Donald Orth Nagoya Math. J. Vol. 39 (1970), 29–37

ON HOLOMORPHIC FAMILIES OF HOLOMORPHIC MAPS

DONALD ORTH1)

Let D be the unit disk $\{z : |z| < 1\}$ in the complex plane C with boundary ∂D and closure \overline{D} , and denote by R the image of the canonical embedding $r \rightarrow r + iO$ of the real line into C. The symbol ε will be used throughout to denote a complex parameter; the unit disk in the complex ε -plane will be denoted by D_p . $A C^{1+a} \max \mathscr{C} : \partial D \times D_p \rightarrow D$ (0 < a < 1) is called a holomorphic family of C^{1+a} curves if

- 1° $\mathscr{C}_{\epsilon} = \mathscr{C} |\partial D \times \{\varepsilon\}$ is a $C^{1+\alpha}$ Jordan curve in C for every $\varepsilon \in D_p$;
- 2° $\mathscr{C}_t = \mathscr{C}|\{t\} \times D_p$ is a holomorphic function for every $t \in \partial D$;
- $3^{\circ} \quad \frac{\partial \mathscr{C}(t,\varepsilon)}{\partial t}$ is continuous in t and ε .

Denote by $\mathcal{Q}_{\varepsilon}$ the simply-connected region in C bounded by $\mathscr{C}(\partial D \times \{\varepsilon\})$.

We are interested in the existence of holomorphic maps $f: D \times D_p \to C$ which map $D \times \{\varepsilon\}$ conformally onto Ω_{ϵ} for every $\varepsilon \in D_p$ (f is then said to be associated with \mathcal{C}). The following theorem will be proved.

THEOREM 1. Let $\mathscr{C} : \partial D \times D_p \to C$ be a holomorphic family of $C^{1+\alpha}$ curves. If f is a holomorphic map associated with \mathscr{C} , then there exists a $C^{1+\alpha}$ homeomorphism $g : \partial D \to \partial D$ for which

(*) $\mathscr{C}(t,\varepsilon) = f(g(t),\varepsilon)$

for all $(t, \varepsilon) \in \partial D \times D_p$, where f on the right hand side denotes the continuous extension of f to $\overline{D} \times D_p$.

Now \mathscr{C} can always be normalized by the condition that for some $\varepsilon_0 \in D_p$, \mathscr{C}_{ι_0} is the boundary value of a conformal map of $D \times \{\varepsilon_0\}$ onto Ω_{ι_0} (for let g_{ι_0} be such a conformal map, the existence of which is ensured by

Received January 8, 1969.

 $^{^{1)}}$ This research was partially supported by Contract Nonr 2216 (28) (NR-043-332). The author is currently an NSF postdoctoral fellow.

DONALD ORTH

the Riemann mapping theorem, and replace $\mathscr{C}(t,\varepsilon)$ with $\mathscr{C}(\pi \circ (\mathscr{C}_{\epsilon_0})^{-1} \circ g_{\epsilon_0}(t),\varepsilon)$ with projection $\pi : \partial D \times D_p \to \partial D$. If \mathscr{C} is normalized in this sense, setting $\varepsilon = \varepsilon_0$ in (*) shows that $g : \partial D \to \partial D$ is the boundary value of a conformal map of D onto itself. Consequently, we have

COROLLARY 1. Let $\mathscr{C} : \partial D \times D_p \to C$ be a normalized holomorphic family of C^{1+a} curves. Then there is a holomorphic map $f : D \times D_p \to C$ associated with \mathscr{C} if and only if \mathscr{C} itself is the boundary value of a holomorphic map associated with \mathscr{C} .

We may write

$$\mathscr{C}(t,\varepsilon) = \sum_{k=0}^{\infty} c_k(t)\varepsilon^k,$$

where if \mathscr{C} is normalized at $\varepsilon = 0$, $c_0(t)$ is the boundary value of a conformal map of D onto Ω_0 .

