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LARGE DEVIATION PROBABILITIES
FOR THE NUMBER OF VERTICES OF
RANDOM POLYTOPES IN THE BALL
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Abstract

In this paper we establish large deviation results on the number of extreme points of a
homogeneous Poisson point process in the unit ball of R

d . In particular, we deduce an
almost-sure law of large numbers in any dimension. As an auxiliary result we prove
strong localization of the extreme points in an annulus near the boundary of the ball.
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1. Introduction and main results

Let us denote by U1, . . . , Un, n ∈ N
∗ = N \ {0}, n independent, uniformly distributed

variables in the unit ball, B
d , of the Euclidean space R

d , d ≥ 2, and let Xt , t > 0, be a
homogeneous Poisson point process in B

d of intensity measure (t/ωd)1Bd (x) dx, where ωd

and 1Bd (·) are respectively the volume and the indicator function of the unit ball. We consider
both the respective convex hulls, Cn and C̃t , of {U1, . . . , Un} and Xt , and Nn and Ñt , the
numbers of vertices in each convex hull. The asymptotic behaviour of Nn as n → ∞ has been
widely investigated in the literature. For d = 2, Rényi and Sulanke [11] in 1963 obtained the
convergence of means of Nn. Their work has been followed by Efron [6], Buchta and Müller [3],
Groeneboom [7], who obtained a central limit theorem, and Massé [9], who proved a law of
large numbers in probability. More recently, by precisely estimating the variance of Nn for all
dimensions d ≥ 2, Reitzner [10] deduced an almost-sure convergence for the number of vertices
of random polyhedra in any convex set of R

d , d ≥ 4, with a twice-continuously differentiable
boundary and positive Gaussian curvature. For all d ≥ 2, the asymptotic behaviour of E(Nn)

is known to be
E(Nn) ∼ cdn(d−1)/(d+1), (1)

where the dimension-dependent constant cd is known explicitly; see [14] (for d = 3), [1], and
[13], as well as Equation (7) of [10] and the references therein. Note that αs ∼ βs means
lims→∞ αs/βs = 1. Throughout the paper we make use of ‘O, �, �’ notation: recall that
O(X) stands for quantities bounded above by a constant multiple of X, �(X) for quantities
bounded below by a constant multiple of X, and �(X) = O(X) ∩ �(X).
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Note that (1) implies the same type of asymptotics for Ñt as t → ∞, i.e.

E(Ñt ) ∼ cd t(d−1)/(d+1).

Indeed, because a homogeneous Poisson process in B
d of intensity t coincides in distribution

with {U1, . . . , US}, where S is a Poisson variable with mean t , we obtain
∣∣∣∣E(Ñt ) −

∑
|k−t |≤t2/3

E(Nk) P{S = k}
∣∣∣∣ ≤

∑
|k−t |≤t2/3

k P{S = k}

= t P{S 	∈ [t − 1 − t2/3, t − 1 + t2/3]}.
It remains to use standard moderate deviation results on the Poisson distribution to prove that
the right-hand side of this expression goes to 0 as t → ∞, and that the summation on the
left-hand side tends to cd t(d−1)/(d+1).

The purpose of this paper is to establish the following large deviation results for Nn and,
respectively, Ñt .

Theorem 1. For each ε > 0,

lim inf
n→∞

1

log n
log

(
− log P

{∣∣∣∣ Nn

E(Nn)
− 1

∣∣∣∣ > ε

})
≥ d − 1

3d + 5
. (2)

Theorem 2. For each ε > 0,

lim inf
t→∞

1

log t
log

(
− log P

{∣∣∣∣ Ñt

E(Ñt )
− 1

∣∣∣∣ > ε

})
≥ d − 1

3d + 5
. (3)

Note that these results are of the same type as the concentration results for volumes of
unions of random closed sets obtained in [12]. The authors believe that the concentration rate,
(d − 1)/(3d + 5), on the right-hand sides of (2) and (3) is not optimal, and conjecture that
the optimal value should be (d − 1)/(d + 1), coinciding with the exponent determining the
asymptotics of the expected number of vertices. However, we were not able to verify this
conjecture using our current methods.

In particular, we deduce the following almost-sure laws of large numbers for Nn and,
respectively, Ñt , in any dimension d ≥ 2.

