ON REDUCIBILITY OF ULTRAMETRIC ALMOST PERIODIC LINEAR REPRESENTATIONS

by BERTIN DIARRA

(Received 28 June, 1993)

Abstract. Let G be a group and K be a complete ultrametric valued field. Let AP(G, K) be the algebra of the generalized almost periodic functions of G in K. We have shown in a previous paper that when AP(G, K) has an invariant mean, then any almost periodic linear representation is quasi-reducible. Here, we show that with the same hypothesis, any topologically irreducible almost periodic linear representation is finite dimensional; also, any almost periodic linear representations. Furthermore, we obtain a Peter-Weyl theorem for the algebra AP(G, K).

We use the technical tools of Hopf algebra theory.

I. Notations and definitions.

I.1. Almost periodic functions; almost periodic linear representations. Let G be a group and K be a complete ultrametric valued field. The Banach algebra of bounded functions $f: G \to K$ with the supremum norm $||f|| = \sup_{s \in G} |f(s)|$ is denoted by $\mathscr{B}(G, K)$. If

 $f \in \mathcal{B}(G, K)$ we write $\gamma_s f(t) = f(s^{-1}t)$, $\delta_s f(t) = f(ts)$ and $\eta(f)(s) = f(s^{-1})$ the left (resp. right) translation operator and the inversion operator.

Let us recall the extension of the notion of almost periodic functions given by Schikhof [8], [9]. A function $f \in \mathcal{B}(G, K)$ is called *almost periodic* if the set $\Gamma_f = \{\gamma_s f, s \in G\}$ is a *compactoid* of $\mathcal{B}(G, K)$: that is for $\varepsilon > 0$, there exist f_1, \ldots, f_n in $\mathcal{B}(G, K)$ and if $s \in G$, there exist $\lambda_1, \ldots, \lambda_n \in K$, $|\lambda_j| \le 1$, such that $\left\| \gamma_s f - \sum_{j=1}^n \lambda_j f_j \right\| < \varepsilon$. The space AP(G, K) of almost periodic functions is a closed subalgebra of $\mathcal{B}(G, K)$ and is invariant with respect to the left (right) translation and the inversion.

If E and F are ultrametric Banach spaces over K, we denote by $E \otimes F$ the complete tensor product; that is the completion of $E \otimes F$ with respect to the norm ||z|| = $\prod_{z=\sum x_j \otimes y_j} \left(\max_j ||x_j|| ||y_j|| \right)$. In the sequel, all Banach spaces are ultrametric.

One defines as above, the space AP(G, E) of almost periodic functions of G with values in the Banach space E. Furthermore, $AP(G, K) \otimes E$ is isometrically isomorphic to AP(G, E) via the linear map \prod_E defined by $\prod_E (f \otimes x)(s) = f(s) \cdot x$ (cf. [3]).

We say that a linear representation $U: G \to \mathcal{L}(E)$ is almost periodic if

(i) $\sup_{s\in G} \|U_s\| < +\infty$,

(ii) for any $x \in E$, the function $T_x: G \to E$ defined by $T_x(s) = U_s(x)$ is almost periodic.

1.2. Complete Hopf algebras: Banach comodules. Let (H, m, c, η, σ) be a complete ultrametric Hopf algebra over K, e the unit of H and k the canonical map of K in H. In other words, H is a Banach algebra with multiplication $m: H \otimes H \to H$; coproduct

Glasgow Math. J. 37 (1995) 83-98.

 $c: H \otimes H \to H$ a continuous algebra homomorphism; inversion or antipode $\eta: H \to H$ a continuous linear map and the counit $\sigma: H \to K$ a continuous algebra homomorphism. The coassociativity and counitary axioms hold, and $m \circ (1_H \otimes \eta) \circ c = k \circ \sigma = m \circ (\eta \otimes 1_H) \circ c$.

One sees that η is an anti-endomorphism of the algebra (resp. coalgebra) H.

EXAMPLE. The algebra AP(G, K) is a complete Hopf algebra with coproduct c such that $\Pi \circ c(f)$ (s, t) = f(st); inversion η defined by $\eta(f)$ $(s) = f(s^{-1})$ and counit σ defined by $\sigma(f) = f(e)$, where e is the neutral element of G. In fact, AP(G, K) is a complete dual Hopf algebra (cf. [2]). \Box

Let H' be the Banach space dual of H; if we set for μ , $\nu \in H'$, $\mu * \nu = (\mu \otimes \nu) \circ c$, then H' becomes a complete normed algebra with unit σ .

A Banach space E is said a *left Banach H-comodule* if there exists a continuous linear map $\Delta: E \to H \hat{\otimes} E$, called a coproduct, such that $(c \otimes 1_E) \circ \Delta = (1_H \otimes \Delta) \circ \Delta$ and $(\sigma \otimes 1_E) \circ \Delta = 1_E$. A closed linear subspace M of E is a Banach subcomodule if $\Delta(M) \subset H \hat{\otimes} M$. Notice that $||x|| \le ||\Delta(x)|| \le ||\Delta|| ||x||$, $x \in E$.

EXAMPLE. Let E be a left Banach AP(G, K)-comodule of coproduct Δ . If we set $\varepsilon_s(f) = f(s)$ the evaluation map at $s \in G$, then $U_s^{\Delta} = (\varepsilon_{s^{-1}} \otimes 1_E) \circ \Delta$ defines an almost periodic (a.p.) linear representation of G in E. Conversely, let $U: G \to \mathcal{L}(E)$ be an a.p. linear representation. If d_U denotes the linear map of E in AP(G, E) defined by $d_U(x)(s) = U_{s^{-1}}(x)$, then $\Delta_U = \prod_E^{-1} \circ d_U$ is a coproduct of E and E is a left Banach AP(G, K)-comodule. These correspondences are reciprocical (cf. [3]). \Box

If E is a left Banach H-comodule, and we set $\mu \cdot x = (\mu \otimes 1_E) \circ \Delta(x)$, for $\mu \in H'$, $x \in E$, one induces on E a complete normed right H'-module structure.

Let us recall that a Banach space V over K is *pseudo-reflexive* if the canonical map of V into its bidual space V'' is isometric. It is well known that any linear subspace of a pseudo-reflexive space is pseudo-reflexive.

Also, any Banach space which is a dual space is pseudo-reflexive. It follows that $\mathcal{B}(G, K)$, AP(G, K) and its linear subspaces are pseudo-reflexive. Furthermore let D be a finite dimensional subspace of the pseudo-reflexive space V and $0 < \alpha < 1$; then for every $d' \in D'$ there exists $v' \in V'$ such that $v'_{|D} = d'$ and $||v'|| \le \frac{1}{\alpha} ||d'||$ (cf. [5] or [7]).

THEOREM 1. Let H be a complete ultrametric Hopf algebra that is a pseudo-reflexive Banach space and let E be a left Banach H-comodule of coproduct Δ .

(i) A closed linear subspace M of E is a left Banach H-subcomodule of E if and only if M is a complete right H'-submodule of E.

(ii) Let $x \in E$; the closure M_x of $H' \cdot x$ in E is a Banach H-subcomodule of E that contains x and is a Banach space of countable type.

Proof. (i) If M is a left Banach subcomodule of E, then for $x \in M$, $\Delta(x) \in H \otimes M$, and if $\mu \in H'$, then $\mu \cdot x = (\mu \otimes 1_E) \circ \Delta(x) \in K \otimes M = M$.

On the other hand, if M is a complete right H'-submodule of E, then $\mu \cdot x =$

 $(\mu \otimes 1_E) \circ \Delta(x) \in M$ for all $\mu \in H'$ and $x \in M$. Since $\Delta(x) \in H \otimes E$, we can write $\Delta(x) = \sum_{j \ge 1} a_j \otimes x_j$ where $(a_j)_{j \ge 1}$ is an α -orthogonal set of H, $(x_j)_{j \ge 1} \subset E$ and $\alpha \sup_{j \ge 1} ||a_j|| ||x_j|| \le ||\Delta(x)|| \le \sup_{j \ge 1} ||a_j|| ||x_j||$. Hence $\mu \cdot x = \sum_{j \ge 1} \langle \mu, a_j \rangle x_j \in M$ for all $\mu \in H'$.