COROLLARY 2. Let $\mathscr{C} : \partial D \times D_p \to C$ be a holomorphic family of C^{1+a} curves normalized at $\varepsilon = 0$. If there is a holomorphic map f associated with \mathscr{C} , then necessarily each coefficient $c_k(t)$, $k \ge 0$, in the above expansion of \mathscr{C} is the boundary value of a holomorphic function on D.

EXAMPLE 1. For $|\varepsilon|$ sufficiently small, $\mathscr{C}(t,\varepsilon) = t + \varepsilon t$ is a holomorphic family of $C^{1+\alpha}$ curves normalized at $\varepsilon = 0$, where t is the complex conjugate of t. By corollary 2, there is no holomorphic map associated with \mathscr{C} .

S.E. Warschawski [6] has proved a general perturbation theorem which yields the following related result. If we restrict our attention to $\varepsilon \in \mathbf{R}$ and replace condition 2° on \mathscr{C} with

2'° both
$$\mathscr{C}(t,\varepsilon)$$
 and $\frac{\partial \mathscr{C}(t,\varepsilon)}{\partial t}$ have "Taylor" expansions at $\varepsilon = 0$ of order m ,

then there always exists a continuous map $f: D \times (D_p \cap \mathbf{R}) \to \mathbf{C}$ which maps $D \times \{\varepsilon\}$ conformally onto Ω_{ε} for every ε and which has a "Taylor" expansion at $\varepsilon = 0$ of order *m*. In particular, if \mathscr{C} depends real analytically on the parameter ε then there exists real analytic *f* associated with \mathscr{C} . This real analytic case was also proved by *D*. Zeitlin [7] (there are minor differences between these two results of a technical nature). His method involves proving that the solution $F(t, \varepsilon)$ of a certain extension of the well-known

30

HOLOMORPHIC MAPS

Gershgorin integral equation into the complex domain is a holomorphic function in ε for $\varepsilon \in U$, U being a certain open neighborhood of 0 in D_p . For every $\varepsilon \in U \cap \mathbf{R}$, $F(t, \varepsilon)$ gives the mapping function of Ω_{ϵ} onto D in the usual manner. An open question is the relationship of F on all of U to, when it exists, a holomorphic map f associated with the holomorphic family of curves whose restriction to $\partial D \times (D_p \cap \mathbf{R})$ is the given real analytic family of curves.

The proof of theorem 1 goes as follows. Let $\mathscr{C}: \partial D \times D_p \to C$ be a holomorphic family of $C^{1+\alpha}$ curves and $f: D \times D_p \to C$ a holomorphic map associated with \mathscr{C} . Define $\widetilde{\mathscr{C}}: \partial D \times D_p \to C^2$ and $\widetilde{f}: D \times D_p \to C^2$ by the rules $\widetilde{\mathscr{C}}(t,\varepsilon) = (\mathscr{C}(t,\varepsilon),\varepsilon)$ and $f(t,\varepsilon) = (f(t,\varepsilon),\varepsilon)$. Let $\Omega = \{(z,\varepsilon): z \in \Omega_{\epsilon}, \varepsilon \in D_p\}$. Then $\widetilde{f}: D \times D_p \to \Omega$ is a biholomorphic map and $(\widetilde{f}^{-1}|\Omega_{\epsilon} \times \{\varepsilon\})(z,\varepsilon) = (f_{\epsilon}^{-1}(z),\varepsilon)$, where $f_{\epsilon} = f|D \times \{\varepsilon\}$. As is wellknown, $\widetilde{f}_{\epsilon} = \widetilde{f}|D \times \{\varepsilon\}$ has a homeomorphic extension to $\overline{D} \times \{\varepsilon\}$ for every $\varepsilon \in D_p$. It will be shown (lemma 2.) that $\widehat{f}^{-1}\circ \widetilde{\mathscr{C}}_{\epsilon}: \{t\} \times D_p \to \partial D \times D_p$ is a holomorphic map for every $t \times \partial D$. This is the central point in the proof of the theorem, for now write

