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Abstract This paper deals with the construction of exact and analytical-numerical solutions with a
priori error bounds for systems of the type ut = Auxx, Aiu(0, t)+B\ux{0, t) = 0, A2u(l,t)+B2Ux(l,t) =
0, 0 < x < 1, t > 0, u(x,0) = f(x), where A\, Ai% B\ and £?2 are matrices for which no simultaneous
diagonalizable hypothesis is assumed, and A is a positive stable matrix. Given an admissible error e and
a bounded subdomain D, an approximate solution whose error with respect to an exact series solution
is less than e uniformly in D is constructed.
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1. Introduction and preliminaries

Coupled partial differential systems with coupled boundary-value conditions are frequent
in quantum mechanical scattering problems [1,19,27], chemical physics [16,17,22], ther-
moelastoplastic modelling [13], coupled diffusion problems [8,20,29], and other fields.
In this paper we consider systems of the type

u t ( x , t ) - A u x x ( x , t ) = 0 , 0 < z < l , £ > 0 , (1.1)

Aiu(0,t) + B1ux(0,t)=0, t>0, (1.2)

A2u{l,t) + B2ux(l,t) = 0, t>0, (1.3)

u(a:,0) = /(a;), 0 < x ^ 1, (1.4)

where the unknown u = (u1; u2, • • •, um)T and / = (/i, f2, • • •, f m ) T are m-dimensional
vectors, Ai; Bi, i = 1,2 are m x m complex matrices, elements of C m x m , and A is a
positive stable matrix

Re(z) > 0 for all eigenvalues z of A. (1-5)
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We assume that

The block matrix , „ is invertible and
> (1.6)

not all its blocks A\, A2, B\, B2 are singular. )

Conditions on the function f(x) and on the matrix coefficients will be determined in order
to guarantee the existence of a series solution of the problem, as well as the construction
of analytic-numerical finite-sum approximations with a prefixed accuracy in a bounded
subdomain. Mixed problems of the above type, but with Dirichlet conditions u(0, t) = 0,
u(l,t) = 0 instead of equations (1.2) and (1.3), have been treated in [15,23].

The organization of the paper is as follows. In § 2, the vector eigenvalue differential
problem

X"(x) + X2X(x) =0, 0 < x < 1, A > 0 /

A2A
3X(1) +B2A> X'(1) = Q, '

is studied. Sufficient conditions for the existence of eigenvalues are given. Using a separa-
tion-of-variables technique, an exact series solution of problems (1.1)—(1.4) is constructed
in § 3. In § 4, a procedure for the construction of a finite-sum approximation with a pre-
fixed accuracy is given, by truncation of the exact infinite-series solution and appropriate
approximations of the eigenvalues.

Throughout this paper, the set of all the eigenvalues of a matrix C in C m x m is denoted
by a(C) and its 2-norm denoted by ||C|| is defined by [11, p. 56]

where, for a vector y in Cm, \\y\\2 denotes the usual Euclidean norm of y. By [11, p. 556],
it follows that

*=0

where a(C) = max{Re(w); w E c(C)}. The conjugate transpose of C is denoted by C*.
If B is a matrix in C"x m, we denote by B^ its Moore-Penrose pseudoinverse. An account
of examples, properties and applications of this concept may be found in [6] and [26], and
B* can be efficiently computed with the MATLAB package. The kernel of B, denoted by
ker B, coincides with the image of the matrix / — B^B, denoted by Im(/ - B^B), see [6].
We say that a subspace E of Cm is invariant by the matrix A G C m x m if A(E) C E.
Hence, property A(kevG) C kerG is equivalent to the condition GA(I — G^G) = 0. We
conclude this section with an algebraic result that will play an important role in the
following.
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Lemma 1.1. Let M and N be matrices in Cmxm, then

ker M n ker N = Im{(7 - M^M){I - [N{I - M*M)}*[N{I - M+M)]}}.
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Proof. If v G kerMn ker TV, then Mv = 0, and. by Theorem 2.3.2 of [26, p. 24],
v = Im(7 - M^M)d, where d is an arbitrary vector in Cm. Hence

v e D Im{(7 -

Conversely, let v e Im{(/ - M^M){I - [N{I - MtM)]t[AT(/ - M^M)}}. Then, for some
z eCm, one gets

- M]M)]}z.

= 0

v = {I -

Hence, and using that M = MM^M, it follows that

Mv = (M - MMfM){7 - \N{I -

and

Nv =

Thus v e ker M n ker N, and the result is established.

= 0.

D

The set of all the real numbers will be denoted by R, and the set of all non-negative
integers will be denoted by N. If A is a matrix in CmX7n, we denote 0{A) = min{Re(u/);
w E o-(A)}, and if 0(A) > 0 and t ^ 0, from (1.8) one gets

k=0 Jfe!

