SOME GENERALIZATIONS OF BURNSIDE'S THEOREM

N. A. WIEGMANN

1. Introduction. Burnside's Theorem in the theory of group representations states that a necessary and sufficient condition that a semigroup of matrices of degree n over the complex field be irreducible is that the semigroup contain n^{2} linearly independent matrices. In the course of dealing with sets of matrices with coefficients in a division ring, Brauer (1) obtained a generalization of this theorem which concerned irreducible semigroups with elements in a division ring. In the present work irreducible semigroups of matrices with elements in the field of real quaternions are considered and generalizations of Burnside's Theorem of a more specific nature are obtained by using certain properties of matrices with such elements.

The following facts and terminology may be briefly noted. Let \mathfrak{H} be a semigroup (relative to multiplication) of quaternion matrices of degree n. By the l-rank (i.e., left rank) of \mathfrak{A} is meant the maximum number of left linearly independent matrices in $\mathfrak{A} ; r$-rank has a corresponding meaning. If every matrix A of \mathfrak{A} is of either form

$$
\left[\begin{array}{ll}
A_{1} & O \\
A_{3} & A_{4}
\end{array}\right] \text { or }\left[\begin{array}{ll}
A_{1} & A_{2} \\
O & A_{4}
\end{array}\right]
$$

where A_{1} is $m \times m, m<n$, the semigroup is said to be decomposed. If \mathfrak{A} is such that there exists a non-singular quaternion matrix P such that the set $P \mathfrak{A} P^{-1}$ is decomposed, then \mathfrak{A} is said to be reducible; if not \mathfrak{A} is said to be irreducible. According to a result (1, 4.4B) of Brauer's, Schur's Lemma holds for semigroups of matrices with elements in a division ring: If \mathfrak{A} and \mathfrak{B} are irreducible semigroups which are intertwined by a matrix P, then P is either 0 or non-singular. This result could be obtained in the real quaternion case by paralleling Schur's proof while using the result (3, Theorem 10) that for every quaternion matrix P there exist unitary quaternion matrices U and V such that $U P V$ is a real diagonal matrix with non-negative diagonal elements. It can also be shown that the following is true: If two semigroups \mathfrak{A} and \mathfrak{B} of quaternion matrices are intertwined by a matrix P and if \mathfrak{B} is irreducible, then either $P=0$ or \mathfrak{A} contains \mathfrak{B} as an irreducible component.

2. The form of a matrix commutative with an irreducible representation.

Theorem 1. If \mathfrak{A} is an irreducible semigroup of quaternion matrices, then any matrix M which commutes with every element of \mathfrak{A} is of the form $M=P^{-1}(k I) P$ where k is a complex number and P is a non-singular quaternion matrix.

[^0]Let M be a quaternion matrix with the given property. It is known (3, Theorem 1) that there exists a non-singular matrix P such that $P M P^{-1}=J$ is in Jordan normal form with complex elements along the diagonal.

If M is non-derogatory (3), then each A in \mathfrak{H} is such that $P A P^{-1}=B_{1}$ $\dot{+} B_{2} \dot{+} \ldots \dot{+} B_{m}$ where each B_{i} is triangular (3, pp. 195), but this contradicts the assumption on \mathfrak{A}.

If M is derogatory, J is of the form $k I$, where k is a complex number, or it is not. If not, $J=J_{1} \dot{+} J_{2} \dot{+} \ldots \dot{+} J_{t}$ where this form may be assumed to be such that J_{i} contains only and all diagonal elements λ_{i} which are characteristic roots of M, where $\lambda_{i} \neq \lambda_{j}$ for $i \neq j$ and where $\lambda_{i} \neq \bar{\lambda}_{j}$, for $i \neq j$, the latter according to the Jordan form designated for M in (3). Now either J has one characteristic root or it has more than one; i.e., either $t=1$, above, or $t>1$ in J_{t}. These cases are now considered.

Let $J=J_{1} \dot{+} J_{2} \dot{+} \ldots \dot{+} J_{t}, t>1$. Let A be any element of \mathfrak{A} and let $P A P^{-1}=X=\left(x_{i j}\right)$ It will be shown that

$$
X=\left[\begin{array}{ll}
X_{1} & X_{2} \\
0 & X_{3}
\end{array}\right]
$$

where X_{1} has the same order as that of J_{1}. Let j be the order of J_{1} and let the first block (in the direct sum which J_{2} represents) of the form

$$
\left[\begin{array}{cccc}
\lambda_{2} & 1 & 0 & \\
& \lambda_{2} & & \\
& & & \cdots \\
& 0 & & \\
\lambda_{2}
\end{array}\right]
$$

be of order k. Then we have a series of relations of the form

$$
\begin{equation*}
\lambda_{2} x_{s p}+x_{s+1, p}=x_{s p} \lambda_{1}, \quad \lambda_{2} x_{j+k, p}=x_{j+k, p} \lambda_{1} \tag{i}
\end{equation*}
$$