$$\widetilde{f}^{-1}\circ\widetilde{\mathscr{C}}(t,\varepsilon)=(f'(t,\varepsilon),\varepsilon),$$

where $f': \partial D \times D_p \to \partial D$ is a continuous map; such an f' clearly exists. According to lemma 2., $(f'|\{t\} \times D_p): \{t\} \times D_p \to \partial D$ is a holomorphic map for every $t \in \partial D$ and is consequently constant in ε for every $t \in \partial D$. Therefore there is a homeomorphism $g: \partial D \to \partial D$ for which $f'(t, \varepsilon) = g(t)$, which implies that $\widetilde{\mathscr{C}}(t, \varepsilon) = \widetilde{f}(g(t), \varepsilon)$, and so $\mathscr{C}(t, \varepsilon) = f(g(t), \varepsilon)$. That g is a $C^{1+\alpha}$ map follows from Kellogg's theorem by normalizing \mathscr{C} at some $\varepsilon_0 \in D_p$, and the proof of theorem 1. is complete.

It should be clear from the local nature of lemma 2. that theorem 1. admits readily to generalizations. A few of these are presented after the proofs of lemmas 1. and 2.

§1. Choose any point $\widetilde{\mathscr{C}}(t_0, \varepsilon_0) \in bdy \ \Omega$ and let $n = n(t_0, \varepsilon_0)$ be the inward normal to \mathscr{C}_{ϵ_0} at $\mathscr{C}(t_0, \varepsilon_0)$, i.e. $n \subseteq \Omega_{\epsilon_0}$. Denote by $W(\alpha, r) = W_{t_0, \epsilon_0}(\alpha, r)$ the wedge in Ω_{ϵ_0} with radius r and interior angle α at the vertex $\mathscr{C}(t_0, \varepsilon)$, and which is symmetric about the normal n, i.e. $W(\alpha, r) = \{z \in \Omega_{\epsilon_0}: \operatorname{dist}(z, n) \leq |z - \mathscr{C}(t_0, \varepsilon_0)| \sin(\alpha/2) \text{ and } 0 < |z - \mathscr{C}(t_0, \varepsilon_0)| < r\}$. Also, for $z \in \Omega_{\epsilon_0}$ denote by $\widetilde{\mathscr{C}}_z = \widetilde{\mathscr{C}}_{z, t_0, \epsilon_0}: D_p \to \mathbb{C}^2$ the holomorphic map $(\mathscr{C}_{t_0}(\varepsilon) - \mathscr{C}(t_0, \varepsilon_0) + z, \varepsilon)$. Clearly, for each $z \in \Omega_{\epsilon_0}$ there is an open neighborhood $U = U_z$ of ε_0 in D_p

such that $\widetilde{\mathscr{C}}_{z}(U) \subseteq \Omega$. Lemma 1. will show that there are wedges $W(\alpha, r)$ for which U_{z} may be chosen independent of $z \in W(\alpha, r)$.

LEMMA 1. For every $\alpha(0 < \alpha < \pi)$ there is an r > 0 and an open neighborhood U of ε_0 in D_p such that $\widetilde{\mathscr{C}}_{\varepsilon}(U) \subseteq \Omega$ for all $z \in W(\alpha, r)$.

Proof. It is well-known [4] that since \mathscr{C}_{ι_0} is a $C^{1+\alpha}$ curve, for every β $(0 < \beta < \pi/2)$ there is a connected subarc $\Gamma = \Gamma_{\beta}$ of ∂D containing t_0 in its interior such that the chord joining $\mathscr{C}(t_0, \varepsilon_0)$ and $\mathscr{C}(t, \varepsilon_0)$ makes an angle smaller than β with the tangent line to $\mathscr{C}_{\iota_0}(\partial D)$ at $\mathscr{C}(t_0, \varepsilon_0)$ for every $t \in \Gamma$. It follows from the conditions on the map \mathscr{C} that there is an open neighborhood U_1 of ε_0 such that the same is true for every \mathscr{C}_{ι} with $\varepsilon \in U_1$ when β is replaced by 2β . Choose β so that $\pi - 4\beta > \alpha$.