2. Vector eigenvalue differential systems

Vector Sturm-Liouville differential systems of the form

-(P(x)y')' + Q(x)y = XW(x)y, a ^ x

A\y{a) + A*2P(a)y'(a) = 0,

B'Mb) + B*2P(b)y'(b) = 0,

b,

where P, Q and W are symmetric m x m matrix functions of x with P and W positive
definite for all x € [a, b], y is an m-vector function of x, A is a scalar parameter, and
Ai, A2, Bi and B2 are matrices in C m x m , such that A\A2 = A\AX, B\B2 = B^Blt and
(Au A2), {BUB2) are full-rank C m x 2 m matrices which have been treated in [3,4,12,18].
In this section, we consider vector eigenvalue differential problems of the type (1.7).
Suppose that

A, = /. (2.1)
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Under this hypothesis, the general solution of the vector equation X" + X2X = 0 is given
by

/ sin(Xx)Dx + cos(Xx)Ex, Dx, Ex € Cm, A > 0,
Ji.\\X) — s [2.2)

\DO + XE0, DO,EO e Cm, A = 0. '

Condition X{0) + BiX'(O) = 0 implies Dx = -XBXEX, if A > 0 and Do = -BiE0.
Hence, (2.2) takes the form

f(cos(Aa;) - XBlSm(Xx))Ex, Ex € Cm, A > 0,
Xx[x) = < (2.3)

M [ ( / B O E £ o e C m , A = 0. ^ ;

By imposing the remaining boundary-value conditions A*X(0) + BiA^X^Q) = 0 for
1 ^ 3' ̂  V ~ 1 an<3 A2A

3X(l) + B2A^X'(1) = 0, 0 ^ j ^ p — 1, one gets the following
conditions on the vector Ex, for A > 0:

(AjBi - BxAj)Ex =0, 1 ̂  j < p - 1, A > 0, (2.4)

[-A(cos(A)J42 - Asin(A)B2)A
:'JBi + (sin(A)^2 + Acos(A)B2)^]£A = 0,

for 0 < j s ^ p - 1 , A > 0. (2.5)

Taking into account (2.4), conditions (2.5) can be written in the form

[sin(A)(42 + X2B2B1) + Acos(A)(B2 - A2B1)]AiEx = 0,

f o r O < j < p - l , A > 0. (2.6)

Since we seek non-zero vectors Ex, by (2.6) one gets that

L(X) = (A2 + A2
JB2Bi)sin(A)-|-(B2-J42B1)Acos(A) is singular, A > 0. (2.7)

Assume that the block matrix

BI\ (2'8)

is invertible. By (2.8) and the properties of the Schur complement of a matrix [5, p. 93],
one gets that B2 — A2B\ is invertible, and condition (2.7) implies sin(A) ^ 0. Hence,
condition (2.7) is equivalent to

A2 + X2B2Bi + Xcot(X){B2 - A2Bi) singular, A > 0,

or

(B2 - A2B1)~
1A2 + X2(B2 - A2Bl)~

1B2B1 + AJcot(A)/ singular, A > 0.

Hence,

Acot(A) ea((A2B1-B2)-
1A2 + X2(A2B1-B2)-

1B2B1), A > 0. (2.9)
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Let us introduce the matrices

A2 = (A2BX - B2)~
1A2, B2 = {A2BX - B2)~

1B2,

and note that

B2 = A2 B\ — / .

Hence condition (2.9) can be written in the form

Acot(A) £cr(A2 + \2(A2B
2-B1)), A > 0.
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(2.10)

(2.11)

(2.12)

Assume that matrices A2 and B\ have real eigenvalues a £ cr(A2) and (3 E o-(B\) and a
common eigenvector v £ Cm associated to them:

- 0I)v = (A2 - al)v = 0, v 6 Cm, v ^ 0, (a, /?) G K2. (2.13)

Then
[ i 2 + \2{A2Bl - B{)\v = [a + A2(a/32 - /?)]«,

and, for A > 0, one gets

a + A2(a/32 - (3) is a real eigenvalue of A2 + X2(A2B
2 - S i ) 1

and u is an eigenvector associated with a + A2 (a/32

and

Acot(A) = a + A2(a/32-/3), A > 0,

(2.14)

(2.15)

has a sequence of positive roots. Note that by (2.4) and (2.7), eigenfunctions X\(x) are
given by (see (2.3))

Xx(x) = {cos(Ai) - ABi sin(Az)}.EA, ExeCm, A > 0,

where vectors E\ satisfy

HXEX = 0, A > 0,

where Hx is the matrix in c ( 2 p ~ 1 ^ m x m defined by

BXA - ABX

(2.16)

(2.17)

I

A2 + X2(A2B
2

[A2 + A2(i2S2

- (a + A2(a/32

- (a + A2(a/32

\A2 + \2{A2B
2 - B^ - (a + A2(a/32 -

(2.18)
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If for A = 0, by imposing to X0(x) = (Ix - Bi)Eo given by (2.3), the boundary-value
conditions A^X(0) + BxA>X'{0) = 0 for 1 ̂  j < p - 1 and A2A

jX(l) + B2A
jX'{l) = 0,

0 < j < p — 1, it follows that Eo G Cm must verify

-AjB1)Eo = 0, l < j < p - l ,

0 + S2AJ£0 = 0, 0 < j < p - 1.

(2.19)

(2.20)

Note that condition (2.19) is also verified for j = 0. Substituting condition (2.19) into
(2.20) one gets

A2A
jE0 - A2BxA

jE0 + B2A
jEo = 0,

By the definition of A2 given by (2.10), it follows that A2 = {A2Bi — B2)A2, and, thus,
condition (2.21) can be written in the form

(A2B! - B2){A2 - I)AjE0 = 0, 0 < j < p - 1.