Let ℓ be an integer ≥ 1 ; for $n \geq l+1$ the subspace of H of dimension n, $H_n = \bigoplus_{j=1}^{m} Ka_j$ contains a_{ℓ} . Let $a'_{n\ell}$ be the linear form on H_n defined by $\langle a'_{n\ell}, a_j \rangle = \delta_{\ell j}, \ 1 \leq j \leq n$; then $\frac{1}{\|a_{\ell}\|} \leq \|a'_{n\ell}\| \leq \frac{1}{\alpha \|a_{\ell}\|}$. Since H is a pseudo-reflexive Banach space, there exists $\mu_{n\ell} \in H'$ such that the restriction of $\mu_{n\ell}$ to H_n is $a'_{n\ell}$ and $\|\mu_{n\ell}\| \leq \frac{1}{\alpha} \|a'_{n\ell}\| \leq \frac{1}{\alpha^2} \frac{1}{\|a_{\ell}\|}$. Therefore, for every $n \geq \ell + 1$, $\mu_{n\ell} \cdot x = \sum_{j \geq 1} \langle \mu_{n\ell}, a_j \rangle x_j = x_{\ell} + \sum_{j \geq n+1} \langle \mu_{n\ell}, a_j \rangle x_j \in M$. However

$$\left\|\sum_{j\geq n+1} \langle \mu_{n\ell}, a_j \rangle x_j \right\| \le \sup_{j\geq n+1} \|\mu_{n\ell}\| \|a_j\| \|x_j\| \le \frac{1}{\alpha^2} \frac{1}{\|a_\ell\|} \sup_{j\geq n+1} \|a_j\| \|x_j\|$$

and $\lim_{n \to +\infty} \sup_{j \ge n+1} ||a_j|| ||x_j|| = 0$. It follows that $x_\ell = \lim_{n \to +\infty} \mu_{n\ell} \cdot x \in M$ and $\Delta(x) = \sum_{l \ge 1} a_\ell \otimes x_\ell$ $\in H \otimes M$. That is M is a Banach subcomodule of E.

(ii) Let $x \in E$; it is clear that $H' \cdot x$ contains x, furthermore $\mu \cdot (v \cdot x) = (v * \mu) \cdot x \in$ $H' \cdot x$ for all μ , $v \in H'$; hence the closure $\overline{H' \cdot x} = M_x$ is a complete right H'-submodule of E.

With the same notations as in (i) we have $\Delta(x) = \sum_{j \ge 1} a_j \otimes x_j$. Let $E_0 = E[x_1, \ldots, x_j, \ldots]$ be the closed linear subspace of E spanned by $(x_j)_{j\ge 1}$. First, it is clear that E_0 is a Banach space of countable type. On the other hand, if $\mu \in H'$, we have $\mu \cdot x = \sum_{j\ge 1} \langle \mu, a_j \rangle x_j \in E_0$; hence $H' \cdot x \subset E_0$ and $M_x = H' \cdot x \subset E_0$.

Since M_x is a closed right H'-submodule of E, we deduce from (i) that M_x is a left Banach H-subcomodule of E and that $x_j \in M_x$, $j \ge 1$. Hence $M_x = E_0$ is a Banach space of countable type.

NOTE. The theorem, applied to an a.p. linear representation U of G in E, shows that if $x \in E$, the closed linear subspace of E spanned by $C_x = \{U_s(x), s \in G\}$ is of countable type. As observed in [3], this also follows from the fact that C_x is a compactoid of E.

II. Banach comodule morphisms.

II.1. Definition. Let *E* and *F* be two left Banach *H*-comodules of coproducts Δ_E and Δ_F respectively. A continuous linear map $u: E \to F$ is a *Banach comodule morphism* if $\Delta_F \circ u = (1_H \otimes u) \circ \Delta_E$.

LEMMA 1. Let $u: E \rightarrow F$ be a Banach comodule morphism.

(i) If V is a Banach subcomodule of F, then $u^{-1}(V)$ is a Banach subcomodule of E.

(ii) The closure u(E) of u(E) is a Banach subcomodule of F.

Proof. (i) Indeed, for $x \in u^{-1}(V)$, $\Delta_E(x) = \sum_{j \ge 1} a_j \otimes x_j$ where $(a_j)_{j \ge 1}$ is an α -orthogonal set of H and $(x_j)_{j \ge 1} \subset E$. Since $\Delta_F(V) \subset H \otimes V$ and $u(x) \in V$, we have $\Delta_F(u(x)) = \sum_{\ell \ge 1} b_\ell \otimes y_\ell$, where $(b_\ell)_{\ell \ge 1} \subset H$ and $(y_\ell)_{l \ge 1} \subset V$. Let $H_0 = E[a_1, \ldots, a_j, \ldots; b_1, \ldots, b_\ell, \ldots]$ be the closed subspace of H spanned by $\{a_j, j \ge 1; b_\ell, \ell \ge 1\}$. This Banach space is of countable type. If $H_1 = E[a_1, \ldots, a_j, \ldots]$ is the closed subspace of H spanned by $(a_j)_{j \ge 1}$, then there exists a continuous linear projection pof H_0 onto H_1 such that $\|p\| \le \frac{1}{\alpha} (\text{cf. [7]})$. Let $a'_j \in H'_1$ be defined by $\langle a'_j, a_l \rangle = \delta_{jt}, t \ge 1$ and put $\tilde{a}'_j = a'_j \circ p \in H'_0$. Then $(\tilde{a}'_j \otimes 1_F) \circ \Delta_F(u(x)) = \sum_{\ell \ge 1} \langle \tilde{a}'_j, b_\ell \rangle y_\ell \in (\tilde{a}'_j \otimes 1_F) \circ (1_H \otimes u) \circ \Delta_E(x)$ $= \sum_{\ell \ge 1} \langle \tilde{a}'_j, a_\ell \rangle u(x_\ell) = \sum_{j \ge 1} \delta_{jt} u(x_\ell) = u(x_j)$. Therefore $u(x_j) = \sum_{\ell \ge 1} \langle \tilde{a}'_j, b_\ell \rangle y_\ell \in V$; hence $x_j \in u^{-1}(V)$ and $\Delta_E(x) = \sum_{j \ge 1} a_j \otimes x_j \in H \otimes u^{-1}(V)$. (ii) For z = u(x) in u(E), $\Delta_F(z) = \Delta_F(u(x)) = (1_H \otimes u) \circ \Delta_E(x) = \sum_{j \ge 1} a_j \otimes u(x_j) \in H \otimes \overline{u(E)}$. Therefore $\Delta_F(u(E)) \subset H \otimes \overline{u(E)}$.

COROLLARY. Let V and W be Banach subcomodules of the left Banach H-comodule E; then $V \cap W$ is a Banach subcomodule of E.

Proof. (a)- Although a direct proof of this corollary is easy, we have the opportunity to define the *direct sum of a finite family* $(E_i, \Delta_i)_{1 \le i \le n}$ of left Banach H-comodules as follows. Let $E = \bigoplus_{i=1}^{n} E_i$, equipped with a norm equivalent to the norm $\left\|\sum_{i=1}^{n} x_i\right\| = \max_{1\le i\le n} \|x_i\|$. Put $\Delta = \bigoplus_{i=1}^{n} \Delta_i$; i.e. $\Delta\left(\sum_{i=1}^{n} x_i\right) = \sum_{i=1}^{n} \Delta_i(x_i)$. It is readily seen that (E, Δ) is a left Banach H-comodule.

(b)- Put $F = E \oplus E$ and $\Delta_F = \Delta_E \oplus \Delta_E$; then $V \oplus W$ is a Banach subcomodule of F if Vand W are Banach subcomodules of E. The continuous linear injective map u of E into Fdefined by $u(x) = x \oplus x$ is a Banach comodule morphism. Thus $V \cap W = u^{-1}(V \oplus W)$ is a Banach subcomodule of E.

II.2. Spaces of Banach comodule morphisms. Let us recall that a continuous linear operator $u: E \to F$ is completely continuous if $u = \lim_{n \to +\infty} u_n$, where $u_n: E \to F$ is linear continuous of finite rank. Furthermore, the space C(E, F) of completely continuous operators is closed in $\mathscr{L}(E, F)$ and is isometrically isomorphic to $E' \otimes F$.

If E and F are left Banach H-comodules we denote by $\operatorname{Hom}_{\operatorname{com}}(E, F)$ the set of Banach comodule morphisms. We set $C_{\operatorname{com}}(E, F) = C(E, F) \cap \operatorname{Hom}_{\operatorname{com}}(E, F)$ and $\operatorname{End}_{\operatorname{com}}(E) = \operatorname{Hom}_{\operatorname{com}}(E, E)$; $C_{\operatorname{com}}(E) = C_{\operatorname{com}}(E, E)$.

PROPOSITION 1. Let E, F and L be three left Banach H-comodules.

(i) If $u: E \to F$ and $v: F \to L$ are Banach comodule morphisms, then $v \circ u: E \to L$ is a Banach comodule morphism.