Corollary 1. We have

lim
n→∞

Nn

E(Nn)
= 1 almost surely

and

lim
t→∞

Ñt

E(Ñt )
= 1 almost surely.

Corollary 1 is a direct consequence of Theorems 1 and 2 and the Borel–Cantelli lemma.
Our technique of proof strongly relies on the localization of extreme points in a small annulus

near the boundary of the unit ball, which allows us to use a standard concentration-of-measure
result due to Ledoux [8, pp. Corollary 1.17]. The following proposition shows that, with an
overwhelming probability going exponentially quickly to 1, the vertices of the convex hull of
the points inside the ball are located in an annulus, centred at the origin, of thickness of order
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n−2/(d+1) (for Cn) or t−2/(d+1) (for Ct ). The method of proof of this result is based on a
classically known technique of cap coverings that was first developed and exploited in [2].

In what follows, B(r), r > 0, denotes the ball of radius r centred at the origin, and we
generically use c to denote some positive constant.

Proposition 1. (i) There exist constants, c > 0 and K > 0, such that, for every α, 0 < α <

2/(d + 1), we have

P{B(1 − Kn−α) 	⊆ Cn} = O(exp(−cn1−α(d+1)/2)). (4)

(ii) For the same c and K , we have

P{B(1 − Kt−α) 	⊆ C̃t } = O(exp(−ct1−α(d+1)/2)).

Our main motivation is the extension to higher dimensions (d ≥ 2) of the authors’ previous
results on the number of sides [5] and the radius of the circumscribed ball [4] of the typical
Poisson–Voronoi cell in the Euclidean plane. Indeed, in those papers we established a connec-
tion between the sides of the typical cell and the extreme points of an inhomogeneous Poisson
point process in the unit ball, via an action of the classical inversion. In dimension d ≥ 3,
the same argument provides a relation between the number of hyperfaces or the radius of the
circumscribed ball of the typical cell and the number of vertices or, respectively, the inradius
of the convex hull of the Poisson process inside the ball. We will deduce from Theorem 2,
Corollary 1, and Proposition 1 some new results on the geometry of the typical Poisson–Voronoi
cell that will be developed in future work.

The paper is structured as follows. We first prove an auxiliary proposition stating the
localization of the extreme points near the boundary of the ball. By using concentration-
of-measure arguments due to Ledoux [8], we then prove the main large deviation result for the
number Nn (see Theorem 1). We deduce Theorem 2 from Theorem 1 and a large deviation
property of the Poisson distribution. Finally, we make some concluding remarks about the
possible extensions of these results.

2. Proof of Proposition 1.

Proof of part (i). For a fixed u0 ∈ S
d−1 (Sd−1 being the unit sphere of R

d ), let Sn =
sup1≤i≤n(Ui · u0), where ‘·’ denotes the usual scalar product in R

d . There exists a c > 0 such
that, for every α ∈ (0, 2/(d + 1)), we have

P{Sn ≤ 1 − n−α} = O(exp(−cn1−(d+1)α/2)). (5)

Indeed, for a fixed α ∈ (0, 2/(d + 1)) we have

P{Sn ≤ 1 − n−α} =
(

1 − Vd({x ∈ B
d : x · u0 > 1 − n−α})

ωd

)n

, (6)

where Vd is the Lebesgue measure in R
d and, recall, ωd is the volume of the unit ball B

d . An
elementary computation yields

Vd({x ∈ B
d : x · u0 > 1 − n−α}) = ωd−1

∫ arccos(1−n−α)

0
sind(θ) dθ

∼ ωd−1

d + 1
2(d+1)/2n−α(d+1)/2, n → ∞. (7)

By combining (6) with (7), we recover (5).
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For a fixed α ∈ (0, 2/(d + 1)), we now consider a deterministic covering of the sphere S
d−1

by spherical caps of height n−α (i.e. of angular radius arccos(1 − n−α)), such that the total
number of caps is of order �(nα(d−1)/2). In addition, we suppose that every cap intersects at
most a fixed number, ς , of other caps. Note that the existence of such a covering can be proved
by induction on the dimension, d .