Since A2B\ — B2 is invertible, condition (2.22) is equivalent to

(A2 - I)AjE0 = 0, 0 < j < p - l .

Thus, conditions (2.19) and (2.20) are equivalent to the condition

HQEO = 0,

where

(2.22)

(2.23)

Hn =

BiA-
B,A2 - A2B1

A2-I
(A2 -1) A

i

(2.24)

( i 2 - 1 ) A?

Note that taking A = 0 and a = 1 in (2.18), one gets Ho denned by (2.24). By (2.17)
and (2.23), the existence of eigenfunctions associated with A ̂  0 is granted if the matrix
Hx, defined by (2.18) for A > 0 and by (2.24) for A = 0, satisfies

rank H\ < rn, A ̂  0. (2.25)

Furthermore, under condition (2.25) and Theorem 2.3.2 in [26, p. 24], if equation H\E\ =
0 is compatible, its solution set is given by

Sxe
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Assume that apart from condition (2.13), vector v satisfies

{Ajv; 1 ̂  j < p - 1} C Ker(i2 - al), (2.26)

then v satisfies H\v = 0 for all the positive solutions A of equation (2.15). Note that
condition (2.26) is granted if apart from (2.13), we assume that

— (31) n Ker(A2 - al) is an invariant subspace of A.

Summarizing, the following result has been established.

T h e o r e m 2 . 1 . Let A € C m x m , p an in teger , p ^ l , and suppose that the matrix

[A2 B2\

is invertible in C2 m x 2 m. Let A2, B2 be defined by (2.10) and assume condition (2.13) for
some vector v e Cm. Let Hx be defined by (2.18) for A > 0 and by (2.24) if\= 0.

(i) A positive solution, X, of equation (2.15) is an eigenvalue of problem (1.7) if
ra,nkH\ < m, and Ao = 0 is an eigenvalue if rank Ho < m.

(ii) If apart from condition (2.13) the vector v satisfies (2.26), then problem (1.7) admits
a countable set J-(a,(3) = {An; n 6 N} of real eigenvalues with limra_^oo A™ = +oo.

(iii) If \n > 0 is an eigenvalue of problem (1.7), then eigenfunctions associated to An

are given by

f{cos(Anx) - \nB1sm{Xnx)}E\n, Xn > 0,
Ai (x) = <

{{Ix-BJEo, A0 = 0,

where E\n = (I — H\ H\n)S\n, where S\n is an arbitrary vector in Cm.

Remark 2.2. With respect to the localization of the eigenvalues of problem (1.7),
it is easy to show that the sequence {A/J^i of non-negative roots of equation (2.15)
verifies the following cases.

Case 1. 0(1 - a) > 0. If

a>l, k-n < A f c < \ { 2 k + 1 ) T T , k ^ l ,

0 < a < l , (k-l)n< Afc < \{2k - 1)TT, k > 1,

a < 0, (k - l)n < Afc < kir, k > 1.

Thus, in all the subcases, one gets

( /C-1)TT< Afc < fc+iyr, k > 1, (2.27)
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Case 2. /?(1 - a) = 0. If

a > 1, A:7r < Afc < i(2fc + l)7r, k ^ 1,

a = 1, Ao = 0 and kn < Xk < \(2k + l)n, fc ^ 1,

a = 0, \. - 1/

a < 0, i(2/c-l)7r<

= |(2fc-l)7r,

So in all the subcases for k ^ 1 one gets (2.27).

Case 3. /?(1 - a) < 0. If

a > l , (fc - 1)TT < Afc < (k + 1)TT, /c > 1,

0 < a < 1, (fc — 1)TT < Afc < /CTT, /C > 1,

a < 0, i ( 2 / c - 1)TT < Afe < /CTT, 1.

Thus, in all the cases the positive solutions Â  of (2.15) verify (2.27).

Remark 2.3. The study of the problem with B\ = I,

X"(x) + X2X(x) = 0, 0 < x < 1, '

0) =0,

0 < j < p - 1, p > 1,

is analogous to problem (1.7). It is easy to check that the problems

X"{x) + \2X(x) = 0, 0 < x < 1,'
^jA^X^) + fii^Jf'(O) = 0,

^ 2 J 4 J ^ ( 1 ) + B2^'X'(1) = 0,

0 < j < p - 1, p>l,

(2.28)

(2.29)

where A2 — I or B2 = I, can be reduced to the previous cases considering the change of
variables defined by

y = y(x) = 1— re, O ^ x ^ l .

Thus, the approach developed is applicable to any problem of the type

X"(x) + X2X(x) = 0 , 0 < x < 1,"

(2.30)

B1A
jX'(O) = 0,

A2A
jX(l) + B2A

jX'(l) = 0,
O^j^p-1, p > l ,

(2.31)
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where some of the block entries are the identity matrix. Finally, it is important to point
out that the hypothesis Ai = I for i = 1 or i = 2, or Bi = I for i = 1 or i = 2, does
not involve a lack of generality. In fact, if in problem (2.31) one verifies that some Ai
(respectively, Bi) is invertible, premultiplying the corresponding boundary condition of
(2.31) by Ajl (respectively, B~l), one achieves a previously considered problem.