(ii) $\operatorname{Hom}_{\operatorname{com}}(E, F)$ [resp. $\operatorname{End}_{\operatorname{com}}(E)$] is a Banach space [resp. a unitary Banach algebra]. Furthermore $C_{\operatorname{com}}(E, F)$ [resp. $C_{\operatorname{com}}(E)$] is a closed linear subspace [resp. a closed two-sided ideal] of $\operatorname{Hom}_{\operatorname{com}}(E, F)$ [resp. $\operatorname{End}_{\operatorname{com}}(E)$].

Proof. It is easy. For instance $\Delta_L \circ (v \circ u) = (\Delta_L \circ v) \circ u = (1_H \otimes v) \circ \Delta_F \circ u = (1_H \otimes v) \circ (1_H \otimes u) \circ \Delta_E = [1_H \otimes (v \circ u)] \circ \Delta_E$. Also, if $u = \lim_{n \to +\infty} u_n$ with $u_n \in \operatorname{Hom}_{com}(E, F)$, then $\Delta_F \circ u = \Delta_F \circ \left(\lim_{n \to +\infty} u_n\right) = \lim_{n \to +\infty} \Delta_F \circ u_n = \lim_{n \to +\infty} (1_H \otimes u_n) \circ \Delta_E = (1_H \otimes u) \circ \Delta_E$.

COROLLARY. Let $u \in \operatorname{End}_{\operatorname{com}}(E)$ [resp. $C_{\operatorname{com}}(E)$] if $S = \sum_{n \ge 0} \lambda_n X^n$ is a formal power series with coefficients in K [resp. and $\lambda_0 = 0$] such that $S(u) = \sum_{n \ge 0} \lambda_n u^n$ is converging in $\mathscr{L}(E)$, then $S(u) \in \operatorname{End}_{\operatorname{com}}(E)$ [resp. $C_{\operatorname{com}}(E)$].

II. 3. When H admits a left integral.

II.3.1. Banach comodule morphism associated with a linear map. By definition, a *left integral* for the complete Hopf algebra is an element v of H' such that $\mu * v = \langle \mu, e \rangle v$, for all $\mu \in H'$.

Assume that the duality $\langle H', H \rangle$ is separated; then $v \in H'$ is a left integral for H if and only if $(1_H \otimes v) \circ c = k \circ v$.

In the sequel, we suppose that H admits a left integral v such that $\langle v, e \rangle = 1$. Hence the continuous linear form $\varphi = v \circ m \circ (1_H \otimes \eta) : H \otimes H \to K$ satisfies: (i) $\varphi \circ c = \sigma$ and (ii) $(\varphi \otimes 1_H) \circ (1_H \otimes c) = (1_H \otimes \varphi) \circ (c \otimes 1_H)$. Furthermore $\varphi(a \otimes e) = v(a)$ and $||v|| \le ||\varphi|| \le ||v|| ||\eta||$.

Let E and F be two left Banach H-comodules of coproducts Δ_E and Δ_F . If $u: E \to F$ is a continuous linear map, we put as in group representations theory

$$u^{\#} = (\varphi \otimes 1_F) \circ (1_H \otimes \Delta_F) \circ (1_H \otimes u) \circ \Delta_E;$$

hence $u^{\#}: E \to F$ is linear and continuous.

PROPOSITION 2. Let E and F be two left Banach comodules and $u: E \rightarrow F$ be a continuous linear map.

(i) u[#] is a Banach comodule morphism.

(ii) The map $u \to u^{\#}$ of $\mathcal{L}(E, F)$ into $\operatorname{Hom}_{\operatorname{com}}(E, F)$ is linear and continuous. Moreover, $u^{\#\#} = u^{\#}$ and u is a Banach comodule morphism if and only if $u^{\#} = u$.

Proof: (i) One verifies that

 $1_H \otimes [(\varphi \otimes 1_F) \circ (1_H \otimes \Delta_F) \circ (1_H \otimes u) \circ \Delta_E] =$

$$(1_H \otimes \varphi \otimes 1_F) \circ (1_H \otimes 1_H \otimes \Delta_F) \circ (1_H \otimes 1_H \otimes u) \circ (1_H \otimes \Delta_E)$$

Hence, one sees that

$$\begin{aligned} (1_H \otimes u^{\#}) \circ \Delta_E &= (1_H \otimes [(\varphi \otimes 1_F) \circ (1_H \otimes \Delta_F) \circ (1_H \otimes u) \circ \Delta_E]) \circ \Delta_E = \\ &= (1_H \otimes \varphi \otimes 1_F) \circ (1_H \otimes 1_H \otimes \Delta_F) \circ (1_H \otimes 1_H \otimes u) \circ (1_H \otimes \Delta_E) \circ \Delta_E = \\ &= (1_H \otimes \varphi \otimes 1_F) \circ (1_H \otimes 1_H \otimes \Delta_F) \circ (1_H \otimes 1_H \otimes u) \circ (c \otimes 1_E) \circ \Delta_E = \\ &= (1_H \otimes \varphi \otimes 1_F) \circ (c \otimes 1_H \otimes 1_F) \circ (1_H \otimes \Delta_F) \circ (1_H \otimes u) \circ \Delta_E = \\ &= (\varphi \otimes 1_H \otimes 1_F) \circ [1_H \otimes (c \otimes 1_F) \circ \Delta_F] \circ (1_H \otimes u) \circ \Delta_E = \\ &= (\varphi \otimes 1_H \otimes 1_F) \circ (1_H \otimes 1_H \otimes \Delta_F) \circ (1_H \otimes \Delta_F) \circ (1_H \otimes u) \circ \Delta_E. \end{aligned}$$

However $(\varphi \otimes 1_H \otimes 1_F) \circ (1_H \otimes 1_H \otimes \Delta_F) = \Delta_F \circ (\varphi \otimes 1_F)$. Therefore, $(1_H \otimes u^{\#}) \circ \Delta_E = \Delta_F \circ (\varphi \otimes 1_F) \circ (1_H \otimes \Delta_F) \circ (1_H \otimes u) \circ \Delta_E = \Delta_F \circ u^{\#}$; i.e. $u^{\#}$ is a comodule morphism.

(ii) It is readily seen that $u \to u^{\#}$ is linear and continuous with norm $\leq ||\varphi|| ||\Delta_E|| ||\Delta_E||$.

If u is a comodule morphism, one sees that

$$u^{\#} = (\varphi \otimes 1_F) \circ (1_H \otimes \Delta_F) \circ (1_H \otimes u) \circ \Delta_E = (\varphi \otimes 1_F) \circ (1_H \otimes \Delta_F) \circ \Delta_F \circ u$$
$$= (\varphi \otimes 1_F) \circ (c \otimes 1_F) \circ \Delta_F \circ u = (\varphi \circ c \otimes 1_F) \circ \Delta_F \circ u = [(\sigma \otimes 1_F) \circ \Delta_F] \circ u = u.$$

Conversely, if $u = u^{\#}$, from (i) it follows that u is a comodule morphism. Hence, for any continuous linear map $u: E \to F$, one has $u^{\#\#} = u^{\#}$.

LEMMA 2. Let E, F and L be three left Banach H-comodules, $u: E \to F$ and $v: F \to L$ be continuous linear maps. Then $(v \circ u^{\#})^{\#} = v^{\#} \circ u^{\#}$

Proof. Obviously, $(v \circ u^{\#})^{\#} = (\varphi \otimes 1_L) \circ (1_H \otimes \Delta_L) \circ (1_H \otimes v \circ u^{\#}) \circ \Delta_E = (\varphi \otimes 1_L) \circ (1_H \otimes \Delta_L) \circ (1_H \otimes v) \circ (1_H \otimes v) \circ (1_H \otimes u^{\#}) \circ \Delta_E = (\varphi \otimes 1_L) \circ (1_H \otimes \Delta_L) \circ (1_H \otimes v) \circ \Delta_F \circ u^{\#} = v^{\#} \circ u^{\#}.$

COROLLARY. Let E be a left Banach H-comodule. If $p: E \to E$ is a continuous linear projection of E onto M = p(E) and if M is a Banach subcomodule of E; then $p^{\#}$ is a projection of E onto M and $E = M \oplus N$, a direct sum of Banach comodules, where $N = \ker p^{\#}$.