Now it is also known that r > 0 may be chosen so that $|\mathscr{C}(t, \varepsilon_0) - \mathscr{C}(t_0, \varepsilon_0)| > 2r$ for every $t \in \partial D \setminus \Gamma$, and it follows again from the conditions on \mathscr{C} that there is an open neighborhood U_2 of ε_0 such that $|\mathscr{C}(t, \varepsilon) - \mathscr{C}(t_0, \varepsilon)| > r$ for every $t \in \partial D \setminus \Gamma$ and every $\varepsilon \in U_2$.

Let $U = U_1 \cap U_2$. If $\tilde{\mathscr{C}}_{\varepsilon}(\varepsilon) \in bdy\Omega$ for some $\varepsilon \in U$ there must be a $t \in \partial D$

such that $\widetilde{\mathscr{C}}_{\epsilon}(\varepsilon) = \widetilde{\mathscr{C}}_{t}(\varepsilon)$, or equivalently $\mathscr{C}_{t_{0}}(\varepsilon) - \mathscr{C}(t,\varepsilon_{0}) + z = \mathscr{C}_{t}(\varepsilon)$. Since $\mathscr{C}(t,\varepsilon) = \mathscr{C}_{t}(\varepsilon) = \mathscr{C}_{\epsilon}(t)$, we have

$$(**) \qquad \qquad \widetilde{\mathscr{C}}_{\varepsilon}(\varepsilon) \in b \, dy \, \Omega \Longleftrightarrow \mathscr{C}(t_0, \varepsilon) - \mathscr{C}(t_0, \varepsilon_0) + z = \mathscr{C}(t, \varepsilon).$$

Suppose that $t \in \Gamma$. By the choice of Γ , since $\varepsilon \in U$, and since from (**) it follows that $z - \mathcal{C}(t_0, \varepsilon_0) = \mathcal{C}(t, \varepsilon) - \mathcal{C}(t_0, \varepsilon)$, we have dist $(z, n) > |z - \mathcal{C}(t_0, \varepsilon_0)| \sin(\pi/2 - 2\beta)$. But $\pi/2 - 2\beta > \alpha/2$, and so dist $(z, n) > |z - \mathcal{C}(t_0, \varepsilon_0)| \sin(\alpha/2)$. Therefore $z \notin W(\alpha, r)$. Now suppose that $t \notin \Gamma$. Then by the choice of r, since $\varepsilon \in U$, and by (**) as above we have $|z - \mathcal{C}(t_0, \varepsilon_0)| > r$, and so $z \notin W(\alpha, r)$. Consequently, $\widetilde{\mathcal{C}}_z(\varepsilon) \in bdy\Omega$ for some $\varepsilon \in U$ implies that $z \notin W(\alpha, r)$, and the lemma is proved.

LEMMA 2. $\tilde{f}^{-1} \circ \tilde{\mathcal{C}}_t : \{t\} \times D_p \to \partial D \times D_p$ is a holomorphic map for every $t \in \partial D$.

Proof. Choose $(t_0, \varepsilon_0) \in \partial D \times D_p$; by lemma 1, there is a sequence of points $\{z_k : k = 1, 2, \cdots\} \subseteq \Omega_{\varepsilon_0}$ and an open neighborhood U of ε_0 for which $\widetilde{\mathscr{C}}_{z_k}(U) \subseteq \Omega$ while $z_k \to \mathscr{C}(t_0, \varepsilon_0)$ as $k \to \infty$. Therefore $\tilde{f}^{-1} \circ \widetilde{\mathscr{C}}_{z_k} : U \to D \times D_p$ is a

well-defined holomorphic map for every $k = 1, 2, \cdots$. Since $\tilde{f} | \bar{D} \times \{ \varepsilon \}$ is a homeomorphism for every $\varepsilon \in D_p$, the map $f^{-1} \circ \widetilde{\mathcal{C}}_{t_0}$ is also defined; clearly the sequence $\{ \tilde{f}^{-1} \circ \widetilde{\mathcal{C}}_{t_k} : k = 1, 2, \cdots \}$ converges pointwise to $\tilde{f}^{-1} \circ \mathcal{C}_{t_0}$ on U. The lemma now follows from Vitali's theorem.