or
(ii) $\quad \lambda_{2} x_{s p}+x_{s+1, p}=x_{s, p-1}+x_{s p} \lambda_{1}, \quad \lambda_{2} x_{j+k, p}=x_{j+k, p-1}+x_{j+k, p} \lambda_{1}$,
where, for a fixed p chosen from $p=1,2, \ldots, j$, either (i) or (ii) holds (but not both); where for $p=1$, (i) holds; and where if $k>1, j<s<j+k$, and where if $k=1$, only the second relations in (i) and (ii) hold. Now one of two cases occurs:
(a) At least one λ_{i} of M is real and there is no loss in generality in assuming λ_{1} is such a real root. It follows from the second relation in (i) that $x_{j+k, 1}=0$, and from the first that $x_{s 1}=0$ for $j<s<j+k$. For any other p for which (i) holds, the same is true so that $x_{s p}=0$ for $j<s \leqslant j+k$ for these p. Consider the first p for which (ii) holds; then in (ii), $x_{s, p-1}=0=x_{j+k, p-1}$ and so $x_{j+k, p}=0$ from the second relation, and from the first $\lambda_{2} x_{j+k-1, p}+0$ $=0+x_{j+k-1, p} \lambda_{1}$ so that $x_{j+k-1, p}=0$ and, in turn, $x_{s p}=0$ for $j<s \leqslant j+k$ for this p. If the next p for which (ii) holds is treated in a similar fashion it follows that $x_{s p}=0$ for $j<s \leqslant j+k$, and $1 \leqslant p \leqslant j$.
(b) If all λ_{i} are non-real complex, it follows from the second relation in (i) that $x_{j+k, 1}=0$ (since $\lambda_{2} \neq \lambda_{1}$ and $\bar{\lambda}_{2} \neq \lambda_{1}$) and from the first relation that $x_{s 1}=0$ for $j<s<j+k$. For any p for which (i) is true, the same result holds. Considering the first p for which (ii) holds, it follows as in (a) that all $x_{s p}=0$ for this p and the same range of s so that $x_{s p}=0$ here, also, for $j<s \leqslant j+k$ and $1 \leqslant p \leqslant j$. Now for any subsequent such blocks in J_{2} or for any such blocks in J_{3}, \ldots, J_{t} a similar procedure applies so that $x_{1 p}=0$ for $1 \leqslant p \leqslant j$ and for $j<l \leqslant n$ (where X is $n \times n$). So X has the above form which contradicts the assumption of the theorem.

Let $J=J_{1}$ so that only λ_{1} appears along the diagonal where there must be an element 1 to the right of at least one λ_{1}. Let $J_{1}=J_{11} \dot{+} J_{22} \dot{+} \ldots \dot{+} J_{k k}$ where each $J_{i i}$ is either the single element λ_{1} or a matrix with λ_{1} along the diagonal and 1 above each such λ_{1} after the first, and where J_{11} is definitely of the latter form. Let $X_{i i}$ have the same order as $J_{i i}$ and let

$$
X=\left[\begin{array}{cc}
X_{11} & X_{12} \ldots X_{1 k} \\
& \cdots \\
X_{k l} & X_{k 2} \ldots X_{k k k}
\end{array}\right] \text {, }
$$

so that, from the assumptions, X_{11}, X_{12}, X_{21}, and X_{22} at least appear and are not vacuous and $k<n$.

Now it will be shown that it follows from $J X=X J$ that each $X_{i j}$ is a triangular matrix with zeros below the main diagonal; it is to be noted here that when some $X_{i j}, i \neq j$, is not square, the latter statement will be taken to mean that any element $x_{i j}=0$ when $i>j$. Then it follows that $J_{i i} X_{i j}$ $=X_{i j} J_{j j}(i, j=1,2, \ldots, k)$. When $i=j$, since $J_{i i}$ is non-derogatory, $X_{i i}$ is in triangular form $(i=1,2, \ldots, k)$. When $i \neq j$, consider for example X_{12} as a typical case: $J_{11} X_{12}=X_{12} J_{22}$, and let these be of order $s \times s, s \times t$, and $t \times t$ respectively. Equating the elements in the first column (and dropping the subscript on λ_{1}):

$$
\begin{equation*}
\lambda x_{i 1}+x_{i+1,1}=x_{i 1} \lambda, \quad 1 \leqslant i<s, \quad \lambda x_{s 1}=x_{s 1} \lambda ; \tag{i}
\end{equation*}
$$

and from the other columns there result:

$$
\begin{align*}
\lambda x_{l j}+x_{l+1, j} & =x_{l, j-1}+x_{l j \lambda}, \quad \lambda x_{s, j}=x_{s, j-1}+x_{s j} \lambda, \tag{ii}\\
1 & \leqslant l<s \text { and } 1<j \leqq t,
\end{align*}
$$

where the following is to be noted: if $X_{i j}$ consists of one column, only (i) applies, and if $X_{i j}$ consists of only one row, the second relations only in (i) and (ii) apply. (In the latter case $X_{i j}$ is already in triangular form.) If λ is real, from the first relation in (i), $x_{i+1,1}=0$ for $1 \leqslant i<s$; from the first relation in (ii) $x_{l+1, j}=x_{l, j-1}$ for $1 \leqslant l<s, 1<j \leqslant t$. Together these show $x_{i j}=0$ for $i>j$. If λ is non-real complex, from the second relation in (i) $x_{s 1}$ must be complex and from the first $x_{s 1}=0$ and also, in turn,

$$
x_{x-1,1}=x_{x-2,1}=\ldots=x_{21}=0
$$

Since $x_{s 1}=0$, from the second relation in (ii) $x_{s 2}$ is complex and from the first $x_{s 2}=0$; similarly $x_{s-1,2}=\ldots=x_{32}=0$. Continuing with all elements $x_{s p}$ in the last row of X_{12}, it will be seen that $x_{i j}=0$ for $i>j$.

