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ABSTRACT: Altered chromatin conformation and increased amounts of aluminum have been observed in the brains 
of patients with Alzheimer disease. These factors have been shown to affect gene regulation. In this report, we describe 
how these changes may selectively alter the pool size of the human light chain neurofilament gene and play a funda­
mental role in the expression of this disease. 

RESUME: Expression genique anormale dans la maladie d'Alzheimer : cause ou effet? Une conformation alteree 
de la chromatine et une augmentation de la quantite d'aluminium ont ete observees dans le cerveau de patients atteints 
de la maladie d'Alzheimer. II a ete demontre que ces facteurs affectent la regulation genique. Dans cet article, nous 
decrivons comment ces changements peuvent modifier selectivement la taille du pool du gene humain codant la chaine 
legere du neurofilament et jouer un role fondament dans l'expression de cette maladie. 
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The Neuropathology of Alzheimer Disease 

Despite world-wide research efforts, Alzheimer disease (AD) 
remains a major health problem of the elderly and no treatment 
or prevention for it has been devised. However, considerable 
progress has been made in characterizing the brain tissue 
changes associated with the disease. 

Two histopathological hallmarks of AD have been inten­
sively investigated: amyloid in "senile" plaques, and neurofibril­
lary tangles. The purification and sequencing of amyloid, a pro­
tein which is found in the cores of senile plaques, was achieved 
by Glenner and Wong,1 and the sequence for the gene coding for 
the amyloid precursor protein (APP) was reported by Kang 
et al.2 APP is a glycoprotein which spans the plasma membrane; 
it has been identified in a variety of different animal species and 
cell lines. Alternate forms of APP exist (for example, APP751 
contains a sequence homologous to the Kunitz serine protease 
inhibitor) but the significance of this heterogeneity is not 
known. Recent evidence suggests that normally APP is cleaved 
within the amyloid portion of the peptide by APP secretase. 
Esch et al.3 speculate that amyloid formation in AD results from 
down-regulation of this enzyme. An alternate hypothesis is that 
deposits of silicon and aluminum identified in the cores of the 
senile plaques4 somehow "seed" amyloid deposition.5 Studies 
with antibodies to native amyloid suggest that nonfilamentous 
"preamyloid" deposits precede the appearance of the senile 
plaques.6 

The mechanisms responsible for the assembly of the neu­
rofibrillary tangles (NFT) are not as well understood. Wischik 

et al.7 have postulated that the formation of a polymer from a 
fragment with microtubule binding sites of the microtubule 
associated protein tau, and another not-yet-identified protein, is 
the first step in NFT formation. Abnormally phosphorylated tau 
and ubiquitin, a molecule that tags proteins for intracellular 
degradation, have been identified in NFT.8 Abnormal phospho­
rylation is thought to be one of the earliest events in neurofibril­
lary pathology and to precede the ubiquitination. Tau is normal­
ly found in axons; the abnormal presence of tau in nerve cell 
bodies and in dystrophic neurites in AD may be the result of 
aberrant transport from the ribosomal to the axonal compart­
ments.9 High concentrations of aluminum have also been found 
in NFT using two different analytical methods,10-11 but the rela­
tionship of aluminum accumulation to other histopathological 
features is not known. 

Unfortunately, intensive investigation of the pathological 
changes in AD has not revealed the cause of the disease. Indeed, 
the neuropathological changes may not be closely linked to the 
cause and alternate investigative approaches are therefore justi­
fied. 

Our group has been studying gene expression in AD by ana­
lyzing chromatin structure, and quantitatively determining the 
pool sizes of various messenger RNAs. Our observations indi­
cate that change in chromatin structure and the down-regulation 
of at least one neuron-specific gene, are associated with the Alz­
heimer process. In this paper, we summarize our data to date, 
and comment on the relevance of these findings. 
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Evidence for Altered Chromatin Structure in AD 

The particular alterations in chromatin structure found in AD 
do not occur in 12 other neurodegenerative diseases; these are 
listed below. Our observations have been based upon analysis of 
85 AD-affected, 60 healthy, 49 non-AD dementia-associated 
human brains, and scrapie-induced changes in mouse brain.12"14 

1) Nuclear contents derived from AD-affected neocortex have 
an increased resistance to shearing by sonication. In neocorti-
cal gray matter from control individuals, 25% of the DNA is 
in a heavy heterochromatized fraction compared to 54% in 
AD-affected neocortex.15 