§2. Generalizations. (Ahlfors [1] has shown the existence of a holomorphic map f from a bordered Riemann surface with finite genus and a finite number of boundary components onto a full covering surface $S \xrightarrow{\pi} D$ of the unit disk. N. Alling [2] has shown that $\pi \circ f | U$ is a covering map of D near ∂D for some open neighborhood U of ∂X . Theorems 2.-4. can be thought of as concerning holomorphic families of such maps.)

Let X and Y be open Riemann surfaces such that X has a $C^{1+\alpha}$ boundary ∂X , and let V be a connected analytic set in some open set in C^n . Let $\mathscr{C} : \partial X \times V \to Y$ be a $C^{1+\alpha}$ map satisfying

1° for every local coordinate t on ∂X for which t^{-1} describes ∂X locally as a C^{1+a} curve, $\mathcal{C} \circ t^{-1}$ is a holomorphic family of C^{1+a} curves on Y (\mathcal{C} is then said to be locally a holomorphic family of C^{1+a} curves on Y);

2° for every $\mathscr{C}_{\epsilon} = \mathscr{C} | \partial X \times \{ \varepsilon \}$, $\mathscr{C}_{\epsilon} (\partial X \times \{ \varepsilon \})$ is the boundary of an open Riemann surface Ω_{ϵ} .

Theorem 2. is the most straightforward generalization of theorem 1. which can be proved.

THEOREM 2. Denote the set $\{(y, \varepsilon) : y \in \Omega_{\epsilon}, \varepsilon \in V\}$ by Ω . There exists a holomorphic map $f : \Omega \to X$ which maps $\partial \Omega_{\epsilon} \times \{\varepsilon\}$ into ∂X for every $\varepsilon \in V$ if and only if there is a C^{1+a} map $g : \partial X \to \partial X$ for which

$$f \circ \widetilde{\mathscr{C}}(x, \varepsilon) = g(x)$$

for all $x \in \partial X$ and all $\varepsilon \in V$.

More generally, one has

THEOREM 3. Let C be an arc on ∂X , $\mathscr{C} : C \times V \to Y$ locally a holomorphic family of C^{1+a} curves on Y, and $\Omega_{\epsilon} \subseteq Y$ a bordered Riemann surface with $\mathscr{C}(C \times \{\varepsilon\}) \subseteq \partial \Omega_{\epsilon}$ for every $\varepsilon \in V$. Define Ω as in theorem 2. There is a holomorphic map $f : \Omega \to X$ which maps $\mathscr{C}(C \times \{\varepsilon\}) \times \{\varepsilon\}$ into ∂X for every $\varepsilon \in V$ if and only if there is a C^{1+a} map $g : C \to \partial X$ for which

$$f \circ \widetilde{\mathscr{C}}(x, \varepsilon) = g(x)$$

for all $x \in C$ and all $\varepsilon \in V$.

Proof. All that must be shown is that theorem 1. remains true when D_p is replaced with the connected analytic set V. First of all, lemmas 1. and 2. carry over just as they were presented when D_p is replaced by a polydisk in C^k . This means that theorem 1. is true when D_p is replaced by a connected component V_i of the set of regular points of V; let g_i be the map of theorem 1. for V_i . In fact (*) holds on Cl_VV_i and the usual continuity argument shows that $g_i = g_j$ when $Cl_VV_i \cap Cl_VV_j \neq \emptyset$. The theorem is therefore proved since V is connected and $V = U\{Cl_VV_i : i \in I\}$.