For each A in $\mathfrak{N}, P A P^{-1}=X$ is of the above type, sectioned as above, and having each $X_{i j}$ in triangular form as described. Form the matrices

$$
\left[\begin{array}{l}
X_{11} \\
\cdot \\
\cdot \\
X_{k 1}
\end{array}\right],\left[\begin{array}{l}
X_{12} \\
\cdot \\
\cdot \\
X_{k 2}
\end{array}\right], \ldots,\left[\begin{array}{l}
\Lambda_{1 k} \\
\cdot \\
\cdot \\
X_{k k}
\end{array}\right] .
$$

Let $X_{i j}$ have row order $r_{i j}$ and column order $c_{i j}$; then the first columns of each of the above matrices have zeros in all the same positions and have, possibly, non-zero elements only in the 1st, the $\left(r_{11}+1\right)$ st, the $\left(r_{11}+r_{21}+1\right)$ st, \ldots, the $\left(r_{11}+r_{21}+\ldots+r_{k-1,1}+1\right)$ st positions. By column operations on the right of X, the following columns of X may be interchanged:

> the 2 nd and the $\left(c_{11}+1\right)$ st, the 3rd and the $\left(c_{11}+c_{12}+1\right)$ st, the 4 th and the $\left(c_{11}+c_{12}+c_{13}+1\right)$ st,

$$
\text { the } k \text { th and the }\left(c_{11}+c_{12}+\ldots+c_{1, k-1}+1\right) \text { st. }
$$

(Note that $c_{11}>1$.) The resultant matrix is such that the first k columns have all-zero rows except for the 1st, the $\left(r_{11}+1\right)$ st, \ldots, the $\left(r_{11}+r_{21}+\right.$ $\ldots+r_{k-1,1}+1$)st. Now

$$
r_{11}=c_{11}, r_{21}=c_{12}, r_{31}=c_{13}, \ldots, r_{k-1,1}=c_{1, k-1}
$$

so that if the same operations as above are now performed on the left on the rows, a similarity transformation will have been applied to X with the result that a matrix is obtained such that the first k columns have all-zero rows beyond the k th row; therefore, X is similar to a matrix

$$
\left[\begin{array}{cc}
X_{1} & X_{2} \\
0 & X_{3}
\end{array}\right]
$$

where X_{1} is $k \times k, k<n$.
It follows then that $M=P^{-1}(k I) P$ where k is complex and P is quaternion.
3. Generalizations of Burnside's Theorem. If \mathfrak{A} is a semigroup consisting of square matrices of degree n with quaternion elements, there may exist a non-singular (quaternion) matrix P such that $P \mathfrak{A} P^{-1}=\mathfrak{A}_{1}$ contains only matrices with complex elements, or there may not exist such a P. An example of the former may be obtained by forming $P^{-1} \mathfrak{A}_{1} P$ where \mathfrak{U}_{1} is any
complex semigroup and P is a non-singular quaternion matrix. An example of the latter (other than the set of all $n \times n$ quaternion matrices) is the set, \mathfrak{N}, of all $n \times n$ unitary matrices with quaternion elements. This set is closed under matrix multiplication. There exists no P such that $P\left\{{ }_{2} P^{-1}=\mathbb{C}\right.$ is a complex set; this can be seen as follows: P cannot be complex since then \mathfrak{N} would be complex. Also, in the notation of (3, p. 191) no $P=P_{1}+j P_{2}$, P_{1} and P_{2} complex, $P_{2} \neq 0$, can provide this. For if so, let \mathfrak{l} be the set of all $n \times n$ complex unitary matrices; this is a semigroup of complex matrices which is irreducible under all complex similarity transformations. Since \mathfrak{U} is a subset of \mathfrak{A}, P must be such that $P \mathfrak{U}=\mathfrak{C}_{1} P$ where \mathfrak{C}_{1} is composed solely of complex matrices. From $\left(P_{1}+j P_{2}\right) \mathfrak{U}=\mathfrak{C}_{1}\left(P_{1}+j P_{2}\right)$ it follows that $P_{1} \mathfrak{U}=\mathfrak{C}_{1} P_{1}$ and $j P_{2} \mathfrak{U}=j \widetilde{\mathfrak{G}}_{1} P_{2}$ (where $\overline{\mathfrak{C}}_{1}$ consists of the complex conjugate of each matrix in $\left(\mathfrak{C}_{1}\right)$. From the first relation and from results in complex theory, either $P_{1}=0$ or \mathfrak{C}_{1} contains \mathfrak{l} as an irreducible component and since both \mathfrak{C}_{1} and \mathfrak{U} are $n \times n$ in dimension, \mathfrak{C}_{1} is irreducible also, relative to the complex field. By Schur's Lemma in complex theory either $P_{1}=0$ or P_{1} is non-singular. The latter must hold for if $P_{1}=0, P_{2} \mathfrak{U}=\overline{\mathfrak{C}}_{1} P_{2}$ and since \mathfrak{U} and $\overline{\mathbb{C}}_{1}$ are irreducible, either $P_{2}=0$ also (not possible) or P_{2} is non-singular in which case $\mathfrak{H}=P^{-1} \mathfrak{C} P=P_{2}{ }^{-1} j^{-1} \mathbb{C} j P_{2}=P_{2}^{-1} \mathbb{\subseteq} P_{2}$ is complex. Therefore P_{1} is non-singular. From $j P_{2} \mathfrak{U}=j \overline{\mathfrak{C}}_{1} P_{2}$, either $P_{2}=0$ (not possible) or P_{2} is non-singular. Then $P=P_{1}+j P_{2}$ where both P_{1} and P_{2} are non-singular. But this is not possible because, for example, since $(i j) I$ and $2^{-\frac{1}{2}}(i+j) \mathrm{I}$ are elements of \mathfrak{A}, they must be similar under the P^{-1}, P transformation to complex matrices C_{1} and C_{2}, respectively. From the first relation it follows that