2) DNA from AD-affected neocortex is less susceptible to 
digestion with several nucleases (micrococcal nuclease 
(MN), Aval or DNase I). This is reflected by a reduced yield 
of mononucleosomes in comparison with dinucleosomes and 
larger oligomers.15 

3) Compared to control preparations, MN-released dinucleo­
somes from AD-affected neocortex exhibit 3 important dif­
ferences: (i) There is an increase in the proportion of linker 
histone Hl° (the HT/H4 ratio is increased by 210%);1316 (ii) 
They contain a group of non-histone proteins of about 41 
kDa;15 and, (iii) The aluminum/DNA ratio is increased 5 to 
9-fold [unpublished]. 

4) We have demonstrated an alteration in linker histone-DNA 
binding in AD and in the presence of aluminum salts in 
vitro.I7'18 

5) The H1 °-associated dinucleosomes are enriched in the gene 
for the low molecular weight neurofilament, HNF-L.19 This 
was shown by lightly digesting nuclei from neocortex with 
MN, separating the mononucleosomes from the di-/tri-nucle-
osome and polysome fractions, and measuring the hybridiza­
tion signal in each with the HNF-L promoter region (which 
includes sequences involved in the binding of RNA poly­
merase II and other regulatory components of gene transcrip­
tion) as a probe, using Southern blot analysis.15 In control 
preparations, 46.1% of the total hybridizable signal was asso­
ciated with the mononucleosome fraction and 7.7% with the 
di- and tri-nucleosome fraction. In AD preparations, only 7% 
of the total hybridizable signal was in the mononucleosome 
fraction, while the di- and tri-nucleosome fraction contained 
37.8% of the total signal. In contrast, 94% of the total signal 
was associated with the polysome fraction when a probe for 
7-crystallin (a single copy gene not expressed in brain) was 
employed. Similar results were obtained using the endonu-
clease Aval in place of MN.15 Using probes for different 
regions of the HNF-L gene, we have now shown that at least 
3.5 kb of the HNF-L gene is predominantly associated with 
the Hl° enriched, di-/trinucleosome (i.e., heterochromatized) 
fraction in AD. Studies by others have shown that mononu­
cleosomes released by light MN digestion contain chromatin 
in transcriptionally competent conformation. Our finding of a 
5-fold reduction in the amount of DNA containing the pro­
moter region of the HNF-L gene in a mononucleosome frac­
tion and a corresponding increase in the dinucleosome frac­
tion enriched in Hl° in AD-affected superior temporal 
cortex, suggests that changes in neuronal chromatin confor­
mation occur in AD that affect at least one functionally 
important gene, HNF-L. If the hybridizable HNF-L signal in 
the mononucleosome and di-/tri-nucleosome fractions is 

derived from neurons, and the mononucleosomes and di-/tri-
nucleosomes contain chromatin domains that are transcrip­
tionally active and inactive, respectively, then one interpreta­
tion for our data is that about 15% (i.e., 7/7+37.8 x 100) of 
neuronal DNA is transcriptionally active in AD. 
There is evidence that during normal development, the linker 

histone protein Hl° specifically shuts off the transcription of 
certain genes, although the molecular process that is involved is 
unknown.20"22 We have recently addressed the critical question 
of whether the HNF-L promoter region is actually bound to H1 ° 
in AD brain. We prepared an antibody to avian H5; in Western 
blots this reacted only with human HI0. This was coupled to 
Sepharose and used to isolate Hl° containing nucleosomes. 
Based upon the average of 4 AD preparations, H1 ° containing 
mono- and di-nucleosomes contained 1.75 times more HNF-L 
promoter sequence per unit of DNA than preparations from 4 
non-AD age and agonal process related control brains. In con­
trast, the ratio for human prion (Pr22) was 1.08, and that for cal-
bindin-27D (CaBP27) was 0.99 [unpublished]. 

Messenger RNA Pool Size 

The inability of both MN (a small protein of 17kDa) and Ava 
I (a larger protein of 78kDa) to access the HNF-L locus in AD 
brain raises the possibility that access by the large multi-subunit 
complex of RNA polymerase II (about 500kDa) to DNA 
sequences important in the initiation of transcription might be 
impaired in AD. This hypothesis predicts that there should be a 
disorder in transcription in AD and, in keeping with our preced­
ing observation, a reduced mRNA pool size for HNF-L. 