THEOREM 4. Let X, Y, $\mathcal{C}: C \times V \to Y$ and $\{\Omega_{\epsilon}: \epsilon \in V\}$ be given as in theorem 3. If $f: X \times V \to Y$ is a holomorphic map satisfying

a) $f(\partial X \times \{\varepsilon\}) \subseteq \partial \Omega_{\varepsilon}$ for every $\varepsilon \in V$;

b) f_ε = f | X×{ε} is a covering map of Ω_ε near ∂Ω_ε for some open neighborhood of ∂X×{ε} in X×{ε}, again for every ε∈V, then there exists a C^{1+a} map g : C → ∂X for which

$$\mathscr{C}(x,\varepsilon) = f(g(x),\varepsilon)$$

for all $x \in C$ and all $\varepsilon \in V$.

By viewing theorems 1.-4. from another point of view one gets mapping theorems for complex manifolds. Theorem 5. below is one such result, although clearly not the most general one.

Let **P** be a polydisk in $C^{n-1}(n > 1)$ and let C be a subarc of ∂D . Given a holomorphic family of $C^{1+\alpha}$ curves $\mathscr{C}': C \times P \to C$ and holomorphic maps $\mathscr{C}_{\nu}: P \to C$ for each $\nu = 2, \cdots, m(m > n)$, define $\mathscr{C}: C \times P \to C^m$ by the rule

$$\mathscr{C}(t,\varepsilon) = (\mathscr{C}'(t,\varepsilon), \mathscr{C}_2(\varepsilon), \cdots, \mathscr{C}_m(\varepsilon))$$

for all $t \in C$ and all $\varepsilon \in P$. We may assume without loss in generality that $\mathscr{C} | C \times \{0\}$ is the boundary value of a holomorphic function on $U \cap D$ for some open set $U \subseteq C$. Let Ω be a domain in C^m for which $\mathscr{C}(C \times P) \subseteq \partial \Omega$.

THEOREM 5. If there is a holomorphic map $f: \Omega \to D \times P$ for which $f(\mathscr{C}(C \times P)) \subseteq \partial D \times P$, then necessarily \mathscr{C} is the boundary value of a holomorphic map $\mathscr{C}: U \cap D \times P \to \Omega$ for some open set $U \subseteq C^n$.

Proof. This theorem is a straightforward generalization of corollary 1...

In view of this theorem one may ask for conditions on $\partial \Omega$ of a given domain Ω under which there exists a subarc C of ∂D and a map $\mathscr{C}: C \times P \rightarrow \partial \Omega$ like the one described above. In this direction we have a Levi-type condition.

PROPOSITION 1. Let Ω be an open domain in $\mathbb{C}^n(n > 1)$ and suppose that $(z_0, \varepsilon^0) \in \partial \Omega$, where $\varepsilon^0 = (\varepsilon_2^0, \cdots, \varepsilon_m^0) \in \mathbb{C}^{n-1}$. In order that there exist an open neighborhood U of (z_0, ε^0) , a polydisc $\mathbb{P} \subseteq \mathbb{C}^{n-1}$, a subarc C of ∂D and an injective C^{2+a} map $\mathscr{C} : C \times \mathbb{P} \to \partial \Omega \cap U$ satisfying the conditions in theorem 5. it is necessary that there exist an open neighborhood U' of (z_0, ε^0) and a C^2 map $\varphi : U' \to \mathbb{R}$ such that

- 1° { $(z,\varepsilon): \varphi(z,\varepsilon) = 0$ } = $U' \cap \partial \Omega$;
- 2° grad $\varphi \neq 0$ on $U' \cap \partial \Omega$;