Proof. Put $\Delta_E = \Delta$. By hypothesis, for any $y \in M$, $\Delta(y) = \sum_{\ell \ge 1} b_\ell \otimes y_\ell \in H \hat{\otimes} M$. Let $x \in E$; setting $\Delta(x) = \sum_{i\ge 1} a_i \otimes x_i \in H \hat{\otimes} E$, it follows that

 $p^{\#}(x) = (\varphi \otimes 1_E) \circ (1_H \otimes \Delta) \circ (1_H \otimes p) \circ \Delta(x)$

$$= (\varphi \otimes 1_E) \left(\sum_{j \ge 1} a_j \otimes \Delta \circ p(x_j) \right) = \sum_{j \ge 1} \sum_{\ell \ge 1} \varphi(a_j \otimes b_{\ell j}) y_{\ell j}$$

with $y_{\ell j} \in M$. Since $y_{\ell j} = p(x_{\ell j})$, we have

$$p^{\#}(x) = p\left(\sum_{j\geq 1}\sum_{\ell\geq 1}\varphi(a_j\otimes b_{\ell j})x_{\ell j}\right) = p(z) \in p(E) = M;$$

i.e. $p^{\#}(E) \subset M$.

ALMOST PERIODIC LINEAR REPRESENTATIONS

On the other hand, since for any $y \in M$, p(y) = y, one has

$$p^{\#}(y) = (\varphi \otimes 1_E) \left(\sum_{l \ge 1} b_\ell \otimes \Delta(y_\ell) \right) = (\varphi \otimes 1_E) \circ (1_H \otimes \Delta) \circ \Delta(y)$$
$$= (\varphi \otimes 1_E) \circ (c \otimes 1_E) \circ \Delta(y) = (\varphi \circ c \otimes 1_E) \circ \Delta(y) = (\sigma \otimes 1_E) \circ \Delta(y) = y.$$

Therefore $M \subset p^{\#}(M) \subset p^{\#}(E)$. We have proved that $M = p^{\#}(E)$.

Since for any $x \in E$, $p^{\#}(x) = p(z)$, one has $p \circ p^{\#}(x) = p \circ p(z) = p(z) = p^{\#}(x)$; in other words, $p \circ p^{\#} = p^{\#}$. Hence $p^{\#} = p^{\#\#} = (p \circ p^{\#})^{\#} = p^{\#} \circ p^{\#}$; i.e. $p^{\#}$ is a linear projection as well as a comodule morphism of E onto M. The corollary is proved.

NOTE. This corollary gives a proof of the implication $(iv) \Rightarrow (i)$ of the Theorem 3 in [3].

PROPOSITION 3. Let E and F be two left Banach H-comodules and let $u: E \to F$ be a completely continuous operator. Then $u^{\#}$ is completely continuous.

Proof. (i) Since the map $u \to u^{\#}$ is linear and continuous, if $u = \sum_{n \ge 1} x'_n \otimes z_n \in C(E, F) = E' \, \hat{\otimes} F$, one has, $u^{\#} = \sum_{n \ge 1} (x'_n \otimes z_n)^{\#}$ in $\operatorname{Hom}_{\operatorname{com}}(E, F)$. But C(E, F) is a Banach space; hence, it suffices to prove that for any $x' \in E'$ and any $z \in F$, one has $(x' \otimes z)^{\#} \in C(E, F)$.

(ii) Put $u = x' \otimes z$. First, $\Delta_F(z) = \sum_{\ell \ge 1} b_\ell \otimes z_\ell$, where $(b_\ell)_{\ell \ge 1} \subset H$ and $(z_\ell)_{\ell \ge 1}$ is an α -orthogonal set of F, with

$$\alpha \sup_{\ell \ge 1} \|b_{\ell}\| \|z_{\ell}\| \le \|\Delta_F(z)\| \le \sup_{\ell \ge 1} \|b_{\ell}\| \|z_{\ell}\|.$$
(0)

Also, for $x \in E$, $\Delta_E(x) = \sum_{j \ge 1} a_j \otimes x_j$, where $(a_j)_{j \ge 1} \subset H$, $(x_j)_{j \ge 1}$ is an α -orthogonal set of E and one has an inequality similar to (0). On the other hand,

 $u^{\#}(x) = (\varphi \otimes 1_F) \circ (1_H \otimes \Delta_F) \circ (1_H \otimes u) \circ \Delta_E(x)$

$$= (\varphi \otimes 1_F) \circ (1_H \otimes \Delta_F) \left(\sum_{j \ge 1} a_j \otimes u(x_j) \right) = (\varphi \otimes 1_F) \left(\sum_{j \ge 1} a_j \otimes \langle x', x_j \rangle \Delta_F(z) \right)$$
$$= \sum_{j \ge 1} \sum_{\ell \ge 1} \langle x', x_j \rangle \varphi(a_j \otimes b_\ell) z_\ell$$

However $\|\langle x', x_j \rangle \varphi(a_j \otimes b_\ell) z_\ell\| \le \|x'\| \|\varphi\| \|a_j\| \|x_j\| \|b_\ell\| \|z_\ell\|$ with $\lim_{j \to +\infty} \|a_j\| \|x_j\| = 0 = \lim_{l \to +\infty} \|b_\ell\| \|z_\ell\|$. Hence, the family $(\langle x', x_j \rangle \varphi(a_j \otimes b_\ell) z_\ell)_{j,\ell}$ is summable. Therefore

$$u^{\#}(x) = \sum_{\ell \ge 1} \sum_{j \ge 1} \langle x', x_j \rangle \varphi(a_j \otimes b_\ell) z_\ell.$$
⁽¹⁾

Let $F_0 = E[z_1, \dots, z_\ell, \dots]$ be the closed subspace of F spanned by the α -orthogonal set $(z_\ell)_{\ell \ge 1}$. If $z'_\ell \in F'_0$ is defined by $\langle z'_\ell, z_k \rangle = \delta_{\ell k}$, then $\frac{1}{\|z_\ell\|} \le \|z'_\ell\| \le \frac{1}{\alpha} \frac{1}{\|z_\ell\|}$.

It is clear that for any $x \in E$, $u^{\#}(x) \in F_0$ and we obtain the adjoint map $u^{\#}: F'_0 \to E'$ with $u^{\#}(z'_{\ell}) \in E'$ and for any $x \in E$, we have

$$\langle u^{\#}(z_{\ell}'), x \rangle = \langle z_{\ell}', u^{\#}(x) \rangle = \sum_{j \ge 1} \langle x', x_j \rangle \varphi(a_j \otimes b_{\ell}).$$
⁽²⁾

Moreover,

$$\begin{aligned} |\langle 'u^{\#}(z_{\ell}'), x\rangle| &\leq \sup_{j \geq 1} |\langle x', x_{j}\rangle| |\varphi(a_{j} \otimes b_{\ell}| \leq ||x'|| ||\varphi|| ||b_{\ell}|| \sup_{j \geq 1} ||a_{j}|| ||x_{j}|| \\ &\leq \frac{1}{\alpha} ||x'|| ||\varphi|| ||b_{\ell}|| ||\Delta_{E}(x)|| \leq \frac{1}{\alpha} ||x'|| ||\varphi|| ||\Delta_{E}|| ||b_{\ell}|| ||x||. \end{aligned}$$

Hence, we have

$$\|'u^{\#}(z_{\ell}')\| \leq \frac{1}{\alpha} \|x'\| \|\varphi\| \|\Delta_{E}\| \|b_{\ell}\|.$$
(3)

It follows that

$$||'u^{\#}(z'_{\ell}) \otimes z_{\ell}|| \leq \frac{1}{\alpha} ||x'|| ||\varphi|| ||\Delta_{E}|| ||b_{\ell}|| ||z_{\ell}||.$$

Since $\lim_{\ell \to +\infty} \|b_{\ell}\| \|z_{\ell}\| = 0$, we have $\lim_{\ell \to +\infty} \|u^{\#}(z_{\ell}) \otimes z_{\ell}\| = 0$ and $\sum_{l \ge 1} u^{\#}(z_{\ell}) \otimes z_{\ell} \in E' \otimes F = C(E, F)$. However for any $x \in E$,

$$\left(\sum_{\ell\geq 1} {}^{\iota} u^{\#}(z_{\ell}') \otimes z_{\ell}\right)(x) = \sum_{\ell\geq 1} \langle {}^{\iota} u^{\#}(z_{\ell}'), x \rangle z_{\ell} = \sum_{\ell\geq 1} \sum_{j\geq 1} \langle x', x_{j} \rangle \varphi(a_{j} \otimes b_{\ell}) z_{\ell} = u^{\#}(x),$$

by (1). It follows that $u^{\#} = \sum_{\ell \ge 1} {}^{t} u^{\#}(z'_{\ell}) \otimes z_{\ell} \in C(E, F).$

REMARK 1. Recall that v is a left integral for AP(G, K) such that $\langle v, 1 \rangle \neq 0$ iff $v \neq 0$ and $\langle v, \gamma_s f \rangle = \langle v, f \rangle = \langle v, \delta_s f \rangle$ for all $s \in G$. Moreover, if $\langle v, 1 \rangle = 1$, v is called an *invariant* mean. If F is a Banach space, we have an extension $v_F = v \otimes 1_F$ of v on $AP(G, F) \cong$ $AP(G, K) \oplus F$ with values in F and $v_F(\gamma_s \varphi) = v_F(\varphi) = v_F(\delta_s \varphi)$, $s \in G$.