3. Construction of an exact series solution

Let us seek solutions of the boundary-value problems (1.1)—(1.3) under hypotheses (2.1)
and (2.8). A separation-of-variables technique suggests

vx(x,t)=Tx(t)Xx(x), Tx(t)eCmxm, Xx(x)eCm, A^O, (3.1)

where

T'x{t) + X2ATx(t) = 0, * > 0 , A > 0 , (3.2)

X'x'(x) + X2Xx{x) = 0 , 0 < x < 1, A ^ 0,

1 (3.3)

The solution of (3.2) satisfying TA(0) = / is Tx(t) = exp(-X2At), but, although vx(x,t)
denned by (3.1) satisfies (1.1)

jt{vx{x,t)) - A^(vx(x,t)) = T'x(t)Xx(x) - ATx(t)X'x'(x)

= -X2ATx(t)Xx(x) + ATx(t)X
2Xx(x) = 0,

condition (1.2) is not granted because

vx(0,t) + B1-^(vx(0, t)) = Tx(t)Xx(0) + BiTxWXW)

= exp(-X2At)Xx(0) + BX exp(-X2At)X'x(0), (3.4)

and the last equation does not vanish because matrix B\ does not commute with A.
However, if Xx satisfies (1.7) instead of (3.3), where p is the degree of the minimal
polynomial of A, then Tx(t) = exp(-X2At) can be expressed as a matrix polynomial of
A [9, p. 557],

Tx(t) = exp(-X2At) = bo(t, X)I + 6i(i, X)A + • • • + bp^{t, X)AP~1, (3.5)

where bj(t, A), 0 ̂  j 4 P - 1 are scalars. Under the boundary-value conditions of (1.7) it
follows that

d p~l

vx(0,t) + BX — MO,*)) = Ylbi^ W * A ( 0 ) + BiAiX'x(0)} = 0, t > 0,
3=0
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A2vx(l,t) + B2 —ox
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p - i

= 0, t > O.
3=0

Assume the notation and hypotheses of Theorem 2.1 and let {An}^.x be the sequence
of positive eigenvalues of problem (1.7). The candidate series solution of problems (1.1)—
(1.4) is given by

U(x,t)= <

X0(x)E0 0 €

(3.6)

n>\

where X\n is defined by Theorem 2.1, for appropriate vectors E\n to be determined.
Consider the case where 0 £ T{a,P). Associated to problem (1.7) we introduce the
scalar Sturm-Liouville problem

X"{x) + \2X(x) = 0, 0 < x < 1, 1
X(0) + /3X'(0)=0, I (3.7)

aX(l) + (ap - l)X'(l) = 0. J

For the sake of well-posedness, assume that function f(x) appearing in (1.4) satisfies the
property

f(x) is twice continuously differentiable in [0,1] 1
and /(0) + Pf'(0) = 0, a / ( l ) + (a/3 - l ) / ' ( l ) = 0. /

By the convergence theorem in series of Sturm-Liouville functions (see [14, ch. 11],
[10, p. 90] and [7]), each component fi{x) of / , for 1 ̂  i ^ m admits a series represen-

tation, absolute and uniformly convergent in [0, 1], of the form

fi(x) = nx) + \nPcos{\nx)}e\n{i), 0 ̂  x < 1,

where

p\n cos(Ana;)} dx

/
Jo

n ^ 1, 1 ̂  i ^ m. (3.9)
{sin(Anx) + p\n cos(Anx)}2 dx

Note that if we define vectors E\n e Cm by

(3.10)
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then U(x,t), defined by

U(x,t) = ^]exp(-A^At){sin(Ana;) - 0Xncos(Xnx)}EXn,

279

(3.11)

satisfies U(x, 0) = f(x), 0 ^ x ^ 1.
For the case where 0 6 J-(a,0) and Ao = 0 is an eigenvalue, we consider the scalar

Sturm-Liouville problem (3.7) with a = 1:

X"(x) + X2X(x) = 0, 0 < x < 1,

X(0)+(3X'{0) = 0, (3.12)

If function f(x) appearing in (1.4) satisfies condition (3.8) with a = 1, and if apart from
e\n(i), defined by (3.10), one considers

fi(x)(x-0)dx

/ (x-0)
Jo

m, Eo =
dx

'eo(l)
eo(2)

eo(m)

(3.13)

then U(x,t), defined by

U(x,t) = (x-0)Eo ~XlAt){sin(Xnx) - 0Xn cos(Xnx)}EXn, (3.14)

satisfies the initial condition (1.4). Note that in order to satisfy conditions (1.1)—(1.3),
vectors E\n must verify the conditions of Theorem 2.1. By definition of vector E\n, these
conditions are satisfied if

H0f(x) = 0, HxJ(x)=0, {Bl-0I)f(x)=O,

Note that by definition of HXn, condition (3.15) holds if

( i 2 - aI)A>f(x) = 0 = (Bi - 0I)Ajf(x), 0 < a; < 1,

Conversely, if the conditions in (3.15) hold true, then

(3.15)

(3.16)

and

X2(A2B
2 - - [a + A2(a/32 - 0)]I}A'f(x)

+ \2{A20
2 - 01) - [a + X2(a02 - 0)}I}A^f(x)

+ X202)(A2-aI)Ajf{x) = O, O ^ x ^ l , O^
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Thus, conditions (3.15) and (3.16) are equivalent, and it is clear that (3.16) is equivalent
to the condition

( i 2 - al)f(x) =0 = (B1- (3I)f(x), 0 < a; < 1, and
kei(A2 - al) nker(£?i — (31) is an invariant subspace of A.