Indeed, let us suppose that, for every ε > 0, there exists a covering of S
d−1 by N

cap
d (ε)

spherical caps of angular radius ε. We can then construct a covering of the cylinder C =
S

d−1 × [−π/2, π/2] ⊆ R
d+1 as follows. For every integer k with |k| ≤ �π/ε�, we use the

induction hypothesis to choose N
cap
d (ε/2) caps, of radius ε/2 and respectively centred at ak

i ,
1 ≤ i ≤ N

cap
d (ε/2), on and fully covering the (d − 1)-dimensional sphere S

d−1 × {kε/2}. A
covering of the set C by (2�π/ε� + 1)N

cap
d (ε/2) balls is then obtained by considering the balls

of radius ε centred at the points a
j
i , 1 ≤ i ≤ N

cap
d (ε/2), −�π/ε� ≤ j ≤ π/ε�. (Here, �·� and

·� are the floor and ceiling functions, respectively.) To proceed, note that the mapping (u, θ) �→
(u sin θ + ed+1 cos θ), where ed+1 = (0, . . . , 0, 1) ∈ R

d+1, is a surjection from C onto the unit
sphere S

d ⊆ R
d+1 satisfying the Lipschitz condition with constant 1. This observation allows

us to transform the above covering of C into a covering of S
d by (2�π/ε� + 1)N

cap
d (ε/2) caps

of radius ε. By induction, it follows that S
d−1 can be covered with �(εd−1) spherical caps of

radius ε. Moreover, the proof above also shows that the covering thus constructed satisfies the
requirement that every cap intersects at most a fixed number, ς , of other caps.

Let Dn be the event that the set {U1, . . . , Un} intersects the interiors of all the caps in the
covering. Since the number of caps is polynomial in nα/2, and the probability that {U1, . . . , Un}
does not intersect one cap is bounded subexponentially by the estimate (5), we obtain

P(Dc
n) = O(exp(−cn1−(d+1)α/2)),

where c is a positive constant. In order to prove (4), it remains to note that there exists a positive
constant K such that the hyperplanes spanned by the facets of a polyhedron with a vertex in
each cap are at least a distance (1 − Kn−α) from the origin; thus

Dn ⊂ {Cn ⊃ B(1 − Kn−α)}.
Note that K can be taken to equal 4. Indeed, the interior of any circular cap of height 4n−α

contains at least one cap, of height n−α , of the initial covering (since the angular radius of
the larger cap, arccos(1 − 4n−α), is greater than the angular diameter of the smaller cap,
2 arccos(1 − n−α)). Being in Dn then implies that any cap of height 4n−α contains a point of
{U1, . . . , Un} in its interior and, consequently, that any facet of the convex hull of {U1, . . . , Un}
is at least a distance (1 − 4n−α) from the origin. This completes the argument.

Proof of part (ii). If we replace (1) by the equality

P{S̃t ≤ 1 − t−α} = exp(−tVd({x ∈ B
d : x · u0 > 1 − t−α})),

where S̃t = supx∈Xt
(x · u0), then the proof of Proposition 1 for the Poisson point process is

very similar to that for the binomial point process. We thus omit the details.

3. Proof of Theorem 1

An important obstacle in the study of the number of vertices of convex hulls of large samples
is that the addition of a new vertex may cause an arbitrarily large number of other vertices to be
lost. The idea underlying the proof of Theorem 1 is to circumvent this difficulty by providing
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an appropriate artificial modification of the number-of-vertices functional Nn that, while being
very similar to Nn, is better behaved, in that it satisfies a Lipschitz-type condition allowing
appropriate concentration-of-measure tools to be applied.

To proceed with this construction, we choose α ∈ (0, 2/(d+1)) and β ∈ (1−α(d+1)/2, 1)

and construct a functional N
α,β
n in the following way. By using the same type of covering as

in the proof of Proposition 1, we can cover the shell B
d \ B(1 − Kn−α) (with K as given in

Proposition 1) with a number, of order �(nα((d+1)/2−1)), of equal-sized spherical caps, each
of volume �(n−α(d+1)/2) and such that, from each point of B

d \ B(1 − Kn−α), only a fixed
number, ς , of caps are seen within B

d \B(1−Kn−α). For a sample, X, in B
d , within each of the

spherical caps, 
, constructed above we observe the subsample 
∩X and, if card(
∩X) > nβ

(in which case we say that 
 is overfull), we order the points of 
 ∩ X in some deterministic
way (e.g. by decreasing distance to the origin) and reject those whose rank order exceeds nβ.