Accordingly, we have measured the relative abundances of 
mRNAs coding for several proteins by quantitative dot-blot 
analysis. The results are summarized in Table 1. Importantly, the 
mRNA pool size of HNF-L in AD is reduced to about 27% of 
that for age-matched, non-AD neocortex (control preparations). 
The reduction is considerably greater than can be accounted for 
by neuron loss alone. In contrast, there was no reduction for 
prion mRNA which is expressed predominantly in neurons,23 or 
in certain other mRNAs (p-actin, calbindin-27, tau and gap 43). 

Table 1. Relative amounts of specific messenger RNA in temporal 
neocortex of patients with Alzheimer disease compared to individu­
als with non-Alzheimer dementia determined by quantitative dot-
blot analysis. Analysis of Variance (ANOVA) = P value. 

Percent Ratio P value n: AD/C 
AD/C 

HNF-L 27 0.0001 10/12 
calpain I 67 0.02 6/ 8 
=<-tubulin 58 0.01 10/12 
P-actin 108 n.s. 10/12 
calbindin 100 n.s. 5/ 3 
tau 89 n.s. 10/9 

Post mortem tissue from the temporal neocortex was obtained from sub­
jects with Alzheimer disease (AD) and non-AD dementia (C) matched 
for age, agonal duration and post mortem interval. Total RNA was 
extracted anJ the mean value of specific messenger RNAs in the tissue 
was determined for each group using quantitative dot blot analysis.200 
ul aliquots containing 1.0, 2.5 and 3.5 ug of total RNA were spotted 
and dried on 0.2 um Biotrans membrane in a BRL Hybridot manifold, 
and hybridized with specific probes as described by McLachlan et al.14 
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A reduction in mRNA coding for HNF-L in AD also has been 
reported by other laboratories.2425 

We have also demonstrated a statistically significant selec­
tive reduction of HNF-L in AD compared to age, agonal-status, 
and post-mortem interval matched controls in single neurons in 
the CA1 and CA2 regions of the hippocampus26 and in pyramidal 
neurons of layers III and V of the temporal cortex27 by in situ 
hybridization. Although an AD-associated reduction of polyso-
mal mRNA translation has been described,28 we have obtained 
no evidence to suggest that the reduction in HNF-L mRNA pool 
size is due to either a general,29 or selective increase26-30 in the 
degradation of mRNA. 

A frequency distribution of the amount of HNF-L message 
per square micron in layer V of the mid-temporal gyrus in AD 
and control brains is given in Figure 1. These data suggest that 
all of the neurons in this brain region are affected. If they were 
not, the frequency distribution in AD should be biphasic and a 
small percentage of neurons should exhibit control mRNA pool 
sizes. Any model which might explain our findings in AD must 
account for this observation. 

It has been suggested that alterations in gene expression in 
AD may reflect an attempt by neurons to regenerate. This is not 
supported by the data in Table 1. The pattern of mRNA pool 
sizes observed in AD for the cytoskeletal genes is distinctly 
different from that seen during axotomy or during differentia­
tion.38-39 The mRNA pool size for HNF-L is reduced in AD, and 
that for actin, tau and Gap 43 is not different from controls. Our 
chromatin and mRNA studies collectively support the idea that 
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Figure 1 — Frequency distribution of the amount of HNF-L messenger 
RNA per square micron in pyramidal neurons of the middle tem­
poral gyrus of Alzheimer patients and control individuals. 

HNF-L mRNA was revealed in individual neurons by tissue in situ 
hybridization with a tritium-labelled probe as described by Somerville 
et a/.26 The number of grains corresponding to HNF-L message in each 
neuron, and the area of each was determined using quantitative image 
analysis. Sections from 4 pairs of Alzheimer patients and control indi­
viduals (in this case Huntington disease patients with clinical dementia) 
matched for age (range 60-65 years), agonal process, and post mortem 
interval (range 2-10 hours) were examined. One hundred cells were 
examined in each group. The frequency distributions of the grain count 
(with background subtracted) per square micron for individual neurons 
for each group are shown. 

HNF-L is a prime target in AD and that normal gene regulation 
for at least this one neuron-specific gene is aberrant. 