$$
\bar{P}_{2} P_{1}^{-1}=P_{1} \bar{P}_{2}^{-1}
$$

and from this and the second, the contradictory fact that $C_{2}=0$ would result.
Theorem 2. Let \mathfrak{A} be an irreducible semigroup of quaternion matrices. Then $M=P(k I) P^{-1}$, where k is non-real complex, commutes with each element of \mathfrak{I} if and only if $P^{-1} \mathfrak{Q} P=\mathbb{E}$ is a complex set.

If $M A=A M$ where A is any element of \mathfrak{A}, then

$$
(k I)\left(P^{-1} A P\right)=\left(P^{-1} A P\right)(k I)
$$

and, since k is non-real complex, $P^{-1} A P$ is complex for any A in \mathfrak{N}. The converse is immediate.

It is now desirable to separate irreducible semigroups of matrices with quaternion elements into two classes: these which are similar to a complex semigroup under some quaternion similarity transformation, and those which are not similar to a complex semigroup under any such transformation. These cases are considered in turn.

Theorem 3. Let \mathfrak{A} be a semigroup of quaternion matrices of degree n which is not similar to a complex set. If \mathfrak{A} is irreducible, then \mathfrak{A} has l-rank n^{2}; and, conversely, if every semigroup similar to \mathfrak{H} has l-rank n^{2}, then \mathfrak{N} is irreducible.

This will be shown in two ways; in the first use is made of a known theorem while in the second a direct proof is given.

Let \mathfrak{A} be a given irreducible semigroup as described. Using the notation and terminology of Brauer (1, pp. 513, 520), let $\mathfrak{C}(\mathfrak{H})$ denote the commuting ring of \mathfrak{A}, i.e., the set of all quaternion matrices P which intertwine a set \mathfrak{A} of square matrices with itself. This means that for each A of $\mathfrak{N}, A P=P A$. It has been seen above that any matrix which commutes with each element of an irreducible semigroup is of the form $P^{-1}(c I) P$. Because of the given nature of $\mathfrak{A} c$ is real. Therefore any $M=P^{-1}(c I) P=c I$ is a real scalar matrix so that here $\mathfrak{G}(\mathfrak{H})$ is the set of all real scalar matrices. Theorem (9.2A) of Brauer's work states the following: let G be an irreducible semigroup of degree n. If G has l-rank k and $\mathfrak{C}(\mathfrak{H})$ has r-rank v, then $n^{2} \leqslant k v$. In this instance the r-rank v of $\mathfrak{S}(\mathfrak{H})$ is obviously 1 so that $n^{2} \leqslant k$. On the other hand $k \leqslant n^{2}$, so that $k=n^{2}$.

This same result can be obtained directly as in the complex case as follows. Let $A=\left(a_{\kappa \lambda}\right)$ be any quaternion matrix of an irreducible semigroup \mathfrak{H} of order n as given. There may exist n^{2} quaternion numbers $k_{\lambda \kappa}, \lambda=1,2, \ldots, n$; $\kappa=1,2, \ldots, n$ such that for each A in \mathfrak{N}

$$
\sum_{\kappa, \lambda=1}^{n} a_{\kappa \lambda} k_{\lambda \kappa}=0
$$

if $K=\left(k_{\lambda_{k}}\right)$ and if

$$
\chi(A K)=\sum_{\kappa, \lambda=1}^{n} a_{\kappa \lambda} k_{\lambda \kappa},
$$

this can be expressed, as usual, as $\chi(A K)=0$. If there exists more than one such K-matrix, any right linear combination of them will also be such a K-matrix.