For the a.p. linear representations $U: G \to \mathcal{L}(E)$, $V: G \to \mathcal{L}(F)$ and the continuous linear map $u: E \to F$, the intertwining operator (as well as comodule morphism) $u^{\#}$ can be written in the classical form $u^{\#}(x) = \int_{G} V_{s} \circ u \circ U_{s^{-1}}(x) dv_{F}(s)$.

II.3.2. Comodules which are free Banach spaces. Let *E* be a *free Banach space*; that is to say, *E* is isomorphic to a space $c_0(I, K) = \left\{ (\lambda_j)_{j \in I} \subset K / \lim_j \lambda_j = 0 \right\}$. In other words, there exists $(e_j)_{j \in I} \subset E$, called a *base* of *E*, two real numbers α_0 and $\alpha_1 > 0$, such that any $x \in E$ can be written in the form $x = \sum_{j \in I} \lambda_j e_j$, $\lambda_j \in K$ and $\alpha_0 \sup_{j \in I} |\lambda_j| \le ||x|| \le \alpha_1 \sup_{j \in I} |\lambda_j|$. For

the continuous linear form $e'_j \in E'$, defined by $\langle e'_j, e_\ell \rangle = \delta_{j\ell}$, one has $\frac{1}{\alpha_1} \le ||e'_j|| \le \frac{1}{\alpha_0}$.

90

Let F be another Banach space. The complete tensor product $F \otimes E$ is isomorphic to $c_0(I, F) = \left\{ (y_i)_{j \in I} \subset F/\lim_j ||y_j|| = 0 \right\}$. In fact, each $z \in F \otimes E$ is in the form $z = \sum_{j \in I} y_j \otimes e_j$, where $y_j \in F$ and $\lim_j ||y_j|| = 0$. Furthermore $\alpha_0 \sup_{j \in I} ||y_j|| \le ||z|| \le \alpha_1 \sup_{j \in I} ||y_j||$.

Assume that the free Banach space E is a left Banach H-comodule with coproduct $\Delta: E \to H \hat{\otimes} E$. For $x \in E$, one has $\Delta(x) = \sum_{j \in I} A_j(x) \otimes e_j$. Hence one defines, for each $j \in I$, a continuous linear map $A_j: E \to H$ and $\alpha_0 \sup_{i \in I} ||A_j|| \le ||\Delta|| \le \alpha_1 \sup_{j \in I} ||A_j||$.

Put, for $\ell \in I$, $A_i(e_\ell) = a_{\ell i} \in H$; one has

$$\Delta(e_{\ell}) = \sum_{j \in I} a_{\ell j} \otimes e_j, \qquad \lim_j a_{\ell j} = 0.$$
(4)

NOTE. $A_j = (1_H \otimes e'_j) \circ \Delta$ and $\bigcap_{j \in I} \ker A_j = (0)$.

More generally, if $x' \in E'$, we put $A_{x'} = (1_H \otimes x') \circ \Delta$. Obviously, H is a left Banach H-comodule with respect to its coproduct c.

LEMMA 3. For any $x' \in E'$, the linear map $A_{x'} = (1_H \otimes x') \circ \Delta : E \to H$ is a comodule morphism.

Proof. It is easy to see that $c \circ (1_H \otimes x') = c \otimes x' = (1_H \otimes 1_H \otimes x') \circ (c \otimes 1_E)$, So $c \circ A_{x'} = c \circ (1_H \otimes x') \circ \Delta = (1_H \otimes 1_H \otimes x') \circ (c \otimes 1_E) \circ \Delta = (1_H \otimes 1_H \otimes x') \circ (1_H \otimes \Delta) \circ \Delta = (1_H \otimes (1_H \otimes x') \circ (1_H \otimes x') \circ (1_H \otimes (1_H \otimes x') \circ (1_H \otimes x') \circ (1_H \otimes x') \circ$

LEMMA 4. For all $\ell, j \in I$, one has

- (i) $c(a_{\ell j}) = \sum_{n=1}^{\infty} a_{\ell n} \otimes a_{nj}$
- (ii) $\sigma(a_{\ell i}) = \delta_{\ell i}$,
- (iii) $\sum_{n \in I} a_{\ell n} \eta(a_{nj}) = \delta_{\ell j} \cdot e = \sum_{n \in I} \eta(a_{\ell n}) a_{nj}.$

Proof. (i) Since $A_j = (1_H \otimes e'_j) \circ \Delta$ is a comodule morphism, we have $c(a_{\ell j}) = c \circ A_j(e_\ell) = (1_H \otimes A_j) \circ \Delta(e_\ell) = (1_H \otimes A_j) \left(\sum_{n \in I} a_{\ell n} \otimes e_n\right) = \sum_{n \in I} a_{\ell n} \otimes A_j(e_n) = \sum_{n \in I} a_{\ell n} \otimes a_{nj}$.

(ii) Obviously, from $(\sigma \otimes 1_E) \circ \Delta = 1_E$ we get, for $x \in E$, $x = \sum_{j \in I} \sigma(A_j(x))e_j$. Hence $e_\ell = \sum_{j \in I} \sigma(A_j(e_\ell))e_j = \sum_{j \in I} \sigma(a_{\ell j})e_j$ and $\sigma(a_{\ell j}) = \delta_{\ell j}$.

(iii) This follows readily from (i), (ii) and $m \circ (1_H \otimes \eta) \circ c = k \circ \sigma = m \circ (1_H \otimes \eta) \circ c$.

LEMMA 5. Assume that H admits a left integral v such that $\langle v, e \rangle = 1$. Put $\varphi = v \circ m \circ (1_H \otimes \eta)$. For all $\ell, j \in I$, one has $\sum_{n \in I} \varphi(a_{\ell n} \otimes a_{nj}) = \delta_{\ell j}$.

Proof. Since $\varphi \circ c = \sigma$, from Lemma 4 one deduces that $\delta_{\ell j} = \sigma(a_{\ell j}) = \varphi \circ c(a_{\ell j}) = \sum_{r=\ell}^{\infty} \varphi(a_{\ell n} \otimes a_{nj})$.

Now assume that the duality $\langle H', H \rangle$ is separated and that H admits a left integral v such that $\langle v, e \rangle = 1$. By Proposition 3, we know that $(e'_{\ell} \otimes e_j)^{\#} \in C(E)$, for all $\ell, j \in I$. With (4) and by definition of $(e'_{\ell} \otimes e_j)^{\#}$ one variables that

With (4) and by definition of $(e'_{\ell} \otimes e_j)^{\#}$ one verifies that

$$(e_{\ell}^{\prime} \otimes e_{j})^{\#}(e_{i}) = \sum_{n \in I} \varphi(a_{i\ell} \otimes a_{jn})e_{n} \ (i, j, \ell \in I).$$

$$(5)$$

REMARK 2. One deduces from (5) and Lemma 5 that there exists $\ell \in I$ such that $(e'_{\ell} \otimes e_{\ell})^{\#}$ is different from the null operator.

By a previous result, we know that the space $C(E) = E' \otimes E$ is isomorphic to $c_0(I, E')$. Let $u \in C(E)$; then $u = \sum_{\ell \in I} \psi_\ell \otimes e_\ell$ with $\psi_\ell \in E'$, $\lim_\ell \psi_\ell = 0$ and $\alpha_0 \sup_{\ell \in I} ||\psi_\ell|| \le ||u|| \le \alpha_1 \sup_{\ell \in I} ||\psi_\ell||$. Furthermore one has $u = \sum_{\ell \in I} {}^{t}u(e'_\ell) \otimes e_\ell$.

It is well known that one has the trace form $\operatorname{Tr}: E' \,\hat{\otimes} \, E \to K$ defined by $\operatorname{Tr}(x' \otimes x) = \langle x', x \rangle$, which is linear and continuous with $|\operatorname{Tr}(u)| \leq ||u||$. Here one obtains for $u = \sum_{\ell \in I} \psi_{\ell} \otimes e_{\ell} \in C(E) = E' \,\hat{\otimes} \, E$, $\operatorname{Tr}(u) = \sum_{\ell \in I} \langle \psi_{\ell}, e_{\ell} \rangle = \sum_{\ell \in I} \langle e'_{\ell}, u(e_{\ell}) \rangle$.