By Lemma 1.1, taking M = A2 — al, N — B\ — /?/, condition (3.17) can be written in
the compact form

f(x)elmH{a,p), 0 s £ x < l , and [/ - H(a,p)(H(a,0))^}AH(a,p) = 0, (3.18)

where

H(a,(3) = (/ - MlMa){I - [N0(I -

= A 2 - a I , N B p i J

Note that condition (3.18) means that f(x) lies in Im H(a, j3) and that Im H(a,/3) is an
invariant subspace of the matrix A. With respect to the convergence of the series (3.11)
or (3.14)—as well as their partial differentiability with respect to the variable t once,
and x twice, for 0 < x < 1, t > 0—note that if to > 0 and D(to) = {(x,t); 0 ̂  x ^ 1,
t ^ t0 > 0} by inequality (1.8) and condition (1.5), the series appearing by twice termwise
partial differentiation with respect to x and once with respect to t, in (3.11), takes the
form

and is uniformly convergent in D(t0). By the differentiation theorem of functional series
[2, p. 403], the series (3.11) or (3.14) define rigorous solutions of problems (1.1)-(1.4),
and the following result has been established.

Theorem 3.1. Let A be a positive stable matrix in Cmxm, assume that

A2 B2

is invertible and that there exist real numbers a and (3 satisfying (2.13). If A2 and B2

are defined by (2.10), H(ot,(3) by (3.19), and f(x) is twice continuously differentiate in
[0,1], satisfying (3.8) and (3.18), then problems (1.1)-(1.4) admit a well-posed solution
given by (3.11) or (3.14), where vectors E\n are defined by (3.10) for n ^ 1 and by (3.13)
for n = 0.

Remark 3.2. Condition (3.8) together with (3.18) are equivalent to

/ ( 0 ) + 5 l / ' ( 0 ) = 0 , |

A2f(l)+B2f'(l) = 0,j

and (3.18). In fact, premultiplying the second condition of (3.8') by (A2Bi — B2)~
x and

taking into account (2.11), one gets (3.8).
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Now we are interested in the construction of an exact series solution of problems (1.1)-
(1.4) for more general functions f(x) than those considered in Theorem 3.1. Assume that

A = {a(l), • • • , Oi(k)} are the distinct real eigenvalues of A2, 1

Q = {/?(1), • • • ,fi(k)} are the distinct real eigenvalues of B\, J

and let H(a(i),(3{j)) be the matrix defined by (3.19) for 1 ̂  i ^ &, 1 < j < s. Recall
that by Lemma 1.1, condition ker(j42 - a{i)I) n ker(B: - fi(j)I) ^ 0 is equivalent to the
condition H(a(i),/3(j)) 7̂  0. Consider the subset of A x Q denned by

5 = {(a(»j),/?C?i)) € /I x /?; H(a(i,),/3(ji)) * 0, 1 < I < g}, (3.21)

and the block matrix in Cmxmq defined by

H=Wa(i1),0(j1)),H(a(i2),0(j2)),--- ,H(a(iq),P(jq))]. (3.22)

Assume that f(x) is twice continuously differentiable in [0,1] such that

(I-HHJ<)f(x) = 0, 0 < a ; < l , (3.23)

(3.24)

Since, by Lemma 1.1, one gets

A - a(i)I) n k e r ^ - p(j)I), (3.25)

then ImH is the direct sum of the subspaces 5; = ImH(a(ii),l3(ji)), 1 ̂  I ̂  q, and the
projection gi{x) of the f(x) on the subspace 5; is given by

gl(x) = [0---0H(a(il),(3(jl))0---0]H^f(x), U K « , 0 < x ^ 1, (3.26)

because

gl{x)elmH{a(il),i3{jl)) = Sl, (3.27)

and, by (3.23), one gets

<I<1. (3.28)
( = 1

By the hypothesis on f{x), it follows that gi(x) is twice continuously differentiable in
[0,1], and, by (3.24), one gets

9i(O)+0(jl)9'i(O) = O, 1

0 KU9J
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If the subspace Im H(a(ii), /3(ji)) is invariant by the matrix A, or

/ - [HiaiiilPtiMWaiifrPiJMNAHiaiifrPiJi)) = 0, 1 < U <7, (3.30)

by (3.26), (3.27) and (3.29) together with Theorem 3.1, one gets a series U{x, t, I) defined
by

U(x,t,l) =

cos XniOxj

cos\n(l)x}EXn(l),
n>\

(3.31)

where ^(a^),/?(.?;)), Xn(l) and EXn(i) are given by Theorem 3.1, is a solution of problems
(1.1)—(1.3) together with the initial condition

U{x,0,l)=gi(x),

By (3.28) and (3.32), one gets that

(3.32)

(3.33)

is a solution of problems (1.1)-(1.4). Summarizing, the following result has been estab-
lished.