Lemma. If \mathfrak{A} has l-rank r where \mathfrak{A} is of degree n, then the number of right linearly independent K-matrices is $n^{2}-r$.

For if

$$
A_{\rho}=\left(a_{\kappa \lambda}^{(\rho)}\right), \quad \rho=1,2, \ldots, r,
$$

is a set of left linearly independent matrices of \mathfrak{U}, for a given K-matrix, then

$$
\sum_{\lambda, k=1}^{n} a_{\kappa \lambda}^{(\rho)} k_{\lambda \kappa}=0, \quad \rho=1,2, \ldots, r
$$

This is a right system of r homogeneous linear equations in n^{2} unknowns, $k_{\lambda_{\kappa}}$. The r rows of the $r \times n^{2}$ coefficient matrix are left linearly independent and so (see 2, p. 41, for example) there exist $n^{2}-r$ right linearly independent solutions.

Now if \mathfrak{A} is irreducible and not similar to a complex set, it will be shown that there can exist no system of non-zero K matrices. Let us assume the contrary. As in the complex case the following may be noted first of all: For
any A in $\mathfrak{A}, A K$ is itself a K-matrix; if K_{1}, \ldots, K_{m} is a (right linearly independent) basis for all K-matrices, each A in \mathfrak{N} determines an $m \times m$ matrix $R=\left(r_{\sigma \rho}\right)$ from

$$
A K_{\rho}=\sum_{\sigma=1}^{m} K_{\sigma} r_{\sigma \rho}, \quad \rho=1,2, \ldots, m ;
$$

the set \Re of all such matrices determined from a given basis is a semigroup of degree m which is homomorphic to \mathfrak{V}; under a change of a K-basis, the set \Re becomes a similar set $P^{-1} \Re P$ where $P=\left(p_{i j}\right)$ is a non-singular matrix and

$$
L_{\rho}=\sum_{\sigma=1}^{m} K_{\sigma} p_{\sigma \rho} \quad \rho=1,2, \ldots, m
$$

is the new K-basis; and the K-basis may be chosen so that \Re is of the form

$$
\left[\begin{array}{ll}
\Re_{1} & \Re_{2} \\
0 & \Re_{4}
\end{array}\right]
$$

where \Re_{1} is irreducible and of degree m_{1} where $1 \leqslant m_{1} \leqslant m$. If a right linearly independent set K_{1}, \ldots, K_{m} existed, then for any A in \mathfrak{A},

$$
A K_{\rho}=\sum_{\sigma=1}^{m_{1}} K_{\sigma} r_{\sigma \rho}, \quad \rho=1,2, \ldots, m_{1}
$$

(where only \Re_{1} is utilized). Let

$$
K_{\rho}=\left(k_{: \lambda}^{(\rho)}\right)
$$

so that

$$
\sum_{\lambda=1}^{n} a_{\kappa \lambda} k_{\lambda \mu}^{(\rho)}=\sum_{\sigma=1}^{m_{1}} k_{\kappa \mu}^{(\sigma)} r_{\sigma_{\rho}} \quad \rho=1,2, \ldots, m_{1} ; \kappa=1,2, \ldots, n ; \mu=1,2, \ldots, n .
$$

Let

$$
P_{u}=\left(k_{i u}^{(j)}\right), u=1,2, \ldots, n ; i=1,2, \ldots, n ; j=1,2, \ldots, m_{1} .
$$

Then $A P_{u}=P_{u} R$ for all A in $:\left\{\right.$ and all corresponding R in \Re_{1}, and for $u=1,2, \ldots, n$. The conditions of Schur's Lemma are met so that either a given $P_{u}=0$ or is non-singular. If all $P_{u}=0$ for $u=1,2, \ldots, n$, then

$$
K_{1}, K_{2}, \ldots, K_{m_{1}}
$$

are all zero matrices; but this contradicts their linear independence. If not all $P_{u}=0$, take any such non-singular P_{u} so that $A=P_{u} R P_{u}{ }^{-1}$; if the proper change of K-basis is made, R can be taken to be the same as A. For each A in $\mathfrak{N}, A P_{u}=P_{u} A$ and since the conditions of Theorem 1 are met, each nonsingular $P_{u}=Q_{u}\left(c_{u} I\right) Q_{u}^{-1}$ where c_{u} is complex. From Theorem 2, since \mathfrak{X} is not similar to a complex set under any quaternion similarity transformation, $P_{u}=c_{u} I(u=1,2, \ldots, n)$ where c_{u} is real. Then it follows that each $K_{\rho}\left(\rho=1,2, \ldots, m_{1}=n\right)$, is such that each row except the ρ th is zero
and this row is of the form $\left[c_{1}, c_{2}, \ldots, c_{n}\right]$ for each. For any A of \mathfrak{N} the matrix $A K_{\rho}$ has for its j th diagonal position the element $a_{j \rho} c_{j}\left(\rho=1,2, \ldots, m_{1}=n\right)$. Now $\chi\left(A K_{\rho}\right)=0(\rho=1,2, \ldots, n)$, so that if A^{T} denotes the transpose of any A in \mathfrak{N},