We shall refer to this procedure as ‘overfull-rejection’. We also reject all the sample points
falling outside B

d \ B(1 − Kn−α). Note that a sample point of X can be rejected more than
once if it belongs to several different caps. Writing X̂ for the so-reduced sample, we define
the functional �

α,β
n (X) to be the number of vertices of the convex hull of X̂, conv(X̂). A

crucial observation is that the addition or removal (and, consequently, also the repositioning)
of a single sample point of X can change the value of �

α,β
n (X), by at most �(nβ). To see this,

note first that when adding a new point, x, we encounter the following four possibilities.

• x ∈ conv(X̂) and x does not fall into an overfull region; in this case the value of �
α,β
n

remains unchanged.

• x ∈ conv(X̂) but x falls into an overfull region. If x is rejected, �
α,β
n does not change;

otherwise, x causes overfull-rejection of another point and might itself become a new
vertex of the convex hull of the reduced sample, possibly causing some vertices of
conv(X̂) to be lost. Each of these changes results in �

α,β
n changing by at most �(nβ),

because at most �(nβ) points of the reduced sample can be seen from any given point
of B

d \ B(1 − Kn−α).

• x 	∈ conv(X̂) and x does not fall into an overfull region; in this case x becomes a new
vertex, causing at most �(nβ) vertices of X̂ to be lost.

• x 	∈ conv(X̂) and x does fall into an overfull region. If x itself is rejected, nothing
changes; otherwise, x becomes a new vertex, possibly causing overfull-rejection of
another vertex of conv(X̂) and possibly causing some vertices of conv(X̂) to be lost. As
above, each of these changes results in �

α,β
n changing by at most �(nβ), since at most

�(nβ) points of the reduced sample can be seen from any given point of B
d\B(1−Kn−α).

A similar argument shows that the removal of a sample point also results in an overall change
of �

α,β
n , by at most �(nβ).

To define N
α,β
n , we henceforth let

Nα,β
n := �α,β

n ({U1, . . . , Un}).

The proof of Theorem 1 is divided into three steps. Using Proposition 1, in Lemma 1 we show
that N

α,β
n is a good approximation of Nn. In Lemma 2 we then give some concentration

properties of the number of points of the sample {U1, . . . , Un} that fall into the annulus
B

d \ B(1 − Kn−α). In Lemma 3, which is the key result of our proof, we deduce from
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Lemma 2 and a classical concentration-of-measure result a large deviation property of N
α,β
n .

Theorem 1 is then easily concluded from Lemmas 1 and 3.

Lemma 1. There exists a positive constant, c, such that

P{Nn 	= Nα,β
n } ≤ O(exp(−cn1−α(d+1)/2)).

In particular,

| E(Nα,β
n ) − E(Nn)| ≤ n P{Nn 	= Nα,β

n } = O(exp(−cn1−α(d+1)/2)).

Proof. Let An and Bn be the events that, respectively, there is at least one extreme point of
{U1, . . . , Un} in B(1 − Kn−α) and there is at least one spherical cap containing more than nβ

points.
Using Proposition 1, we have

P(An) = O(exp(−cn1−α(d+1)/2)). (8)

Moreover, denoting by bin(n, p) a binomial variable with parameters n and p, we obtain

P(Bn) ≤ �n P{bin(n, vn) ≥ nβ}, (9)

where �n is the number of spherical caps and vn is the Lebesgue measure of a single cap divided
by ωd . Using the Legendre transform, we have

P{bin(n, vn) ≥ nβ} ≤ inf
t≥0

{e−tnβ

E(et bin(n,vn))}
= inf

t≥0
{exp(−tnβ + n log(et vn + 1 − vn))}

= exp

(
n log

(
(1 − vn)

nβ

n − nβ
+ 1 − vn

)

− nβ log

(
(v−1

n − 1)
nβ

n − nβ

))
,

where the last equality is obtained by setting t = log((v−1
n − 1)nβ/(n − nβ)).

Since vn = �(n−α(d+1)/2), it follows that

P{bin(n, vn) ≥ nβ} = O(e−cnβ

).

By combining (9) with the estimate �n = O(nα(d−1)/2), we deduce that

P(Bn) = O(e−cnβ

). (10)

Furthermore, from the definition of N
α,β
n it follows that

P{Nn 	= Nα,β
n } ≤ P(An) + P(Bn). (11)

Inserting the estimations (8) and (10) into (11) completes the proof of Lemma 1.