Theorem 3.3. Let A be a matrix in Cmxm satisfying (1.5), and assume hypothe-
sis (1.6), where Ai = I. Let S and H be defined by (3.21) and (3.22), respectively. Let
A2 be defined by (2.10), and f(x) is a twice continuously differentiate function in [0,1]
satisfying (3.23) and (3.24). Under hypothesis (3.30), u{x,t)—defined by (3.33), where
U(x,t,l) is defined by (3.31), 1 ^ / ^ q—is a solution of problems (1.1)—(1.4), with

Remark 3.4. Taking into account Remark 2.3, a solution of problems (1.1)—(1.4) can
be constructed in an analogous way under the hypotheses (1.6) and (1.5) and certain
conditions on f{x).

The following example illustrates that the hypotheses of Theorem 3.3 are easy to check.

Example 3.5. Consider problems (1.1)-(1.4), where Ax = / in C4x4,

0
2
1
0

0
0
0
0

0
2
0
0

0
0

- 1

0

1 =

1
0
1

- 0

0
2
0
0

0
0
1

0

- 2
0

- 3
- 1

https://doi.org/10.1017/S0013091500020927 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020927


Strongly coupled mixed diffusion problems 283

B2 =

0

0

1
-1

0 0 - 1
0 1 - 2

- 1 0 - 1
0 0 0

A =

2 0 0 0
0 2 0 0
0 0 1 1
1 0 0 1

Here, the block matrix

is invertible, with

M = (A2B, -

a(A) = {1,2}, a(B,

With the above notation we have

Mo = A2, M2

B2

0 0 0 0
1 0 0 - 1

- 2 0 2 0
0 0 0 0

= {2,-1,1} and a(A2)

-2
1

-2
0

0 0

-2 0

0 0

0 0

0
- 1

0
- 2

= B1-2I =

-1 0
0 0
1 0
0 0

N1=Bl-I =

0 0 0
0 1 0
1 0 0
0 0 0

- 2

0

3

- 3

- 2

0

- 3

- 2

0 2

0 0

0 2

0 - 4

2 0 0
0 3 0
1 0 2
0 0 0

- 1 0
0 0
2 0

- 1 0

0 -2
-4 - 1
0 0
0 0

0 0

0 0

0 0

0 0

0

2

0

- 4

0 0
0 0

- 1 0
0 0

N2(I -

-1 0
0 0

-1 0
-1 0

-1
0

-1
-1

- 2

0

- 3

0

- 1
0

- 1
- 1

iV_1(/-Mo
tMo) =

0 0 0 0

0 3 0 0

0 0 0 0

0 0 0 0

iV_1(/-M2
tM2) =

0 0 0 0

0 0 0 0

0 0 2 0

0 0 0 0

7V1(7-Mo
tMo) = -

- 1 0

o I
- 1 0
- 1 0

-1
0

-1
-1

- 1
0

- 1
- 1
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Hence,

[N2(I - Mil

- 1 0
0 0

- 1 0
- 1 0

-1 -1
0 0

-1 - 1
-1 - 1

0 0 0 0
0 | 0 0
0 0 0 0
0 0 0 0

[JV2(/-M2
tM2)]t =

[7V_1(7-M2
tM2)]t =

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
1
2
0

0
0

- 1
0

o"
0
0
0

0
0
0
0

-1 0 - 1
0 1 0

-1 0 - 1
-1 0 - 1

- 1
0

- 1
- 1

[JV1(J-M2
tM2)]t = 0.

Matrices H(a,(3) defined by (3.19) take the values

77(0,2) =

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

77(2,1) =

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

Matrix 77 defined by (3.22) is

77 =

1 0 1 1
0 0 0 0
1 0 1 1
1 0 1 1

77(2,2) = 77(2,-1) = 77(0, l) = 0.

i | 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0

O O O O i o i i O O l O

0 0 0 0 \
"33

o \ \
and

[77(0,2) 77f =

[0 0

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

0 0 0
0 0 0

- 1 0 2
0 0 0

0
0

- 1
0
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0 0 0 0
1 0 0 1
1 0 0 1

Strongly coupled mixed diffusion problems

[o #(o,-i) o]#f =
1

If we impose on / = (/i,/2,/3,/4)T the condition (3.23), it follows

Projections gi{x) denned by (3.26) are

9i{x)= [#(0,2) 0 o] #+/(*) = ( o /2(z) 0 0) ,

g2(x)=[0 #(0,-1) O] #f/(z) = (/i(x) 0 /i(i)

<te(aO=[o 0 #(2,1)] #t/(z) = (o 0 /3(a;)/i(a;) (

Since

285

1
0
0
1

0
0
0
0

0
0
0
0

^
0
0
0

that

It _

0
0
0
0

0
1
0
0

f
[J

0
0
0
0

H{Z

0
0
0
0

t

. )]

f I

"o
0
0
0

-ffn

0
0
0
0

0
0
1
0

t

o"
0
0
0

1

~~ 3

1
0
1
1

0
0
0
0

1
0
1
1

1
0
1
1

and

[I - H(0, -l)[H(0, -l)?]AH{0, -1) = 0,

[I - H{2,1)[H(2,1)]1]AH{2,1) =0,

Thus, condition (3.30) holds true and the subspaces lmH(0,2), ImH(0, — 1), and also
ImH(2,1), are invariant by the stable matrix A. Well-posedness conditions (3.24) take
the form

