and B. Fiedler	559
Pseudo-orbit tracing property and structural stability of expanding maps of the interval S. V. Šlačkov	573

Contents	V
----------	---

Matings of quadratic polynomials L. Tan	589
Existence of invariant tori in volume-preserving diffeomorphisms Z. Xia	621
PART 4 DECEMBER 1992	
Følner Independence and the amenable Ising model S. Adams	633
The Wiener-Wintner property for the helical transform of the shift on [0, 1] ^z I. Assani	659
An area preserving homeomorphism of T^2 that is fixed point free but does not move any essential simple closed curve off itself M . Bestvina and M . Handel	673
Existence de points fixes enlacés à une orbite périodique d'un homéomorphisme du plan C. Bonatti and B. Kolev	677
Rokhlin towers and &'-closing for flows on T ² C. R. Carroll	683
Normal numbers from independent processes J. Feldman and M. Smorodinsky	707
Finite beta-expansions C. Frougny and B. Solomyak	713
The equivalence theorem for \mathbb{Z}^d -actions of positive entropy J. R. Hasfura-Buenaga	725
Commuting endomorphisms of the circle A. S. A. Johnson and D. J. Rudolph	743
On dynamics of triangular maps of the square S. F. Kolyada	749
Coalescence of circle extensions of measure-preserving transformations M. Lemańczyk, P. Liardet and JP. Thouvenot	769
Entropy of snakes and the restricted variational principle M. Misiurewicz and J. Tolosa	791
Singularities in the boundaries of local Siegel disks J. T. Rogers, Jr.	803
On the classification of some two-dimensional Markov shifts with group structure M. A. Shereshevsky	823
Index to Volume 12	835

INSTRUCTIONS TO AUTHORS

1 Submission of typescripts

Two copies of the manuscript should be submitted to one of the four Executive Editors (addresses on outside front cover). The editor will acknowledge receipt of the manuscripts. It is important that authors inform the editor of any changes of address whilst their paper is under consideration.

2 Typescript

Papers should be typed, double-spaced, on one side only and with generous margins. The pages must be numbered.

The first page should give the title, the author's name and institution, and a short abstract intelligible to mathematicians.

The title, while brief, must be informative (e.g. A new proof of the ergodic theorem, whereas Some applications of a theorem of Birkhoff would be useless).

3 Notation

It is important that mathematical expressions are clear to a printer (who is not a mathematician). For instance, n_k (n sub k) is common usage, but avoid if possible using c sub n sub k. Fractions are generally best expressed by a solidus. Complicated exponentials like

$$\exp\left\{z^2\sin\theta/(1+y^2)\right\}$$

should be shown in this and no other way.

In the typescript, italics, small capitals and capitals are specified by single, double and triple underlining. Bold-faced type is shown by wavy underlining.

It helps if displayed equations or statements which will be quoted later are numbered in order on the right of their line. They can then be referred to by, for example, 'from (7)'.

The author must enable the printer (if necessary by pencilled notes in the margin) to distinguish between similar symbols such as o, O, o O, o; x, X, \times ; ϕ , Φ , \emptyset ; l, l; ε , ε ; κ , k.

There is no need to underline Greek or script letters provided these are clearly typed. Any special symbols should be explained on a separate sheet of directions for the printer.

If an author wishes to mark the end of the proof of a theorem, the sign \square may be used.

Footnotes should be avoided.

4 Diagrams

Figures and drawings should be on separate sheets in black ink. Photocopies are acceptable only if

they are as clear as the originals. Symbols, legends and captions should be given on a transparent overlay. Each text figure must be numbered as Figure 1, Figure 2,... and its intended position clearly indicated in the typescript, The author's name in pencil must be on all separate sheets of diagrams.

A figure is expensive to reproduce and should be included only when the subject matter demands it, or when it greatly clarifies the exposition.

The publisher recognizes that some authors do not have the facilities for producing drawings of a sufficiently high standard to be reproduced directly and is therefore willing to have such diagrams re-drawn, provided that they are clear.

5 Tables

Tables should be numbered (above the table) and set out on separate sheets. Indicate the position of each in the text as for figures.

6 References

References should be collected at the end of the paper numbered in alphabetical order of the authors' names. A reference to a book should give the title, in italics, and then in roman type the publisher's name and the place and year of publication:

[4] N. Dunford & J. T. Schwartz Linear Operators Part I. Wiley: New York, 1958.

A reference to a paper should give in italics the title of the periodical, the number of the volume and year, and the beginning and end pages of the paper. Titles should be abbreviated as in *Mathematical Reviews*:

[6] J. E. Littlewood. The 'pits effect' for functions in the unit circle. J. Analyse Math. 23 (1970), 236-268.

7 Proofs

Authors receive one set of proofs for correction. If excessive alterations to the original manuscript are requested after the paper has been typeset, the author will be charged the cost of resetting. For papers with more than one author the proofs are sent to the first named author unless the editor receives other instructions. It is important that proofs are corrected and returned promptly.

8 Reprints

There are 100 reprints, free of charge, for each paper. For papers with several authors these reprints are divided between the authors. There are no page charges.

Ergodic theory and dynamical systems

VOLUME 12 PART 4 DECEMBER 1992

CONTENTS

Adams, S. Følner Independence and the amenable Ising model	633
Assani, I. The Wiener-Wintner property for the helical transform of the shift on $[0, 1]^{\mathbb{Z}}$	659
Bestvina, M. and Handel, M. An area preserving homeomorphism of T^2 that is fixed point free but does not move any essential simple closed curve off itself	673
Bonatti, C. and Kolev, B. Existence de points fixes enlacés à une orbite périodique d'un homéomorphisme du plan	677
Carroll, C. R. Rokhlin towers and \mathscr{C}^r closing for flows on T^2	683
Foldman, J. and Smorodinsky, M. Normal numbers from independent processes	707
Frougny, C. and Solomyak, B. Finite beta-expansions	713
Hasfura-Buenaga, J. R. The equivalence theorem for \mathbb{Z}^d -actions of positive entropy	725
Johnson, A. S. A. and Rudolph, D. J. Commuting endomorphisms of the circle	743
Kolyada, S. F. On dynamics of triangular maps of the square	749
Lemańczyk, M., Liardet, P. and Thouvenot, JP. Coalescence of circle extensions of measure-preserving transformations	769
Misiurewicz, M. and Tolosa, J. Entropy of snakes and the restricted variational principle	791
Rogers, Jr, J. T. Singularities in the boundaries of local Siegel disks	803
Shereshevsky, M. A. On the classification of some two-dimensional Markov shifts with group structure	823
Index to Volume 12	835

© Cambridge University Press 1992

CAMBRIDGE UNIVERSITY PRESS

The Pitt Building, Trumpington Street, Cambridge CB2 1RP 40 West 20th Street, New York, NY 10011-4211, USA 10 Stamford Road, Oakleigh, Victoria 3166, Australia

Printed in Great Britain by J. W. Arrowsmith Ltd, Bristol