Let Mn be the number of Ui , 1 ≤ i ≤ n, contained in B
d \ B(1 − Kn−α); Mn then has

a binomial distribution with parameters n and wn, where wn = Vd(Bd \ B(1 − Kn−α))/ωd .
In the following lemma we collect some technical estimates for Mn needed for the proof of
Lemma 3.
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Lemma 2. With k−
n = �nwn − n1−2/(d+1)� and k+

n = nwn + n1−2/(d+1)�, we have

lim inf
n→∞

1

log(n)
log(− log P{Mn 	∈ [k−

n , k+
n ]}) ≥ 1 + α − 4

d + 1
, (12)

lim
n→∞ sup

k∈[k−
n ,k+

n ]

∣∣∣∣E(N
α,β
n | Mn = k)

E(N
α,β
n )

− 1

∣∣∣∣ = 0. (13)

Proof. To prove (12) we use Chebyshev’s inequality to obtain

P{Mn 	∈ [k−
n , k+

n ]} ≤ inf
u≥1

{u−k+
n (wnu + 1 − wn)

n} + inf
0<v<1

{v−k−
n (wnv + 1 − wn)

n}

≤
(

1 + n−2/(d+1)

wn

)−k+
n

(1 + n−2/(d+1))n

+
(

1 − n−2/(d+1)

wn

)−k−
n

(1 − n−2/(d+1))n,

where u := 1 + n−2/(d+1)/wn and v := 1 − n−2/(d+1)/wn. Taking logarithms of both sides
yields

− log P{Mn 	∈ [k−
n , k+

n ]}

≥ − log 2 − max

{
n log(1 + n−2/(d+1)) − k+

n log

(
1 + n−2/(d+1)

wn

)
,

n log(1 − n−2/(d+1)) − k−
n log

(
1 − n−2/(d+1)

wn

)}
.

Thus, applying the second-order Taylor expansion log(1 + x) = x − x2/2 + o(x2) yields

− log P{Mn 	∈ [k−
n , k+

n ]}
≥ − log 2

− max

{
n(n−2/(d+1) + O(n−4/(d+1)))

− [nwn + n1−2/(d+1)]
(

n−2/(d+1)

wn

− n−4/(d+1)

2w2
n

+ o

(
n−4/(d+1)

w2
n

))
,

n(−n−2/(d+1) + O(n−4/(d+1)))

− [nwn − n1−2/(d+1)]
(

−n−2/(d+1)

wn

− n−4/(d+1)

2w2
n

+ o

(
n−4/(d+1)

w2
n

))}

= n1−4/(d+1)

2wn

[1 + o(1)] + O(n1−4/(d+1)).

By using the estimate wn ∼ dKn−α as n → ∞, we obtain the asymptotic result (12), as
required.

To prove (13), for k ∈ N respectively denote by Ĉn
k and Nn,k the convex hull and the

number of extreme points of k points independently and identically uniformly distributed in
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B
d \B(1 −Kn−α). Conditional on {Mn = k}, when the convex hull Ĉn

k is strictly smaller than
Cn the latter does not contain B

d \ B(1 − Kn−α). Consequently, we have

0 ≤ E(Nn | Mn = k) − E(Nn,k) ≤ E(Nn1An | Mn = k) ≤ n P(An | Mn = k), (14)

where An = {Cn 	⊃ B(1 − Kn−α)} is the event defined at the beginning of the proof of
Lemma 1.

As in the proof of Proposition 1(i) (i.e. limn→∞ P{An} = 0), the covering of

B
d \ B(1 − Kn−α)

with �n spherical caps can be used to deduce that

P(An | Mn = k) ≤ �n

(
1 − Vd({x ∈ B

d \ B(1 − Kn−α) : x · u0 > 1 − n−α})
Vd(Bd \ B(1 − Kn−α))

)k−
n

,

u0 ∈ S
d−1.