$$
A^{T}\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\cdot \\
\cdot \\
\cdot \\
c_{n}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
\cdot \\
\cdot \\
\cdot \\
0
\end{array}\right]
$$

and since all c_{i} are real, the transpose of the above yields $\left[c_{1}, c_{2}, \ldots, c_{n}\right], A$ $=0 .\left[c_{1}, c_{2}, \ldots, c_{n}\right]=[0,0, \ldots, 0]$. Now \mathfrak{U} is irreducible so by the corollary' to Schur's Lemma, either $P=0$ or the representation 0 contains \mathfrak{U} as an irreducible component. Since the latter is not possible, each $c_{i}=0$; but this means that each $K \rho=0$ which contradicts the linearly independent character of the $K \rho$.

The converse of the theorem follows directly.
In connection with the latter proof, it can be verified that the following generalization is true: let (jij be an abstract semigroup; let $\mathfrak{N}_{1}, \mathfrak{H}_{2}, \mathfrak{H}_{3}, \ldots$ be a finite number of irreducible semigroups of quaternion matrices of degrees $m_{1}, m_{2}, m_{3}, \ldots$, respectively, which are homomorphic to (relative to matrix multiplication) such that no two semigroups are similar to each other, and such that none is similar to a semigroup of complex matrices. Then there exists no set of non-zero matrices, K, L, M, \ldots such that $\chi(A K)+\chi(B L)$ $+\chi(C M)+\ldots=0$ simultaneously for all sets of matrices A, B, C, \ldots which correspond to the same element of $\mathfrak{H j}$ and belong to $\mathfrak{N}_{1}, \mathfrak{V}_{2}, \mathfrak{H}_{3}, \ldots$, respectively. A proof may be used which parallels that of the complex case and depends on the direct proof of Theorem 3 above. Also, as in this case, one can then state the following: Let \mathfrak{H} and \mathfrak{B} be irreducible semigroups of quaternion matrices which are homomorphic to a semigroup (\mathscr{F}) and are not similar to complex semigroups; if the traces of the elements of \mathfrak{A} and \mathfrak{B} which correspond to the same element of $(\mathscr{F}$ are the same, then \mathfrak{F} and \mathfrak{B} are similar. Since $\chi(A)-\chi(B)=0$ for any A and B of \mathfrak{A} and \mathfrak{B}, respectively, which correspond to the same element of $(\mathfrak{F}$, the only alternative is that \mathfrak{N} and \mathfrak{R} are similar.

Consider next the case where \mathfrak{H} is an irreducible semigroup of quaternion matrices of degree n and $P \mathscr{A} P^{-1}=\Omega$ is a complex semigroup; let $\bar{\Omega}$ denote the set obtained from Ω by taking the ordinary complex conjugate of each matrix of Ω. If Q is a complex matrix such that $C Q=Q \bar{C}$ for each C in Ω, Ω and $\bar{\Omega}$ will be said to be interjoined by Q. There may exist such a Q which is non-singular or there may not. It is convenient to consider these cases separately. In this connection the following may be noted:

Theorem 4. Let \mathfrak{N} be an irreducible semigroup and let $P^{-1} \mathfrak{A} P=\Omega$ be a complex set. If Ω and $\bar{\Omega}$ are interjoined by means of a non-singular complex matrix, then every complex semigroup similar to \mathfrak{H} has this property.

Let $P^{-1} \mathfrak{H P}=\Omega_{1}$ and $Q^{-1} \mathfrak{H} Q=\Omega_{2}$ be complex. Then $\mathfrak{H}=P \Omega_{1} P^{-1}=Q \Omega_{2} Q^{-1}$ or $\Omega_{1} P^{-1} Q=P^{-1} Q \Omega_{2}$; i.e., $P^{-1} Q=M=M_{1}+j M_{2}$ (where M_{1} and M_{2} are complex matrices) intertwines Ω_{1} and Ω_{2}. Since $\Omega_{1}\left(M_{1}+j M_{2}\right)=\left(M_{1}+j M_{2}\right) \Omega_{2}$, $\Omega_{1} M_{1}=M_{1} \Omega_{2}$ and $\bar{\Omega}_{1} M_{2}=M_{2} \Omega_{2}$. Since Ω_{1}, Ω_{2}, and $\bar{\Omega}_{1}$ are irreducible and all matrices involved are complex, M_{1} and M_{2} are either 0 or non-singular (except that both cannot be 0) and $Q=P\left(M_{1}+j M_{2}\right)$. Now assume there exists a complex matrix S such that $S C S^{-1}=\bar{C}$ for each C in Ω_{1}. Then there exists a matrix K in Ω_{2} such that at least one of $C M_{1}=M_{1} K$ and $\bar{C} M_{2}=M_{2} K$ holds where M_{1} and M_{2} are fixed. If the former, then $\bar{M}_{1} \bar{K} \bar{M}_{1}^{-1}=\bar{C}=S C S^{-1}$ $=S M_{1} K M_{1}^{-1} S^{-1}$; if the latter, $\bar{M}_{2} \bar{K} \bar{M}_{2}^{-1}=C=S^{-1} \bar{C} S=S^{-1} M_{2} K M_{2}^{-1} S$. Since each K in Ω_{2} can be accounted for in this way; the desired result is obtained.