3° denoting $(z, \varepsilon) = (z, \varepsilon_2, \cdots, \varepsilon_n)$ by $(\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n)$, then $\sum_{i=1}^n \frac{\partial \varphi}{\partial \varepsilon_i} w_i = 0$ at $(\varepsilon_1, \cdots, \varepsilon_n) \in U' \cap \partial \Omega$ implies that

$$\sum_{i,j=1}^{n} \frac{\partial^2 \varphi}{\partial \varepsilon_i \partial \bar{\varepsilon}_j} w_i w_j = 0.$$

Proof. Given injective \mathscr{C} , let ρ denote the coordinate function of \mathscr{C}^{-1} ; it is known [5] that there is an open neighborhood V of (z_0, ε^0) and holomorphic functions $f_1: V \cap \Omega \to C$, $f_2: V \cap (\mathbb{C}^n \setminus \overline{\Omega}) \to \mathbb{C}$ with C^2 extensions to $\partial \Omega \cap V$ such that $\rho(z, \varepsilon) = f_1(z, \varepsilon) f_2(z, \varepsilon)$ for all $(z, \varepsilon) \in \partial \Omega \cap V$. The differentiability properties of f_1 and f_2 on $\partial \Omega \cap V$ allow us to choose C^2 functions \tilde{f}_1 and \tilde{f}_2 on V for which $\tilde{f}_1 | V \cap \Omega = f_1$ and $\tilde{f}_2 | V \cap (\mathbb{C}^n \setminus \overline{\Omega}) = f_2$. Define the extension of ρ into V to be $f_1(z, \varepsilon) f_2(z, \varepsilon)$ and $\varphi: V \to \mathbb{R}$ by the rule $\varphi(z, \varepsilon) =$ $|\rho(z, \varepsilon)|^2 - 1$. \tilde{f}_1 and \tilde{f}_2 can clearly be chosen so that 1° is satisfied, while 2° clearly holds for any choice of \tilde{f}_1 and \tilde{f}_2 ; 3° is the result of a straightforward computation.

The next result has to do with "extending" differentiable families of complex manifolds to holomorphic families. It will follow from theorem 1. in a manner similar to that for theorems 1.-4. except that X instead of V is to be viewed as the parameter space.

Let $\mathscr{V} \xrightarrow{\omega} X$ be a differentiable (i.e. C^{∞}) family of complex structures on the complex manifold V in the sense of Kodaira and Spencer [3], where X is an open Riemann surface. This means that for every point $v \in \mathscr{V}$ there is an open neighborhood U of v and a diffeomorphism $\Psi_U : U \to W \times \omega(U)$ for some open set W in C^n such that 1° $\omega = p \otimes \Psi_U$ (pr^2 is the canonical projection $W \times \omega(U) \to \omega(U)$);

2° $\Psi_U | \Psi_U^{-1}(W \times \{x\})$ is biholomorphic for every $x \in \omega(U)$. If ω is a holomorphic map $\mathscr{V} \xrightarrow{\omega} X$ is called a holomorphic family of complex structures on V.

Two differentiable families of complex structures on V, say $\omega_1 : \mathscr{V} \to X$ and $\omega_2 : \mathscr{V}_2 \to X$, are said to be *equivalent* if there is a diffeomorphism $\varphi : \mathscr{V}_1 \to \mathscr{V}_2$ satisfying

a) $\omega_1 = \omega_2 \circ \varphi$;

b) $\varphi \circ \Psi_U | \Psi_U^{-1}(W \times \{x\})$ is biholomorphic for every $x \in \omega_1(U)$ and every pair U, Ψ_U of open neighborhoods and diffeomorphisms respectively for $\omega_1 : \mathscr{V}_1 \to X$ as described above.