Following the proof of Proposition 1(i) further, we combine this inequality with (14) to obtain

lim
n→∞ sup

k∈[k−
n ,k+

n ]
{E(Nn | Mn = k) − E(Nn,k)} = lim

n→∞ n sup
k∈[k−

n ,k+
n ]

P(An | Mn = k) = 0. (15)

Using Efron’s equality (Equation (3.7) of [6]) for Cn−1 and Ĉn
k−1, we then obtain

E(Nn)

E(Nn,k)
= n

k

(
1 − E(Vd(Cn−1))

ωd

)(
1 − E(Vd(Ĉn

k−1 \ B(1 − Kn−α)))

Vd(Bd \ B(1 − Kn−α))

)−1

. (16)

Upon combining (16) with (15), it follows that, uniformly in k ∈ [k−
n , k+

n ],
E(Nn)

E(Nn | Mn = k)
= n

k

(
1 − E(Vd(Cn−1))

ωd

)(
1 − E(Vd(Ĉn

k−1 \ B(1 − Kn−α)))

Vd(Bd \ B(1 − Kn−α))

)−1

+ o(1).

(17)
We claim that

E(Vd(Bd \ [Ĉn
k−1 ∪ B(1 − Kn−α)])) ∼ E(Vd(Bd \ Cn−1)), (18)

uniformly for k ∈ [k−
n , k+

n ]. Indeed, by using Proposition 1 and (12) we see that

E(Vd(Bd \ Cn−1)) = E(E(Vd(Bd \ [Ĉn
Mn−1 ∪ B(1 − Kn−α)]) | Mn)1{Mn∈[k−

n ,k+
n ]})(1 + o(1)).

Then, taking into account the fact that E(Vd(Bd \ [Ĉn
k−1 ∪ B(1 − Kn−α)])) decreases with k,

we conclude that

E(Vd(Bd \ [Ĉn

k+
n −1

∪ B(1 − Kn−α)]))(1 + o(1))

≤ E(Vd(Bd \ Cn−1))

≤ E(Vd(Bd \ [Ĉn

k−
n −1

∪ B(1 − Kn−α)]))(1 + o(1)). (19)

However, E(Vd(Bd \ [Ĉn
k−1 ∪ B(1 − Kn−α)])) decreases with n. For n′ > n this can be seen

by coupling the k − 1 independent, identically distributed points U1, . . . , Uk−1, which are
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uniform in B
d \ B(1 − Kn−α), to the points U ′

1, . . . , U
′
k−1 given by U ′

i := ϑ(|Ui |)Ui/|Ui |.
Here ϑ(·) ≡ ϑn,n′;α(·) is a function of the form ϑ(r) = c1(r

d + c2)
1/d , with c1 and c2 chosen

such that ϑ(1) = 1 and ϑ(1 − Kn−α) = 1 − Kn′−α. The random points U ′
i can readily be

verified to be independent and identically uniformly distributed in B
d \ B(1 − Kn′−α) and to

have the property that, for each i, U ′
i is almost surely closer to the boundary ∂B

d than is Ui.

By combining these observations with (19), and choosing m+
n and m−

n , m+
n > m−

n , such that
k+
n = k−

m+
n

and k−
n = k+

m−
n

, we see that

E(Vd(Bd \ Cm+
n −1))(1 + o(1)) ≤ E(Vd(Bd \ [Ĉn

k−1 ∪ B(1 − Kn−α)]))
≤ E(Vd(Bd \ Cm−

n −1))(1 + o(1)),

uniformly for k ∈ [k−
n , k+

n ]. Since m+
n ∼ m−

n , this yields (18) as an immediate consequence.
We rewrite (18) as

Vd(Bd \ B(1 − Kn−α)) − E(Vd(Ĉn
k−1 \ B(1 − Kn−α))) ∼ ωd − E(Vd(Cn−1)),

uniformly in k ∈ [k−
n , k+

n ]. Combining this relation with (17) yields

lim
n→∞ sup

k∈[k−
n ,k+

n ]

∣∣∣∣E(Nn | Mn = k)

E(Nn)
− 1

∣∣∣∣ = 0.

In order to deduce (13), it only remains to apply the method of Lemma 1, to obtain

sup
k−
n ≤k≤k+

n

| E(Nα,β
n | Mn = k) − E(Nn | Mn = k)| ≤ 2n sup

k−
n ≤k≤k+

n

P(An ∪ Bn | Mn = k)

= O(exp(−cn1−α(d+1)/2)).

This completes the proof of Lemma 2.

The next lemma, which is an essential step in obtaining Theorem 1, shows how the Lipschitz
property of the function �

α,β
n can be used to estimate large deviation probabilities for N

α,β
n .