Hence, for $u = (e'_{\ell} \otimes e_j)^{\#}$; $\ell, j \in I$; one has

$$\operatorname{Tr}[(e_{\ell}' \otimes e_{j})^{\#}] = \sum_{n \in I} \varphi(a_{n\ell} \otimes a_{jn}) \qquad (j, \ell \in I).$$
(6)

DEFINITION. A complete Hopf algebra H is called *supple* if H is a pseudo-reflexive Banach space and if $\eta \circ \eta = 1_{H}$.

EXAMPLES. (1) AP(G, K) and its complete sub-Hopf-algebras are supple.

(2) Any commutative (resp. cocommutative) complete Hopf algebra which is a pseudo-reflexive Banach space is supple.

LEMMA 6. Let H be a supple complete Hopf algebra. If H admits a left integral v such that $\langle v, e \rangle = 1$, then the map $\varphi = v \circ m \circ (1_H \otimes \eta)$ satisfies $\varphi(a \otimes b) = \varphi(b \otimes a)$, for all a, $b \in H$.

Proof. Since η is an anti-endomorphism of the algebra H and since $\eta \circ \eta = 1_H$ implies $v \circ \eta = v$, one has for $a, b \in H$, $\varphi(a \otimes b) = v \circ m \circ (1_H \otimes \eta)(a \otimes b) = v(a\eta(b)) = v \circ \eta(a\eta(b)) = v(b\eta(a)) = \varphi(b \otimes a)$.

The following proposition strengthens Remark 2.

PROPOSITION 4. Let H be a supple complete Hopf algebra that admits a left integral v such that $\langle v, e \rangle = 1$. Let E be a left Banach H-comodule which is a free Banach space with base $(e_j)_{j \in I}$. Then for each $\ell \in I$, the comodule endomorphism $(e'_{\ell} \otimes e_{\ell})^{\#}$ of E is a completely continuous operator such that $\operatorname{Tr}[(e'_{\ell} \otimes e_{\ell})^{\#}] = 1$.

Proof. Indeed, one deduces from (6), Lemmas 5 and 6 that $Tr[(e'_{\ell} \otimes e_{\ell})^{\#}] =$

$$\sum_{n \in I} \varphi(a_{n\ell} \otimes a_{\ell n}) = \sum_{n \in I} \varphi(a_{\ell n} \otimes a_{n\ell}) = 1.$$

REMARK 3. In the same way, if $\ell \neq j$, then $\operatorname{Tr}[(e'_{\ell} \otimes e_j)^{\#}] = \sum_{n \in I} \varphi(a_{n\ell} \otimes a_{jn}) = \sum_{n \in I} \varphi(a_{jn} \otimes a_{n\ell}) = 0.$

Let $E'_0 = E[e'_j, j \in I]$ be the closed subspace of E' spanned by $(e'_j)_{j \in I}$. The space

 $E'_0 \hat{\otimes} E$ is a closed subspace of $E' \hat{\otimes} E = C(E)$. Since $(e'_j)_{j \in I}$ is a base of E'_0 , each $u \in E'_0 \hat{\otimes} E$ can be written $u = \sum_{\ell \in I} \sum_{j \in I} \lambda_{\ell j} e'_j \otimes e_\ell$ with $\lambda_{\ell j} \in K$, $\limsup_{\ell} \sup_{j \in I} |\lambda_{\ell j}| = 0$ and for any $\ell \in I$, $\lim_{i} |\lambda_{\ell j}| = 0$. One has $\operatorname{Tr}(u) = \sum_{\ell \in I} \lambda_{\ell \ell}$.

COROLLARY 1. For each $u \in E'_0 \otimes E$, one has $\operatorname{Tr}(u^{\#}) = \operatorname{Tr}(u)$. In particular, if dim E is finite, for each $u \in \mathcal{L}(E)$, one has $\operatorname{Tr}(u^{\#}) = \operatorname{Tr}(u)$.

Proof. Obviously,
$$\operatorname{Tr}(u^{\#}) = \sum_{\ell \in I} \sum_{j \in I} \lambda_{\ell j} \operatorname{Tr}[(e'_{j} \otimes e_{\ell})^{\#}] = \sum_{\ell \in I} \sum_{j \in I} \lambda_{\ell j} \delta_{\ell j} = \operatorname{Tr}(u).$$

COROLLARY 2. Let $x \in E$, $x \neq 0$; there exists $x' \in E'$ such that $\langle x', x \rangle = 1$ and $Tr[(x' \otimes x)^{#}] = 1$.

Let us recall that if $u \in C(E)$ then the Fredholm determinant of u is $det(1_E - tu) = 1 + \sum_{q \ge 1} (-1)^q \operatorname{Tr}(\Lambda^q u) t^q$ and $det(1_E - tu)$ is a power series of infinite radius of convergence; (cf. [4] and [10]). Furthermore $det(1_E - tu) \cdot 1_E = (1_E - tu)P_1(t, u)$, where $P_1(t, u)$ is the Fredholm resolvent of u. Hence for $\lambda \in K$, $1_E - \lambda u$ is invertible in $\mathcal{L}(E)$ if and only if $det(1_E - \lambda u) \neq 0$.

With the operators as above, for instance for $u_{\ell} = (e_{\ell} \otimes e_{\ell})^{\#}, \ \ell \in I$, one has

$$\det(1_E - tu_\ell) = 1 - t + \sum_{q \ge 2} (-1)^q \operatorname{Tr}(\Lambda^q u_\ell) t^q.$$
⁽⁷⁾

III. Reducibility of Banach comodules.

III.1.1. Simple Banach comodules.

DEFINITION. A left Banach H-comodule E is called *simple* or *topologically irreducible* if E is not the null space and does not contain any closed subcomodule different from (0) and E.

It follows immediately from Theorem 1 that, when H is a pseudo-reflexive Banach space, any simple left Banach H-comodule is a vector space of countable type.

THEOREM 2. Let H be a supple complete Hopf algebra that admits a left integral v such that $\langle v, e \rangle = 1$. Then any left Banach H-comodule that is not the null space contains at least a finite dimensional subcomodule different from (0).

Proof. For this proof, we apply Riesz's decomposition theorem.

(a) Let E be a left Banach comodule over the supple complete Hopf algebra H with $E \neq (0)$. By Theorem 1, if $x \in E$, $x \neq 0$, then $x \in M = H' \cdot x$; hence M is different from (0). Furthermore M is a Banach subcomodule of E and is a Banach space of countable type. Therefore M is a free Banach space (cf. [7]).

(b) Assume that H admits a left integral v such that $\langle v, e \rangle = 1$. Hence by Proposition 4, there exists a completely continuous operator u which is an endomorphism of the comodule M and such that Tr(u) = 1. It follows that $det(1_M - tu) = 1 - t + \sum_{u \ge 2} (-1)^q$

 $\operatorname{Tr}(\Lambda^q u) t^q$ is a non constant power series with infinite radius of convergence. According to the *p*-adic Weierstrass' factorization theorem, one has $\det(1_M - tu) = \prod_{q \ge 1} P_q$, where P_q is a

polynomical such that $P_q(0) = 1$, $d \circ P_q \ge 1$ (see for example [1]). That is $det(1_M - tu)$ has its zeros in a subfield of the algebraic closure \tilde{K} of K. Following [10] one has the following results.

(b₁) First, det($1_M - tu$) has a zero $\lambda \in K^*$.

Let $h \ge 1$ be the multiplicity of λ ; one has $M = N(\lambda) \oplus F(\lambda)$ (Riesz's decomposition), where $N(\lambda) = \ker(1_M - \lambda u)^h$ and dim $N(\lambda) = h$. However $(1_M - \lambda u)^h$ is a comodule endomorphism of M; therefore $N(\lambda)$ is a subcomodule of M of finite dimension $h \ge 1$ and $N(\lambda)$ is a non-null finite dimensional subcomodule of E.

(b₂) Second, det $(1_M - tu)$ has no zero in K*.

Let $\zeta \in \tilde{K}$ be a zero of det $(1_M - tu)$. Let $R(t) = 1 - \sum_{j=1}^{\ell} \gamma_j t^j$ be the polynomial of minimal degree such that $R(\zeta^{-1}) = 0$ and R(0) = 1. Setting $R(u) = 1_M - \sum_{j=1}^{\ell} \gamma_j u^j = 1_M - v$, we see that $v = \sum_{j=1}^{\ell} \gamma_j u^j$ is a comodule endomorphism of M as well as a completely continuous operator.