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

2/ ' (0))=0 or /2(0) + 2/^(0) = 0,

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

= 0 or
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1
2

1
2

1
2

0
0

- 1
0

0
0
^

0

1
0
1
1

0
0
0
0

0
0
0
0

0
0
0
0

1
2

0
0
2
0

0
0
2
0

0
0
0
0

1
0
1
1

1
0
1
1

o"
0

- 1
0

o"
0

- 1
0

1

{

0
0
0
0

(..

f/rt\

0
0
0
0

(2/(1)

1
0
1
1

+

+

=0 or A(0)-/{(0)=0,

=0 or

=0 or

(2/(1) +/'(I)) =0 or 2/3(l)-2/1(l) + /3(l)-/{(l) =

Summarizing the corresponding problems (1.1)-(1.4) is well-posed and satisfies hypothe-
ses of Theorem 3.3 if f{x) is twice continuously differentiable in [0,1] and verifies the
conditions

/ 2 ( 0 )+ 2/^(0)

= 0, = 0,

4. Analytic-numerical solutions with prefixed accuracy

The series solution of problems (1.1)—(1.4) provided by Theorem 3.3 presents some com-
putational difficulties. Firstly, the infiniteness of the series. Secondly, eigenvalues are not
exactly computable because equation (2.15) is not solvable in a closed form. It is impor-
tant to point out here that eigenvalues of the coupled problems (1.1)—(1.4) and eigenfunc-
tions are built up in terms of scalar Sturm-Liouville problems of the type (3.7) or (3.29).
In spite of well-known efficient numerical algorithms for the computations of eigenval-
ues [18,24,25], it is interesting to study the admissible tolerance in the approximate
eigenvalues according with a prefixed accuracy. Finally, as the computation of matrix
exponentials appearing in the exact solution of problems (1.1)—(1.4) is not an easy task
(see [21]), we also approximate matrix exponentials by appropriate matrix polynomials
of certain degree. In this section we address the following question. Given an admissible
error e > 0 and a bounded subdomain D(to,t{) = {(x,t); 0 < a; < 1, 0 ̂  t0 ^ t ^ *i},
how do we construct an approximation that avoids the above-quoted difficulties and
whose error with respect to the exact solution is less than e uniformly in D(to,ti). By
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Theorem 3.3 it is sufficient to develop the approach when the exact series solution is the
given by Theorem 3.1.

To fix ideas we seek to approximate the series U(x,t) defined by (3.11), where vector
E\n is given by (3.9)-(3.10). By applying Parseval's inequality (see [3, p. 223] and [7])
to the scalar Sturm-Liouville problem (3.7), one gets

| e A n « | 2 ^ / \ f i ( x ) \ 2 d x , n > l , l ^ i ^ m , (4.1)
Jo

I | £ A J | 2 < £ / \fi{x)\2^= / ||/(x)|||dx = F2, r O l . (4.2)
~[Jo Jo

By Theorem 3.1 we have (3 e cr(Bi), and, by (3.17), one gets Bi{EXn) = (3EXn and

XXri{x) = {sin(\nx)-\npcos(\nx)}EXn, n > 1, 0 < x < 1. (4.3)

By (3.32)-(4.3), it follows that

H ^ ^ I K n i + Anll^H), 0 < x < l , n>l. (4.4)

By (1.8) for t\ > t ^ to, one gets

^ ^ (11^11*^^2^ ( 4 5 )

Let ipk and cj>k be the scalar functions defined for s > 0 by

<pk{s) = (k + 2)ln(s)-s2l3(A)t(h 4>k{s) = e-
s2(3^tosk, 0 < k ^ 2m - 1. (4.6)

Since

it follows that

1 / 2/ k + 2 \
<p'k(s)<0, i f s > s f c = at . . .

Take sj. ̂  s^ such that

(fc + 2) ln(s) - s2/3(>l)io < 0, s>s'k>sk, 0 ̂  fc ̂  2m - 1, (4.7)

then, by (4.7), it follows that

^fc(s) = e - s 2 / 3 ^ t o s f c <( l + ||JBi||)-1s-2, O 4 , 0 O ^ 2 m - l . (4.8)

Since limn-yoo An = +00 and \ n < \n+i, let no be the first positive integer so that

Ano > s* = max{s'fc; 0 ̂  k < 2m - 1}. (4.9)
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By (4.3)-(4.9), it follows that

3=0

Since Xn > (n — 1)TT, n ^ 1 (see Remark 2.2), if we denote by L the constant

/TCI— 1

then

Since

J=O

n>n0

n~2 = \K2, taking ni > n0 so that

- i !

n
- 2

n>n0

S"

- 2

by (4.11) and (4.12), one gets

Thus, the finite sum

satisfies

n = l

he, 0 0

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

The approximation V{x, t, ni) involves computation of the exact eigenvalues Ai, A2,. • •,
Ani, which is not easy in practice. Now we study the admissible tolerance when one consid-
ers approximate eigenvalues Ax, A2, • • •, Ani, building up the approximation of V(x, t, n\)
defined by

V(x,t,ni) =
7 1 = 1

-Xn (x) = {sin(Anz) - \nj3 cos(\nx)}E-Xn,

.exAm)-

(4.16)
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where, for 1 ^ i ^ m, e^ (i) is defined replacing Xn by An in (3.9). Note that we can
write

