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Motivated by observations of turbulence in the strongly stratified ocean thermocline,
we use direct numerical simulations to investigate the interaction of a sinusoidal shear
flow and a large-amplitude internal gravity wave. Despite strong nonlinearities in the
flow and a lack of scale separation, we find that linear ray-tracing theory is qualitatively
useful in describing the early development of the flow as the wave is refracted by
the shear. Consistent with the linear theory, the energy of the wave accumulates in
regions of negative mean shear where we observe evidence of convective and shear
instabilities. Streamwise-aligned convective rolls emerge the fastest, but their contribution
to irreversible mixing is dwarfed by shear-driven billow structures that develop later.
Although the wave strongly distorts the buoyancy field on which these billows develop,
the mixing efficiency of the subsequent turbulence is similar to that arising from
Kelvin–Helmholtz instability in a stratified shear layer. We run simulations at Reynolds
numbers Re of 5000 and 8000, and vary the initial amplitude of the internal gravity wave.
For high values of initial wave amplitude, the results are qualitatively independent of Re.
Smaller initial wave amplitudes delay the onset of the instabilities, and allow for significant
laminar diffusion of the internal wave, leading to reduced turbulent activity. We discuss
the complex interaction between the mean flow, internal gravity wave and turbulence, and
its implications for internal wave-driven mixing in the ocean.
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1. Introduction

Internal waves are often considered to be the primary pathway through which energy
is transferred from large scales associated with wind and tidal forcing to small scales
and turbulence in the ocean interior (MacKinnon et al. 2017). On vertical scales larger
than O(10 m), the distribution of energy in internal waves is well described by the
empirical spectrum of Garrett & Munk (1972), and energy transfers occur through weakly
nonlinear wave–wave interactions (Müller et al. 1986; Polzin & Lvov 2011). (Exceptions
to this paradigm are internal solitary waves, which can propagate over long distances
without interacting with the ambient wave field as in Ramp et al. (2004).) At smaller
scales, the flow becomes highly nonlinear and the form of the energy spectrum changes
to the power law scaling E(m) ∼ N2m−3, where N2 := (−g/ρ0) dρ̄/dz is the squared
buoyancy frequency (determined by gravitational acceleration g, mean density ρ0, and
the vertical density gradient dρ̄/dz) and m is the vertical wavenumber (as observed e.g.
by Gargett et al. 1981). Although the energy spectra are consistent across measurements
(see also Gregg, Winkel & Sanford 1993), they sample flow fields that are highly
intermittent, as highlighted for example by Baker & Gibson (1987). Away from boundaries,
such intermittency suggests that the turbulence may be sustained by a collection of
localised, transient ‘wave breaking’ events that transfer energy downscale from the internal
wave field.

Further evidence of turbulence arising from wave breaking processes can be found in the
thermocline observations of Alford & Pinkel (2000), henceforth denoted AP. Intermittent
metre-scale overturns, where the vertical profile of density becomes statically unstable, are
used to indicate the presence of turbulence. In the observations, these overturns favourably
sample regions with high ‘vertical strain’. Strain in this context refers to local changes in
(N2(z))−1 due to vertical convergence or divergence of the flow, and regions with low local
stratification relative to the mean are associated with high strain. Significant fluctuations in
local stratification (and therefore strain) are suggestive of large-amplitude internal waves.
There are, however, a range of possible mechanisms by which the waves can overturn and
break, and it is unclear how different types of wave breaking may affect the mean rates of
diapycnal mixing. Larger-scale vertical shear in the observations of AP is often colocated
with the internal wave field, and this shear is likely to play an important role in the breaking
process.