Let $X_0 \subseteq \overline{X}_0 \subseteq X$ be an open Riemann surface with differentiable boundary ∂X_0 . $\mathscr{V} \xrightarrow{\omega} X$ induces by way of the canonical injections $X_0 \to X$, $\overline{X}_0 \to X$, and $\partial X_0 \to X$ differentiable families $\omega_0 : \mathscr{V}_0 \to X_0$, $\overline{\omega}_0 : \mathscr{V}_0 \to \overline{X}_0$ and $\omega_0^{\delta} : \mathscr{V}_0^{\delta} \to \partial X_0$ of complex structures on V which are called the *restrictions* of the family $\omega : \mathscr{V} \to X$ to X_0 , \overline{X}_0 , and ∂X_0 respectively.

THEOREM 6. Let X_0 and X be open Riemann surfaces with $\overline{X}_0 \subseteq X$ and $\omega : \mathscr{V} \to X$, $\tilde{\omega} : \widetilde{\mathscr{V}} \to X$ differentiable families of complex structures on a complex manifold V for which

1) the restriction $\bar{\omega}_0$: $\widetilde{\mathscr{V}}_0 \to X_0$ is a holomorphic family of complex structures on V;

2) the restrictions $\omega_0^{\delta}: \mathscr{V}_0^{\delta} \to \partial X_0$ and $\tilde{\omega}_0^{\delta}: \widetilde{\mathscr{V}}_0^{\delta} \to \partial X_0$ are equivalent.

Then there is a differentiable map $g: \partial X_0 \to \partial X_0$ such that

$$\tilde{\omega}_0^\delta = g \circ \omega_0^\delta \, .$$

Lemmas 1. and 2. yield two other kinds of results. The first concerns boundary values of holomorphic functions of one variable. For example, every injective $C^{1+\alpha}$ map $h:\partial D \to C$ can be embedded in a normalized holomorphic family of $C^{1+\alpha}$ curves $\mathscr{C}:\partial D \times D_p \to C$; then the property that h^{-1} is the boundary value of a holomorphic function on the bounded domain with boundary $h(\partial D)$ is equivalent to the existence of a holomorphic map of Ω onto D, where Ω is defined for \mathscr{C} as before. The second result concerns partial differential equations. THEOREM 7. Let $\mathscr{C} : \partial D \times D_p \to C$ be a holomorphic family of C^{1+a} curves and $\Omega \subseteq C^2$ the domain described by \mathscr{C} as before. Let f_1, f_2 be complexvalued, C^{∞} functions on Ω with compact support in $\overline{\Omega} \setminus \mathscr{C}(\partial D \times D_p)$. If u is a C^{∞} solution of the system

$$\frac{\partial u}{\partial z}=f_1,\qquad \frac{\partial u}{\partial \varepsilon}=f_2$$

(in which case u will have a continuous extension to $\Omega \cup \mathscr{C}(\partial D \times D_p)$) satisfying the boundary condition that the topological dimension of $u \circ \mathscr{C}(\{t\} \times D_p)$ is smaller than or equal to 1 for every $t \in \partial D$, then on $\mathscr{C}(\partial D \times D_p)$ u is necessarily of the form

$$u(w) = g \circ \widetilde{\mathscr{C}}^{-1}(w),$$

where $g: \partial D \to C$ is a C^{1+a} function.

References

- [1] Ahlfors, L., Open Riemann surfaces and extremal problems on compact suregions, Comm. Math. Helv. 24, 100–134 (1950).
- [2] Alling, N., Extensions of meromorphic function rings over non-compact Riemann surfaces. I, Math. Z. 89, 273–299 (1965).
- [3] K. Kodaira and D.C. Spencer, On deformations of complex analytic structures I, II, Ann. of Math. 67, 328-466 (1958).
- [4] Muskhelishvili, N.I., Singular Integral Equations, Noordhoff, Groningen (1953).
- [5] Röhrl, H., Über das Riemann-Privalovsche Randwertproblem, Math. Ann. 151, 365–423 (1963).
- [6] Warschawski, S.E., On a perturbation method in conformal mapping, (to appear).
- [7] Zeitlin, D., Behavior of conformal maps under analytic deformation of the domain, Ph. D. thesis, Univ. of Minnesota (1957).

University of California at San Diego Princeton University