A result of Brauer's, of use in what follows, states the following: If $\mathbb{F s}^{5}$ is an irreducible semigroup of degree n, let E_{i} denote the row $(0,0, \ldots, 0$, $1,0, \ldots, 0)$ with i th component 1 ; let h be the largest number of indices $u_{1}, u_{2}, \ldots, u_{h}$ with $1 \leqslant u_{i} \leqslant n$ such that conditions $\sum E_{u} C_{u}=0, C_{u}$ in $\mathfrak{G}(\mathfrak{(})$), u ranging over u_{1}, \ldots, u_{h}, imply $C_{u_{i}}=0$ for all u_{i}. Then the l-rank of (5) is equal to $n h$ (1, pp. 531-532).

If $P^{-1} \mathfrak{Q} P=\Omega$ is a complex semigroup, if \mathfrak{U} is irreducible, and if M is a matrix in $\mathfrak{C}(\mathfrak{H})$, then $P^{-1} \mathfrak{H} P P^{-1} M P=P^{-1} M P P^{-1} \mathfrak{A} P$ or $\Omega N=N \Omega$ where $N=P^{-1} M P=M_{1}+j M_{2}, M_{1}$ and M_{2} complex. Then $\Omega M_{1}=M_{1} \Omega$ and $\bar{\Omega}$ and Ω are interjoined by M_{2}.
(a) If no non-singular complex matrix interjoins Ω and $\bar{\Omega}$, then $M_{2}=0$ and M_{1} is any complex scalar matrix. Therefore $M=P\left(k_{i} I\right) P^{-1}$ and $\mathbb{C}(\mathfrak{H})$ consists of all matrices $P\left(k_{i} I\right) P^{-1}$ where P is fixed and k_{i} is any real or complex number. Let $P=P_{1}+j P_{2}=\left(p_{i j}\right)$ where P_{1} and P_{2} are complex matrices, and let the rank of the $n \times 2 n$ matrix $\left[P_{1}, P_{2}\right]$ be r. Let $u_{1}, u_{2}, \ldots, u_{r}$ denote a set of natural numbers between 1 and n such that the correspondingly numbered rows of $\left[P_{1}, P_{2}\right]$ are linearly independent. Form the expression $\sum E_{u} P\left(k_{u} I\right) P^{-1}=0$ where the summation is over the above $u_{1}, u_{2}, \ldots, u_{r}$ and k_{u} is any complex number; this is equivalent to $\sum E_{u} P\left(k_{u} I\right)=0$. Since $E_{u} P$ is the u th row of P, this is equivalent to the system of n linear homogeneous equations $T \cdot \alpha=0$ in r (complex) unknowns,

$$
k_{u_{1}}, k_{u_{2}}, \ldots, k_{u_{r}},
$$

where T is the $n \times r$ matrix such that the element in the i th row and j th column is $p_{u_{j} i}$ and α is a column vector whose transpose is

$$
\left[k_{u_{1}}, k_{u_{2}}, \ldots, k_{u_{r}}\right]
$$

let $T=T_{1}+j T_{2}$ where T_{1} and T_{2} are complex. Since the α vector is to be complex, $T \cdot \alpha=0$ is equivalent to

$$
\left[\begin{array}{c}
T_{1} \\
T_{2}
\end{array}\right] \cdot \alpha=0
$$

Since the coefficient matrix is of rank r, only the zero solution is possible, i.e., $P\left(k_{u} I\right) P^{-1}=0$. If any number of rows greater than r is taken a like set of equations results but not all solutions are necessarily zero so that not all $P\left(k_{n} I\right) P^{-1}$ are zero. Therefore, $h=r$.

Theorem 5. If \mathfrak{A} is irreducible of degree n, and if $P^{-1} \mathfrak{M} P=\Omega$ is complex where no non-singular complex matrix interjoins \Re and $\bar{\Omega}$, then \mathfrak{A} has l-rank $r n$ where r is the rank of the matrix $\left[P_{1}, P_{2}\right]$ where $P=P_{1}+j P_{2}, P_{1}$ and P_{2} complex.
(b) If $P^{-1} \mathfrak{A} P=\Omega$ is interjoined with $\bar{\Omega}$ under a non-singular complex matrix, it is convenient to consider separately the cases in which Ω is real and in which Ω is not real.