For example, figure 11 of AP highlights three ‘overturning events’ with seemingly
different characteristics in terms of the roles of internal waves and shear. One of the
overturns is associated with persistently low values of the gradient Richardson number
Rig = N2/|∂u/∂z|2 (where the velocity u is measured at 6.4 m resolution), suggesting
that shear instabilities are primarily triggering the turbulence. Overturning events are
also highlighted where large-amplitude internal waves strongly distort the density field.
These ‘high strain’ overturns are observed where Rig is reduced, but still large enough
for instability of the large-scale shear to be unlikely. The vertical extent of the overturns
in AP is typically comparable to the scale of the strain features associated with internal
gravity waves. This suggests that the overturns may be attributed to the breakdown of
large-amplitude internal waves.

The stability of finite-amplitude internal gravity waves was first studied by Mied
(1976) and Drazin (1977) using linear stability analysis in a two-dimensional (2-D)
plane. Klostermeyer (1991) later extended this work to consider 3-D perturbations.
Finite-amplitude internal gravity waves were found to be generally unstable to linear
perturbations, although the nature of the instability depended on the wave amplitude and
propagation angle.
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Shear-induced breaking of internal gravity waves

Lombard & Riley (1996) and Sonmor & Klaassen (1997) expanded upon this work with
more comprehensive linear stability studies. They found that as the propagation angle φ

of the wave increases, the fastest growing perturbations become three-dimensional and
resonant processes become less significant. This is important in the context of the above
thermocline observations, where AP estimated a propagation angle of φ ≈ 85◦ for the
waves associated with high strain. Although the condition of wave steepness s > 1 is
commonly used to determine whether a wave breaks through convective instability (e.g.
Thorpe 2018), the linear stability analysis suggested that there is no qualitative change in
the breakdown of an internal wave across this threshold.

To our knowledge, relatively few studies have investigated the fully nonlinear breakdown
of internal gravity waves through direct numerical simulation (DNS). Bouruet-Aubertot
et al. (2001) performed 2- and 3-D DNS (with a grid size of 2563) of a plane wave
propagating at φ = 45◦. Consistent with the earlier linear stability analysis, the primary
instability of the wave occurred due to resonance. Fritts et al. (2009a,b) later used high
resolution DNS (with a grid size of 2400 × 1600 × 800) to consider the breakdown of a
large-amplitude internal wave at φ = 72◦. They found that the breakdown was inherently
three-dimensional, and that s = 1 did not act as a significant threshold for the nature of the
breakdown, consistent with the linear analysis discussed above.

Wave breaking processes can, however, be significantly impacted by the presence of
a background shear flow. This was first highlighted by Bretherton (1966) and Booker
& Bretherton (1967), who revealed the possible emergence of critical levels, where the
horizontal phase speed of the waves matches the velocity of the shear flow. Vertical
propagation of the waves is halted at these critical levels, causing the waves to break
as their local amplitudes increase. This phenomenon was subsequently confirmed by the
experiments of Koop & McGee (1986).

Winters & D’Asaro (1994) performed 3-D hyper-diffusive simulations of internal wave
packets approaching a critical level in a shear flow. These simulations were run on a
very small grid of size 322 × 200. As waves approached the critical level, convective
rolls formed in the spanwise plane, and these rolls were in turn strongly affected by
the enhanced shear of the refracted wave. These results were consistent with the linear
stability analysis of Winters & Riley (1992), who modelled a critically refracted wave
as a statically unstable parallel shear flow. Higher resolution studies (with grids up to
3456 × 864 × 1728) of sheared internal waves were performed by Fritts, Wang & Werne
(2013) and Fritts & Wang (2013), although their approach was rather different. They
considered the effect of ‘fine-scale’ shear on a single, large-scale internal gravity wave of
steepness s = 0.5. The superposition of small-scale shear and the internal wave produced
an initial condition locally susceptible to shear instabilities. Fritts et al. (2013) also
considered the case where the shear is not aligned with the internal wave, but found that
wave–shear interactions in such cases are weak and do not lead to a breakdown of the
wave.