Lemma 3. For each ε > 0,

lim inf
n→∞

1

log(n)
log

(
− log P

{∣∣∣∣ N
α,β
n

E(N
α,β
n )

− 1

∣∣∣∣ > ε

})
≥ 1 + α − 4

d + 1
− 2β.

Proof. Conditional on {Mn = k}, 0 ≤ k ≤ n, the variable N
α,β
n is distributed in the same

way as �
α,β
n (Y1, . . . , Yk), where Y1, . . . , Yk are independent, uniformly distributed variables

in B
d \ B(1 − Kn−α).

Taking into account our discussion of the properties of �
α,β
n at the beginning of this section,

�α,β
n : (Bd \ B(1 − Kn−α))k → N

is a Lipschitz function with constant cnβ , c > 0, for (Bd \ B(1 − Kn−α))k endowed with the
metric

ρk((x1, . . . , xk), (x
′
1, . . . , x

′
k)) := 1{x1 	=x′

1} + · · · + 1{xk 	=x′
k}.

Consequently, we are in a position to apply the following standard concentration-of-measure
result.
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Theorem 3. ([8, Corollary 1.17].) Let Y1, Y2, . . . , Yk be independent random variables taking
values in a metric space, (Y, ρ), of finite diameter D. Assume that � : Yk → R is Lipschitz
with respect to the L1-metric ρk((y1, . . . , yk), (y

′
1, . . . , y

′
k)) := ρ(y1, y

′
1) + · · · + ρ(yk, y

′
k),

with some Lipschitz constant L. Then, for every λ ≥ 0,

P{|�(Y1, . . . , Yk) − E(�(Y1, . . . , Yk))| > λ} ≤ 2 exp

(
− λ2

2kL2D2

)
.

By applying Theorem 3 to λ = ε E(N
α,β
n | Mn = k), for every k, 0 ≤ k ≤ n, we obtain

P

{∣∣∣∣ N
α,β
n

E(N
α,β
n )

− 1

∣∣∣∣ > ε

∣∣∣∣ Mn = k

}

≤ P{|Nα,β
n − E(Nα,β

n | Mn = k)| > ε E(Nα,β
n ) − | E(Nα,β

n | Mn = k) − E(Nα,β
n )|
| Mn = k}

≤ 2 exp

(
− [ε E(N

α,β
n ) − | E(N

α,β
n | Mn = k) − E(N

α,β
n )|]2

2c2kn2β

)
. (20)

By applying (13), we deduce from (20) that there exists a positive constant c such that

sup
k−
n ≤k≤k+

n

P

{∣∣∣∣ N
α,β
n

E(N
α,β
n )

− 1

∣∣∣∣ > ε

∣∣∣∣ Mn = k

}
≤ 2 exp

(
−c E(N

α,β
n )2

n1+2βwn

)
. (21)

By now combining (21) with Lemma 1, the estimate wn ∼ cn−α , and the classical result
E(Nn) ∼ cn1−2/(d+1) (see [11]), we obtain

lim inf
n→∞

1

log(n)
log

(
− log

(
sup

k−
n ≤k≤k+

n

P

{∣∣∣∣ N
α,β
n

E(N
α,β
n )

− 1

∣∣∣∣ > ε

∣∣∣∣ Mn = k

}))

≥ lim inf
n→∞

1

log(n)
log

(
− log

(
exp

(
−c

E(Nn)
2

n1+2β−α

)))

= 1 + α − 4

d + 1
− 2β. (22)

Furthermore, note that

P

{∣∣∣∣ N
α,β
n

E(N
α,β
n )

− 1

∣∣∣∣ > ε

}
≤

∑
k−
n ≤k≤k+

n

P

{∣∣∣∣ N
α,β
n

E(N
α,β
n )

− 1

∣∣∣∣ > ε

∣∣∣∣ Mn = k

}
P{Mn = k}

+ P{Mn 	∈ [k−
n , k+

n ]}. (23)

Inserting (12) and (22) into (23) completes the proof of Lemma 3.