= e-~x»At{sm(\nx) - \n(3cos(\nx)}E-Xn - e - ^ ^ s i n ^

= (e-ilAt _ e-^t){sin{~XnX) _ xnf3cos{xnX)}EXn

+ e~X"M{s'm{Xnx) - An/?cos(Anz) - sin(Anz) + An/

Let I(p) be defined by

/•i
I(p)= {sin(px)-Ppcos{px)}2dx, p > 0, (4.17)

Jo

and let 7, A and /li be positive constants chosen so that

= An, p = An, 1 < n < n x } ^ 7 - 1 ; 1

0 < Tli < min{Ai,Ai}, max{An,ATl; 1 ^ n ^ ni} ^ yl.J

It is easy to show that

I sin(Ana;) - An/?cos(An:r) - sin(Ana;) + An/?cos(An:r)| < (1 + j3\ + |/3|An)|An - An|, 1

|sin(Anx) - An/3cos(Ana;)| < 1 + |An|, 0 < x < 1. J
(4.19)

By (3.9), for 1 < i ^ m, one gets

,., ... (/(An) - 7(An)) /o / . ^ { s i n ^ x ) - An/?cos(Anx)}dx
e^ u) - e; (z) = =

An /(An)/(An)

/Q1 /j(x){sin(A»x) - Ara^cos(A7tx) - sin(Anx) + Ara/?cos(Anx)}da:

/(An) ;

(4.20)
by the Cauchy-Schwarz inequality for integrals it follows that

l/2

)} |dx^ H | / i ( i ) | 2dxj (I(\n))
l/2; (4.21)

and by (4.19)

f1 -
/ |/i(x){sin(Anx) - An/3cos(Anx) - sin(Anx) + An^cos(A7lx)}| dx

Jo

|/i(sc)|2da;J |A n -A n | , 1 ^ i < m. (4.22)
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By (4.20)-(4.22) it follows that

' " " " l ( " l l K n )

Note that

7(An) - 7(An) = / (sin(Anz) - An/3cos(Anx) + sin(Anx) - An/3cos(Ana;))
Jo

x (sin(Anx) - Xnf3 cos(Xnx) - sin(Anx) + An/3cos(Ana;))dx,

and by (4.18) and (4.19) one gets

- J(An)| < |An - An|(l

4 ( 7
1 / 2

1)7(1\\EXn -

By definition of E-x we have

By (1.8) and (4.18) one gets

j=o

An + A n ) ) 2 ,

) ) - 1 ( l + \\BX\\{\ + Xn + A n ) ) 2

2

|An-An | ,

A)
2

| A n - A n | , l < n < n i ,

A)
2

| A n - A n | , l < n ^ m

J = 0

(4.23)

(4.24)

(4.25)

Let us write

https://doi.org/10.1017/S0013091500020927 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020927


Strongly coupled mixed diffusion problems 291

By (1.8), (4.18) and the mean value theorem, under the hypothesis |An — An| < 1 one gets

(4.26)

By (4.16), (4.23), (4.24), (4.25) and (4.26), assuming that |An - An| < 1, 1 ̂  n
h ^t ^ti, it follows that

\\e-t^AX-x(x)-e'tx-AXXn(x)\\2<K\\n-\n\, 1 < n < m, , (4.27)

where

•m—1

3=0

Kl = (7^2 + 1)7(1 + HBxIl)2 + WAWUe2^^ + (J \\fi(x)\\lc

Given e > 0 and ni , consider approximations An of Xn for 1 ̂  n ̂  n i , so that

(4.28)

|An - An| < mini 1, , 1 ^ n

then by (4.14), (4.16), (4.27) and (4.28) it follows that

| |V(a ; ) i ,n i ) -V ' (a : , t > n i ) | |2<£e, to < * < *i, 0 < z < 1.

By Theorem 11.2.4 of [11, p. 550], one gets

and by (4.18) and (4.19),

Since

m
t l

(4.29)

( 4 - 3 0 )

n < n l t 0 ^ x

take the first positive integer qo such that

1)! f* \\f(x)
(4.31)
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then, if we define

ni 90 (_\2fA\k

u(x,t,ni,qo) = E E I, * A » >
n = l fc=0

by (4.16), (4.31) and (4.32) one gets

\\V(x,t,n1)-u{x,t,n1,qo)h<le, t o ^ t ^ h , 0 ^ x ^ 1, (4.33)

and by (4.15), (4.29) and (4.33) one concludes that

\\U(x,t)-u(x,t,nl,q0)\\2<e, to < * < *i, 0s£ x ^ 1. (4.34)

Summarizing, the following result has been established.

Theorem 4.1. With the hypotheses and the notation of Theorem 3.1, let e > 0,
to > 0 and D(to,ii) = {(x,t); 0 < a: < 1, £o ^ ^ ^ *i}- -Let 7, yl and yli be defined by
(4.18). Let ni be chosen by (4.12) and qo by (4.31). Let Ai, A2,..., Arai be approximations
of eigenvalues Ai, A2,..., Ani satisfying

I An - An| < minfl,
\

where K is given by (4.28). Then u(x, t, n\,qo), defined by (4.32), is an approximation of
the exact solution U(x, t) of problems (1.1)—(1.4), given by Theorem 3.1, satisfying (4.34).
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