We shall consider a similar problem to that of Fritts et al. (2013) in this study, using
DNS to investigate the flow arising from a superposition of a plane internal gravity wave
and a sinusoidal shear flow in a triply periodic domain. Motivated by the observations of
AP, we prescribe the shear flow to vary on a larger vertical scale than the wavelength of the
internal wave. We are primarily interested in understanding the key mechanisms involved
in the interaction of the wave and the shear, as well as the properties of the turbulence
generated from the breakdown of the wave, in particular the associated irreversible mixing
and wave–mean flow interaction. In this idealised study, we do not specify the source of the
internal gravity wave, but simply choose appropriate parameters to remain consistent with
the observations. We acknowledge that for many oceanographic applications, it is useful
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to quantify mixing associated with specific generation mechanisms, such as oceanic lee
waves (Legg 2021).

The remainder of the manuscript is organised as follows. Section 2 describes the set-up
of the numerical simulations, and also presents the results of some elementary linear ray
tracing calculations to provide a link between our nonlinear flow and linear predictions of
critical levels from wave–mean flow analysis. Section 3 presents the results of our DNS,
focusing on the nature of the wave breaking, the mixing achieved by turbulence, and the
effect of the breaking wave on the mean flow. Our findings are summarised in § 4, and
their implications are then discussed in the context of internal wave driven mixing in the
ocean.

2. Numerical simulations

2.1. Nonlinear 3-D simulations: domain and initial conditions
We use DIABLO (Taylor 2008) to perform DNS of the Navier–Stokes equations subject
to the Boussinesq approximation and an imposed, constant mean stratification. The
numerical solver implements parallelised pseudospectral methods for spatial derivatives,
and time evolution is achieved using a third-order Runge–Kutta scheme. Dealiasing by
a 2/3 rule is applied to the calculation of the nonlinear terms, and periodic boundary
conditions are used in all directions. The governing equations read

∇ · u = 0, (2.1)

∂u
∂t

+ (u · ∇) u = −∇p + 1
Re

∇2u + Ri0θ ẑ, (2.2)

∂θ

∂t
+ (u · ∇) θ = 1

RePr
∇2θ − w. (2.3)

Here, p is the kinematic pressure and θ is the dimensionless buoyancy perturbation to a
uniform background stratification. The total dimensionless buoyancy is therefore given by

b = z + θ, (2.4)

which is related to the full, dimensional density profile by

ρ = ρ0 − b�ρ, (2.5)

where ρ0 is a typical scale for the mean density and �ρ is a typical scale for the density
fluctuations. The dimensionless parameters in (2.1)–(2.3) are the Reynolds number, the
Prandtl number, and the Richardson number, defined as

Re = L0U0

ν
, Pr = ν

κ
, Ri0 = g�ρL0

ρ0U2
0

= N2
0L2

0

U2
0

, (2.6a–c)

where N0 is the buoyancy frequency of the uniform background stratification; U0 and L0
are typical velocity and length scales associated with a background shear flow, and ν and
κ are the diffusivities of momentum and heat respectively. In all of our simulations, the
bulk Richardson number Ri0 is set equal to one so that the inertial time scale L0/U0 is
equal to the buoyancy time scale N0

−1. The Prandtl number Pr is also set to one in every
simulation to enable, subject to the constraint of the computational resources available to
us, adequate resolution of the small-scale dynamics at (what we believe to be) sufficiently
high Reynolds number Re.

We note that the Prandtl number appropriate for seawater at 20 ◦C is Pr = 7, and
for flows stratified by salinity, Pr (or more precisely the Schmidt number) takes values
921 A24-4
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of O(1000). Previous studies have highlighted significant Pr-dependence of the mixing
properties (Smyth, Moum & Caldwell 2001), interface evolution (Xu, Stastna & Deepwell
2019) and secondary instabilities (Salehipour, Peltier & Mashayek 2015) in simulations of
stratified flows. Although we cannot capture these effects at Pr = 1, the flow we consider
requires high values of Re, making DNS at high Pr currently infeasible.