We now complete the proof of Theorem 1. We have

P

{∣∣∣∣ Nn

E(Nn)
− 1

∣∣∣∣ > ε

}
≤ P

{∣∣∣∣ N
α,β
n

E(N
α,β
n )

− 1

∣∣∣∣ > ε
E(Nn)

E(N
α,β
n )

−
∣∣∣∣ E(Nn)

E(N
α,β
n )

− 1

∣∣∣∣
}

+ P{Nn 	= Nα,β
n }.
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From Lemmas 1 and 3 we find that, for every α ∈ (0, 2/(d + 1)) and β ∈ (1 −α(d + 1)/2, 1),

lim inf
n→∞

1

log(n)
log

(
− log

(
sup

k−
n ≤k≤k+

n

P

{∣∣∣∣ Nn

E(Nn)
− 1

∣∣∣∣ > ε

}))

≥ min

(
1 − α

d + 1

2
, 1 + α − 4

d + 1
− 2β

)
.

It then remains to verify that

sup
α∈(0,2/(d+1))

β∈(1−α(d+1)/2,1)

min

(
1 − α

d + 1

2
, 1 + α − 4

d + 1
− 2β

)
= d − 1

3d + 5
,

the details of which we omit.

4. Proof of Theorem 2

Here the method of proof is similar to that in the binomial case. For some α ∈ (0, 2/(d + 1))

and β ∈ (1 − α(d + 1)/2, 1), we consider a covering of the annulus B
d \ B(1 − Kn−α) by

spherical caps (provided by part (ii) of Proposition 1). In full analogy with the definition of
N

α,β
n , we define a modification, Ñ

α,β
t , of Ñt by letting Ñ

α,β
t := �

α,β
t (Xt ); thus, Ñ

α,β
t is the

number of vertices of the convex hull of an appropriate subset of the intersection of the Poisson
point process Xt with B

d \ B(1 − Kt−α). This convex hull has the property that each cap
contains at most tβ points. Much along the same lines as in the proof of Lemma 1, we obtain

P{Ñα,β
t 	= Ñt } = O(exp(−ct1−α(d+1)/2)) (24)

and
| E(Ñ

α,β
t ) − E(Ñt )| = O(exp(−ct1−α(d+1)/2)). (25)

Moreover, let M̃t be the number of points of Xt ∩[B(1−Kt−α)]c; M̃t is then Poisson-distributed
with mean

E(M̃t ) = tVd(Bd \ B(1 − Kt−α)) ∼ dKωdt1−α, t → ∞.

As for Mn in the proof of Lemma 3, M̃t satisfies a large deviation inequality. In fact, with
k−
t = �E(M̃t ) − t1−2/(d+1)� and k+

t = E(M̃t ) + t1−2/(d+1)�, as in (12) we obtain

lim inf
t→∞

1

log(t)
log(− log P{M̃t 	∈ [k−

t , k+
t ]}) ≥ 1 + α − 4

d + 1
. (26)

Furthermore, we have

P

{∣∣∣∣ Ñ
α,β
t

E(Ñ
α,β
t )

− 1

∣∣∣∣ > ε

}
≤

∑
k−
t ≤k≤k+

t

P

{∣∣∣∣ Ñ
α,β
t

E(Ñ
α,β
t )

− 1

∣∣∣∣ > ε

∣∣∣∣ M̃t = k

}
P{M̃t = k}

+ P{M̃t 	∈ [k−
t , k+

t ]}.
The first term can be bounded in the same way as the corresponding one in (23) and the second
term can be estimated using (26). Consequently, the large deviation result is proved for Ñ

α,β
t ,

and it suffices to use (24) and (25) to do the same for Ñt .
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5. Concluding remarks

Remark 1. Our results remain valid if we add to the random sample in the ball a fixed number
of deterministic points. Indeed, the whole argument above can be repeated for such a case with
only minor changes.

Remark 2. Since the asymptotic behaviour of the convex hull only depends on the geometry of
the sample very close to the boundary of B

d , the results of Proposition 1 and Theorem 2 can be
extended to the class of inhomogeneous Poisson point processes Yt with intensity measures of
the form t dµ, where (in spherical coordinates) µ is the measure f (r)1[0,1](r) dr dσd(u), dσd

being the area measure on the sphere S
d−1 and f a continuous function satisfying f (1) = 1.

Indeed, in a vicinity of S
d−1, the intensity measure is close to a multiple of the Lebesgue

measure and our argument can again be repeated for this case.

Remark 3. The question of the extension of our results to a general convex set is still open. The
method does not apply when the ball is replaced by a polyhedron, since the mean number of ex-
treme points becomes of order log(n), which is too small for the rates obtained by concentration-
of-measure techniques to absorb the polynomial prefactors arising due to deterministic surface
partitions, as considered in our proofs.
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