Let $\zeta^{(2)}, \ldots, \zeta^{(\ell)}$ be the conjugates of ζ in \tilde{K} . The field $L = K[\zeta, \zeta^{(2)}, \ldots, \zeta^{(\ell)}]$ is a finite extension of K. Put $M_L = L \otimes_K M = L \otimes_K M$; hence $u_L = 1_L \otimes u$ is a completely continuous operator on M_L . Moreover, $\zeta \in L$ is a zero of det $(1_{M_L} - tu_L) = det(1_M - tu)$; hence $1_{M_L} - \zeta u_L$ is not invertible in $\mathscr{L}_L(M_L)$.

Since
$$R(t) = (1 - \zeta t) \prod_{j=2}^{t} (1 - \zeta^{(j)} t)$$
 and $R(u) = 1_M - v$, one has

$$R(u)_{L} = 1_{M_{L}} - \sum_{j=1}^{\ell} \gamma_{j} 1_{L} \otimes u^{j} = 1_{M_{L}} - \sum_{j=1}^{\ell} \gamma_{j} u^{j}_{L} = 1_{M_{L}} - v_{L} = (1_{M_{L}} - \zeta u_{L}) \prod_{j=2}^{\ell} (1_{M_{L}} - \zeta^{(j)} u_{L}).$$

It follows that the completely continuous operator v_L is such that $1_{M_L} - v_L = R(u_L)$ is not invertible in $\mathcal{L}(M_L)$. Consequently $1_M - v$ is not invertible in $\mathcal{L}(M)$; i.e. 1 is a zero of det $(1_M - tv)$ with multiplicity $h' \ge 1$. Therefore we have the Riesz decomposition $M = N(R) \oplus F(R)$, where $N(R) = \ker(1_M - v)^{h'} = \ker(R(u)^{h'})$ and dim $N(R) = h' \ge 1$.

But $R(u)^{h'}$ is a comodule endomorphism of M; hence $N(R) = \ker(R(u)^{h'})$ is a subcomodule of M of finite dimension $h' \ge 1$. Therefore N(R) is a non-null finite dimensional subcomodule of E.

REMARK 4. The subspace $F(\lambda)$ (resp. F(R)) of M is also a Banach subcomodule of E.

THEOREM 3. Let H be a supple complete Hopf algebra that admits a left integral v such that $\langle v, e \rangle = 1$. Then any simple left Banach H-comodule E is finite dimensional.

Proof. This is obvious from Theorem 2. Indeed, let $x \in E$, $x \neq 0$; one has $\overline{H' \cdot x} = M \neq (0)$; hence M = E and by Theorem 1, E is a free Banach space. With the notations in the proof of Theorem 2, one has in the first case $E = N(\lambda) = \{x \in E/u(x) = \lambda^{-1}x\}$, dim E = h and $u = \lambda^{-1}1_E$. In the second case, one has $E = N(R) = \{x \in E/v(x) = x\}$, dim E = h' and R(u) = 0.

COROLLARY. (Schur's Lemma.) Under the above hypothesis on H, if E is a simple left Banach H-comodule, then $\operatorname{End}_{\operatorname{com}}(E)$ is a (skew) field of finite dimension $\leq (\dim E)^2$. Moreover, if K is algebraically closed, then $\operatorname{End}_{\operatorname{com}}(E) = K \cdot 1_E$ and if K is of characteristic $p \neq 0$, then $(p, \dim E) = 1$.

Proof. It suffices to observe that there exist $u \in \text{End}_{com}(E)$ such that Tr(u) = 1. If K is algebraically closed, one has $u = \lambda 1_E$, hence $\text{Tr}(u) = 1 = \lambda \dim E$

III.1.2. Reducibility of Banach comodules.

PROPOSITION 5. Let H be a supple complete Hopf algebra that admits a left integral v such that $\langle v, e \rangle = 1$. Then any left Banach H-comodule E that is a Banach space of countable type is a topological direct sum of simple comodules.

Proof. Indeed, by Theorem 2, *E* contains finite subcomodules different from the null space. Hence *E* contains a simple subcomodule. Let $W = \sum_{\ell \in S} V_{\ell}$ be the sum of all simple subcomodules of *E*. As in semi-simple module theory, there exists a subset *T* of *S* such that $W = \bigoplus_{\ell \in T} V_{\ell}$. Put $E_0 = \overline{W} = \bigoplus_{\ell \in T} V_{\ell}$, the closure of *W* in *E*. It is clear that E_0 is a Banach subcomodule of *E*.

On the other hand, since E is a Banach space of countable type and E_0 is a closed subspace of E, for $0 < \alpha < 1$, there exists a linear projection of E onto E_0 such that $||p|| \le \frac{1}{\alpha}$ (cf. [7]). Therefore by the Corollary of Lemma 2 or Theorem 3 of [3] one has the direct sum of Banach comodules $E = E_0 \oplus F_0$. If F_0 is different from (0), F_0 must contain a simple subcomodule V. Clearly V is not contained in E_0 ; that contradicts the definition of E_0 . Consequently $F_0 = (0)$ and $E = E_0 \oplus \bigoplus_{\alpha \in T} V_{\alpha}$.

THEOREM 4. Let H be a supple complete Hopf algebra that admits a left integral v such that $\langle v, e \rangle = 1$. Then any left Banach H-module E is a topological direct sum of simple comodules.

Proof. As above, put $W = \sum_{j \in I} V_j$, the sum of all simple subcomodules of E. There exists $J \subset I$ such that $W = \bigoplus_{j \in J} V_j$ (any simple subcomodule of E is isomorphic to one of the $V_j, j \in J$).

Let $x \in E$, $x \neq 0$; the Banach subcomodule $M_x = \overline{H' \cdot x}$ of E being a Banach space of countable type, one has, by Proposition 5, $x \in M_x = \bigoplus_{\ell \in T} V_\ell$, where V_ℓ is a simple subcomodule of M_x and obviously of E. Hence for $\varepsilon > 0$, there exists a finite subset F of T, $x_\ell \in V_\ell$ for $\ell \in F$, such that $\left\| x - \sum_{\ell \in F} x_\ell \right\| < \varepsilon$. Since $\sum_{\ell \in F} x_\ell \in \bigoplus_{\ell \in F} V_\ell \subset W$, one has $x \in \overline{W}$ and $E = \overline{W} = \bigoplus_{j \in J} V_j$.

REMARK 5. Let Ω be the family of the isomorphic classes of simple left Banach *H*-comodules. Let $E(\omega)$ be the isotypical component of *E* for $\omega \in \Omega$, i.e. the sum of all simple subcomodules of *E* belonging to ω . It may happen that $E(\omega) = (0)$. One has

 $E(\omega) = \bigoplus (V_j, V_j \in \omega), W = \bigoplus_{\omega \in \Omega} E(\omega)$ and if H satisfies the hypothesis of Theorem 4, then $E = \bigoplus_{\omega \in \Omega} E(\omega).$

III.2. Application to H = AP(G, K). Let us recall that the complete Hopf algebra AP(G, K) (as well as any of its complete Hopf subalgebras) is a supple Hopf algebra. A left integral v over AP(G, K), if it exists, such that $\langle v, 1 \rangle = 1$ is called an *invariant mean*.

From [3] we know that the category of left Banach AP(G, K)-comodules is in a bijective correspondence with the category of almost periodic linear representations of G.

The following theorem is a direct application of Theorems 3 and 4. One has an equivalent theorem for any complete Hopf subalgebra of AP(G, K) as $AP_{\mathcal{T}}(G, K)$, $\mathcal{PP}(G, K)$ and $\mathcal{PP}_{\mathcal{T}}(G, K)$: the algebra $\mathcal{PP}(G, K)$ is the subalgebra of the elements f in AP(G, K) such that $\{\gamma_s f, s \in G\}$ is relatively compact in $\mathcal{B}(G, K)$; if \mathcal{T} is a group topology on G, $AP_{\mathcal{T}}(G, K)$ [resp. $\mathcal{PP}_{\mathcal{T}}(G, K)$] is the subalgebra of the functions f in AP(G, K) [resp. $\mathcal{PP}(G, K)$] such that f is \mathcal{T} -continuous.

THEOREM 5. Assume that AP(G, K) admits an invariant mean.

(i) Any topologically irreducible almost periodic linear representation is finite dimensional.

(ii) Let $U: G \to \mathcal{L}(E)$ be an almost periodic linear representation of G. The Banach space E is a topological direct sum of irreducible U-invariant subspaces of E.

NOTE. Let Ω be the family of the classes of topologically irreducible almost linear representations. With the above hypothesis, one has $E = \bigoplus_{\alpha \in \Omega} E(\omega)$ (cf. Remark 5).

COROLLARY 1. (Peter-Weyl Theorem). Assume that AP(G, K) admits an invariant mean. Then the space $R_b(G, K)$ of the bounded representative functions of G in K is a dense subspace of AP(G, K).