As discussed in the introduction, we are inspired and motivated by the observations
of Alford & Pinkel (2000, AP) of wave breaking in the thermocline, and consider the
flow developing from the superposition of a plane internal gravity wave and a sinusoidal
shear flow. AP estimated the vertical wavenumber of large-amplitude internal waves
associated with overturning events to be approximately m ≈ 2π/(12 m). By inspecting
vertical profiles of the effective strain rate ∂w/∂z and accounting for Doppler shifts by
horizontal currents, they also estimated a typical horizontal wavenumber of the waves
as κ ≈ 2π/(180 m). These estimates coincide with measurements of vertical shear
that vary on a length scale of O(30 m). It is not possible to resolve centimetre-scale
dissipation adequately using DNS while also resolving the dynamics associated with
lengths O(100 m). We therefore perform a ‘miniaturised’ simulation of the shear and
internal wave interaction by reducing the Reynolds number to a computationally tractable
value.

In a periodic domain of dimensionless height 2π, we set ū(z) = sin z as the base shear
flow. The minimum gradient Richardson number of this flow Rim = min(Rig) is equal
to the bulk Richardson number Ri0 = 1, with Rig taking this value at the edge of the
domain (z = 0, 2π) as well as at the mid-height z = π. This ensures that the background
shear profile is linearly stable, as shown by Balmforth & Young (2002). We superimpose
this shear flow and a plane internal gravity wave with dimensionless wave vector k =
(k, l, m) = (1/4, 0, 3). Compared to the observational estimates of AP the wave has a
similar propagation angle, and the ratio between the vertical wavenumber of the shear
(m = 1) and the vertical wavenumber of the wave (m = 3) also provides a good match to
the observations. Preliminary simulations showed that waves oriented perpendicular to the
shear flow (with k = 0, l /= 0) produce insignificant interactions even at large amplitude,
consistent with the findings of Fritts et al. (2013). We therefore focus only on the case
where the planes of the wave and shear are aligned.

We perform simulations at Reynolds numbers of 5000 and 8000. The dimensionless
domain size is chosen to fit one horizontal wavelength of the internal wave and one
wavelength of the shear. Preliminary runs showed that the scale of spanwise motion that
develops is small, so we choose a narrow domain of size 8π × π/2 × 2π. Setting the
kinematic viscosity to ν = 1 × 10−6 m2 s−1, typical of water, and choosing a typical
buoyancy frequency of N0 = 5 × 10−3 s−1, we can deduce typical velocity and length
scales from our choices of Re and Ri0. For the highest value of Re = 8000 this gives
L0 = 1.26 m and U0 = 6.3 mm s−1, and hence an effective domain size of approximately
32 m × 2 m × 8 m.

In the dimensionless Boussinesq system (2.1)–(2.3), internal gravity waves in the
xz-plane are given by the real parts of the polarisation relations

θ = s
m

exp(i(k · x − ωt + ϕ)), u = −isω
k

exp(i(k · x − ωt + ϕ)),

w = isω
m

exp(i(k · x − ωt + ϕ)),

⎫⎪⎪⎬
⎪⎪⎭ (2.7a–c)

where ϕ is an arbitrary constant phase and s > 0 is the wave steepness, representing a
dimensionless amplitude that satisfies s = 1 when buoyancy contours first become vertical
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Simulation R8s1 R8s0 R5s1 R5s0

Reynolds number (Re) 8000 8000 5000 5000
Wave steepness (s) 1 0.5 1 0.75
Richardson number (Ri0 = Ñ2) 1
Prandtl number (Pr) 1
Domain size (Lx × Ly × Lz) 8π × π/2 × 2π

Initial resolution 2048 × 128 × 512
Maximum resolution 4096 × 256 × 1024

Table 1. Parameters used in the simulations.

somewhere in the domain. For Ri0 = 1, the dimensionless wave frequency ω satisfies the
dispersion relation

ω2 = k2

k2 + m2 . (2.8)

To construct the initial condition for our simulations, we take the positive root of (2.8), set
k = 1/4 and m = 3, and (without loss of generality) choose ϕ = 0. Superposed with the
shear flow, this gives the initial condition

u(x, 0) = sin z + 4s√
145

sin
( x

4
+ 3z

)
, (2.9)

w(x, 0) = − s

3
√

145
sin

( x
4

+ 3z
)

, (2.10)

θ(x, 0) = s
3

cos
( x

4
+ 3z

)
. (2.11)

The values of wave steepness s used in the simulations are outlined with all other relevant
parameters in table 1.