If Ω is real, then in the above $\Omega M_{1}=M_{1} \Omega$ and $\Omega M_{2}=M_{2} \Omega$ so that both M_{1} and M_{2} are complex scalar matrices. In this case $\mathfrak{G}(\mathfrak{H})$ consists of all matrices of the form $P\left(k_{i}+j l_{i}\right) I P^{-1}$ (where k_{i} and l_{i} are any complex numbers and P is fixed), i.e., of the form $P\left(q_{i} I\right) P^{-1}$ where q_{i} is any quaternion element. Consider the matrix P^{T} and let r be its rank (i.e., the number of columns in every maximal set of right linearly independent columns or the number of rows in every maximal set of left linearly independent rows); choose a maximal set of r right linearly independent columns of P^{T} and let $u_{1}, u_{2}, \ldots, u_{r}$ denote the corresponding column numbers. Form the sum $\sum E_{u} P\left(q_{u} I\right) P^{-1}=0$, as before, over this set of u_{i}; this is equivalent to $\sum E_{u} P\left(q_{u} I\right)=0$, or, as before, to the set of equations $T . \alpha=0$ where T has as its columns the above mentioned set of r right linearly independent columns of P^{T} and α is now a column vector of r (quaternion) unknown components. Such a system has only the zero solution; and, as before, if any set of u-indices larger in number than r were taken, non-zero solutions could be obtained.

Theorem 6. If \mathfrak{A} is irreducible of degree n and if $P^{-1} \mathfrak{A} P=\Omega$ is real, then $\mathfrak{2}$ has l-rank rn where r is the rank of P^{T}.

If Ω is not real but is interjoined with $\bar{\Omega}$ by means of a non-zero complex matrix, then (with reference to the paragraph above (a)) $M_{1}=k I$ is complex scalar and an M_{2} which is non-singular exists so that $P^{-1} M P=k I+j M_{2}$, M_{2} non-singular. Let S be any other non-singular complex matrix interjoining Ω and $\bar{\Omega}$. Then $\bar{C}=S C S^{-1}=M_{2} C M_{2}^{-1}$ for any C in Ω so that $M_{2}^{-1} S C$ $=C M_{2}{ }^{-1} S$ for any C in Ω; since Ω is irreducible, $M_{2}{ }^{-1} S=l I, l$ complex, so that $S=l M_{2}$. In this case $\mathfrak{C}(\mathfrak{H})$ consists of all matrices of the form $P\left(k_{i} I+j l_{i} M_{2}\right) P^{-1}$ where P and M_{2} are fixed and k_{i} and l_{i} are complex scalars. (It may be noted that M_{2} is itself a non-zero complex scalar if and only if Ω is real). Let $M_{2}=Z=\left(z_{i j}\right)$ for simplicity. Let $P=P_{1}+j P_{2}$, as before, and form $S=\left[P_{1}, P_{2}\right]$; if t rows of S are chosen to form a matrix S_{1}, S_{1}
may be considered to be of the form $S_{1}=[Q, R]$ where Q and R are composed of corresponding rows of P_{1} and P_{2}, respectively. Let s be the maximum number of rows of S which are linearly independent and form $[Q, R]$ such that

$$
\left[\begin{array}{rr}
Q & R \\
-\bar{R} Z & \bar{Q} Z
\end{array}\right]
$$

is of rank $2 s$. Then consider

$$
\sum_{u} E_{u} P\left(k_{u} I+j l_{u} Z\right) P^{P-1}=0
$$

where the summation is to be taken over the numbers of the s rows of S chosen as above, $u_{1}, u_{2}, \ldots u_{s}$. After discarding the P^{-1} on the right and noting that Z, k_{i} and l_{i} are in the complex field, it can be seen that this relationship is equivalent to the set of $2 n$ equations in $2 s$ (complex) unknowns

$$
\left[\begin{array}{cc}
Q^{T} & -Z^{T} \bar{R}^{T} \\
R^{T} & Z^{T} \bar{Q}^{T}
\end{array}\right] \cdot \alpha=0
$$

where

$$
\alpha^{T}=\left[k_{u_{1}}, \ldots, k_{u_{s}}, l_{u_{1}}, \ldots, l_{u_{s}}\right] .
$$

Since the coefficient matrix is of rank $2 s$, only the 0 solution is possible; i.e., if the above relation is to hold, all the matrices from $\mathfrak{C}(\mathfrak{T})$ must be 0) matrices. It is evident that s is the largest number of u_{i} such that this is true.

Theorem 7. If \mathfrak{Q} is irreducible of degree n, if $P^{-19}(P=\Omega$ is non-real complex, and if Ω and $\bar{\Omega}$ are interjoined by means of a non-singular complex Z, then \mathfrak{N} has l-rank sn where, when $P=P_{1}+j P_{2}, s$ is the maximum number of linearly independent rows of $\left[P_{1}, P_{2}\right]$ which form $[Q, R]$ such that

$$
\left[\begin{array}{rr}
Q & R \\
-\bar{R} Z & \bar{Q} Z
\end{array}\right]
$$

is of rank 2s.

References

1. R. Brauer, On sets of matrices with coefficients in a division ring, Trans. Amer. Math. Soc., 49 (1941), 502-547.
2. E. H. Moore, General analysis, Part I, Memoirs of the American Philosophical Society, I (1935).
3. N. A. Wiegmann, Some theorems on matrices with real quaternion elements, Can. J. Math., γ (1955), 191-201.

Catholic University, Washington, D.C.

[^0]: Received May 1, 1956.