Proof. The left regular representation γ of G in AP(G, K) is almost periodic $[\gamma_s f(t) = f(s^{-1}t)]$. It is clear that any γ -invariant finite dimensional subspace of AP(G, K) is contained in $R_b(G, K)$.

Let $f \in AP(G, K)$, $f \neq 0$ and $M_f = \overline{AP(G, K)' \cdot f}$. One has $M_f = \bigoplus_{\ell \in T} V_\ell$, where V_ℓ is γ -invariant and topologically irreducible. Hence dim V_ℓ is finite and $V_\ell \subset R_b(G, K)$ for all $\ell \in T$. Moreover, as in the proof of Theorem 4, there exist a finite subset F of T and $\ell \in F$, $f_\ell \in V_\ell$, such that $\left\| f - \sum_{\ell \in F} f_\ell \right\| < \epsilon$. Since $\sum_{\ell \in F} f_\ell \in \bigoplus_{\ell \in F} V_\ell \subset R_b(G, K)$, we have shown that $R_b(G, K)$ is dense in AP(G, K). \Box

Let $\omega \in \Omega$ be the class of the topologically irreducible almost periodic linear representation (V, ρ) of G. With the hypothesis of Theorem 5, one has dim V = n finite. Let $R(\rho)$ be the subspace of AP(G, K) spanned by the coefficient functions of ρ ; i.e. the functions $s \rightarrow \langle x', \rho(s) \cdot x \rangle$, where $x' \in V'$ and $x \in V$. One has dim $R(\rho) \le n^2$ and it is readily seen that $R(\omega) = R(\rho)$ depends only on ω . Let $\check{\omega}$ be the class of $(V', \check{\rho})$, where $\check{\rho}(s) = {}^{i}\rho(s^{-1})$; then $(V',\check{\rho})$ is irreducible and $R(\check{\omega}) = \eta(R(\omega))$. Fix a base $(e_j)_{1 \le j \le n}$ of Vand let $(e'_j)_{1 \le j \le n} \subset V'$ be its dual base. Let us consider for $1 \le j \le n$ the linear map $A_j: V \to AP(G, K)$ defined by $A_j(x)(s) = \langle e'_j, \rho(s^{-1}) \cdot x \rangle$. One has $\gamma_s \circ A_j = A_j \circ \rho(s)$ (directly or see Lemma 3). Since $A_j(e_j)(e) = 1$, one has ker $A_j \ne V$ and since (V, ρ) is irreducible, ker $A_j = (0)$, i.e. A_j is injective. Put $H_j = A_j(V)$; the linear representations (V, ρ) and (H_j, γ) are equivalent. Hence $(H_j, \gamma) \in \omega$, for $1 \le j \le n$. It is readily seen that $\eta(R(\omega)) = \sum_{j=1}^n H_j$ and there exists $J \subset [1, n]$ such that $\eta(R(\omega)) = \bigoplus_{j \in J} H_j$. Moreover $\eta(R(\omega))$ is the isotypical component of AP(G, K) corresponding to ω . Therefore, if $(\omega_1, \ldots, \omega_m)$ is a finite subset of Ω , then $\sum_{r=1}^m \eta(R(\omega_r)) = \bigoplus_{r=1}^m \eta(R(\omega_r))$. It follows that $\sum_{r=1}^m R(\omega_r) = \bigoplus_{r=1}^m R(\omega_r)$.

Since any finite dimensional almost periodic linear representation is reducible, we have proved the following result.

COROLLARY 2. Assume that AP(G, K) admits an invariant mean. Then

$$R_b(G,K) = \bigoplus_{\omega \in \Omega} R(\omega) \text{ and } AP(G,K) = \bigoplus_{\omega \in \Omega} R(\omega).$$

NOTE. $R(\omega)$ is a subcogebra of AP(G, K) for $\omega \in \Omega$.

COROLLARY 3. Assume that the group G is commutative and that AP(G, K) admits an invariant mean. If the field K is algebraically closed, then Ω can be identified with $\operatorname{Hom}_b(G, K^*) = \hat{G}$, the bounded character group of G and $AP(G, K) = \bigoplus_{\gamma \in \hat{G}} K \cdot \chi$.

Proof. The proof runs as in the classical case. Indeed, with the hypothesis on AP(G, K), if (V, ρ) is irreducible and K is algebraically closed then $\operatorname{End}_{\rho}(V) = K \cdot 1_{V}$. Since G is commutative, for $s \in G$, one has $\rho(s) \in \operatorname{End}_{\rho}(V)$, hence $\rho(s) = \chi(s) \cdot 1_{V}$ and χ is a bounded character of G (which implies $|\chi(s)| = 1, s \in G$). It follows that $\Omega = \hat{G}$. Since $R(\chi) = K \cdot \chi$, we have $AP(G, K) = \bigoplus_{\chi \in \hat{G}} K \cdot \chi$ (compare with [8], [9]).

More generally one can prove the following result.

COROLLARY 4. Let CAP(G, K) be the closed subalgebra of the central functions $f \in AP(G, K)$; i.e. $f(sts^{-1}) = f(t)$, $s, t \in G$. Assume that AP(G, K) admits an invariant mean. Set for $(V, \rho) \in \omega$, $\chi_{\omega}^{u}(s) = Tr(\rho(s) \circ u)$, where $u \in End_{\rho}(V)$. Hence $\{\chi_{\omega}^{u}, \omega \in \Omega, u \in End_{\rho}(V) \text{ for a fixed } (V, \rho) \in \omega\}$ is a total subset of the Banach space CAP(G, K). Moreover, if K is algebraically closed, setting $\chi_{\omega}(s) = Tr(\rho(s))$ for a fixed $(V, \rho) \in \omega$, one has $CAP(G, K) = \bigoplus_{u \in O} K \cdot \chi_{\omega}$.

NOTES. (i) Let us say that (G, K) is *a.p.i.m.* if AP(G, K) admits an invariant mean v. Schikhof has given in [8], [9] the characterization of the a.p.i.m. pairs (G, K) when G is commutative and with the extra condition ||v|| = 1. It remains to characterize all the a.p.i.m. pairs (G, K).

(ii) If there exists an invariant mean v on AP(G, K), and putting for $f, g \in AP(G, K)$, $(f * g)(s) = \langle v, f \cdot \gamma_s(\eta(g)) \rangle$, then AP(G, K) is equipped with a new structure

of Banach algebra, non unitary if G is infinite. Can one use this algebra structure in the aim to establish the above results? In the case of $\mathcal{PP}(G, K)$ see [6].

REMARK 6. For any complete Hopf algebra H, one can define the representative subalgebra $\mathcal{R}(H)$ of H similar to $R_b(G, K)$. If H is supple and admits a left integral v such that $\langle v, e \rangle = 1$, then one has a translation of Theorem 5 and its Corollaries 1 and 2.

REFERENCES

1. Y. Amice, Les nombres p-adiques (P.U.F.-1975).

2. B. Diarra. Algèbres de Hopf et fonctions presque périodiques ultramétriques, to appear in Rivista di Matematica pura ed applicata n° 16.

3. B. Diarra. Ultrametric almost periodic linear representations in *p*-adic Functional Analysis (Editorial Universidad de Santiago, Chile, 1994), 45–55.

4. L. Gruson. Théorie de Fredholm p-adique, Bull. Soc. Math. France 94 (1966), 67-95.

5. L. Gruson and M. van der Put. Banach spaces, Bull. Soc. Math. France, Mémoire 39-40 (1974), 55-100.

6. G. Rangan and M. S. Saleemullah. Banach algebra of *p*-adic valued almost periodic functions. in *p*-adic Functionnal Analysis, edited by J. M. Bayod, N. De Grande-De Kimpe and J. Martinez-Maurica (Marcel Dekker, New-York-1991), 141-150.

7. A. C. M. van Rooij: Non-archimedean functional analysis (Marcel Dekker, New York, 1978).

8. W. H. Schikhof. An approach to p-adic almost periodicity by means of compactoids. Report 8809-Departement of Mathematics, Catholic University (Nijmegen, 1988).

9. W. H. Schikhof. p-Adic almost periodic functions. Indag. Math. 1 nº 1 (1990), 127-133.

10. J.-P. Serre. Endomorphismes complètement continus des espaces de Banach *p*-adiques *Publ. Math.* n° 12 (1962) (I.H.E.S. Paris), 69-85.

Mathematiques pures Complexe Scientifique des Cézeaux 63177 Aubiere Cedex France

Fax: (33) 73.40.70.64

e-mail diarra@ ucfma. univ-bpclermont.fr

98