We speculate that the down-regulation of HNF-L could lead 
to the generation of neurofibrillary tangles in the following way. 
Tau, a protein which facilitates microtubule assembly and is 
thought to cross-link microtubules to HNF-L,31 does not exhibit 
a reduction in mRNA pool size.32 Moreover, it is one of the core 
proteins found in the paired helical filaments of NFT. Perhaps 
the assembly of tau into insoluble paired helical filaments is a 
compensatory response to a disorder in gene expression which 
fails to reduce tau transcription in tandem with HNF-L. 

We question whether such neurofibrillary degeneration is 
causally related to disturbances in the information processing 
function of neurons. Young Chamorro adults on Guam who die 
of non-neurological disorders, may have extensive brain neu­
rofibrillary degeneration, but no neurological signs or symp­
toms. 

Regardless of the functional significance of NFT, the 
decrease in mRNA pool size for HNF-L may be responsible, at 
least in part, for the consistent finding that dendrites and neuron 
cell bodies are smaller in AD-affected than control brains,since 
neurofilaments are structural elements which contribute to neu-
rite volume. However, we have found no significant correlation 
between cell size and HNF-L mRNA amount in our in situ 
hybridization studies.26-27 It may also underlie the intriguing 
observation that in layer II pyramidal neurons of the parahip-
pocampal gyrus, the apical dendrites in AD are considerably 
shorter in length than in age-matched controls and do not show 
the lengthening with age seen in healthy control brains.33 The 
latter observations suggest that surviving neurons in AD are 
unable to undergo neurite extension to expand dendritic fields in 
response to neuron loss. 

A Unifying Model for Altered Gene Expression in AD 

Our data strongly suggest that the linker histone, Hl°, is inti­
mately involved in the regulation of HNF-L transcription, but 
the mechanism for repression is not known. Among the possibil­
ities are: 
1) Post-translational modifications of Hl° increase its probability 

of binding to DNA. 
2) An altered concentration of a trans-acting factor such as a 

non-histone DNA binding protein somehow signals the 
anomalous docking of Hl° to a specific gene sequence.34 

3) A DNA concensus sequence in some genes is recognized by an 
Hl° sub-species.35 We have identified a consensus sequence 
in the promoter region of HNF-L. 

4) In vitro and in vivo effects of aluminum on chromatin confor­
mation are well-documented.17-36 Further, aluminum reduces 
NF-L pool size in rabbit spinal cord.37 An abnormal alu­
minum ion concentration may stabilize linker histone HI0 

binding to the NF-L locus in particular. (Perhaps replacement 
of magnesium by aluminum at critical sites in euchromatin, 
results in the formation of a coordination complex between 
aluminum, asp 98 and glu 99 of Hl° , and DNA. Because alu­
minum has a higher charge and smaller ionic radius than 
magnesium, aluminum binding at such a site would be 
expected to increase the relaxation time, but not necessarily 
prevent complete transcription.) We postulate that in normal 
chromatin, the HNF-L gene promoter oscillates between a 
condensed HI "-associated non-transcribable form, and an 
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open transcribable form that is Hl°-free. In AD, the former 
state is more probable and would result in reduced produc­
tion of HNF-L mRNA. Such a mechanism would account for 
our finding that by in situ hybridization analysis, all neurons 
in AD-affected cortex are down-regulated, but that with 
micrococcal nuclease digestion, approximately 15% of DNA 
is in a conformationally active state. 

Are the Changes in Gene Expression a Cause or an Effect in 
AD? 

While the aluminum or other models may explain how gene-
specific reduced expression may occur in AD, these shed no 
light on whether reduced transcription is a cause or an effect. At 
present it is difficult to address this dilemma directly. Our work 
with changes in chromatin structure and quantitation of mRNA 
pool sizes has been made for the most part, on AD-affected cor­
tex, and it may not be legitimate to assume that changes are sim­
ilar in all affected areas. Although we have argued that our 
observed mRNA changes do not appear to be secondary to a 
model analogous to axotomy,38'39 or to a repair response with 
neurite extension,40 our analyses have not been comprehensive, 
and were not applied to single cells in all cases. We also cannot 
exclude the possibility that the changes we have observed are a 
response to a particular type of stress, or related to loss of a 
putative growth factor from target neurons. Nevertheless, our 
data do not contradict the hypothesis that the primary etiological 
event in AD operates at the level of gene transcription. Because 
of increasing evidence that increased aluminum exposure might 
be a significant risk factor for AD, in our opinion, elucidation of 
the mechanism for down-regulation of neuron-specific genes in 
Alzheimer disease, and the possible connection with aluminum, 
are exciting avenues that must be further explored. 
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