The initial conditions for the buoyancy and velocity fields are displayed in figure 1 for
two values of s used in the simulations. Small-amplitude, 3-D noise is added to the velocity
field to allow the development of spanwise motion from the 2-D initial condition of (2.9)
and (2.10). All simulations begin on a uniformly spaced grid at the ‘initial resolution’
specified in table 1. This resolution corresponds to a grid spacing of �x = π/256 ≈ 1.2 ×
10−2. As the simulations develop, this spacing is compared to the minimum Kolmogorov
length scale calculated from the horizontally averaged turbulent dissipation rate

LK(t) = min
z

(
εH(z, t)Re3

)−1/4
, εH(z, t) = 1

Re
∂u′

i
∂xj

∂u′
i

∂xj
. (2.12a,b)

Here, an overbar denotes a horizontal average, and a prime denotes the deviation from that
horizontal average. Once LK becomes smaller than the initial �x, the flow is upscaled to a
higher resolution grid with a grid spacing of �x = π/512 ≈ 6.1 × 10−3. The upscaling is
achieved through performing an inverse fast Fourier transform onto the higher resolution
grid to preserve the exact spectral form of the flow fields. At late times in the simulations,
LK once again rises above the initial grid resolution as the turbulence decays. Once this
happens, the extra Fourier modes associated with the higher resolution are truncated and
we return to simulating the flow on the initial grid. After either upscaling or downscaling,
time series of the turbulence statistics remain consistent and exhibit no sudden jumps or
deviations.
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Figure 1. Initial condition as defined in (2.9)–(2.11) for (a–c) s = 0.5; (d– f ) s = 1. Panels (a,d) plot contours
of the total buoyancy field b = z + θ ; (b,e) plot the streamwise velocity u along with a quiver plot of the total
velocity field; (c, f ) plot the vertical velocity field w.

2.2. Qualitative insight from linear ray theory: critical levels
In the absence of any mean flow, the internal gravity wave (2.7a–c) propagates (in terms
of its energy) at the group velocity

cg =
(

∂ω

∂k
,
∂ω

∂m

)
= m

(k2 + m2)3/2 (m, −k) , (2.13)

where we have taken the positive root of the dispersion relation (2.8) to match the initial
condition (2.9)–(2.11). For k, m > 0 the wave therefore propagates down and to the right.
In a constant mean flow U , the frequency of the internal gravity wave appears to change as
the wave is Doppler shifted. The frequency seen by a stationary observer, which we shall
refer to as the extrinsic frequency, is given by

ω = U · k + ω̂, (2.14)

where ω̂ is the frequency arising from the dispersion relation (2.8), which we shall refer
to as the intrinsic frequency. This intrinsic frequency may equivalently be defined as
the frequency observed when travelling with the mean flow. The terminology regarding
Doppler shifts can often be unclear from the literature, with the monographs of Sutherland
(2010) and Bühler (2014) disagreeing on the extrinsic/intrinsic distinction. In defining the
extrinsic frequency ω as that seen by a stationary observer, we follow the notation and
terminology of Bühler (2014).

We consider the propagation of an internal gravity wave through the 1-D mean shear
flow ū(z) as originally considered by Booker & Bretherton (1967). Assuming that this
shear flow varies ‘slowly’ in z, the extrinsic frequency defined in (2.14) becomes

ω(k, m, z) = ū(z)k + k√
k2 + m2

. (2.15)

The wave will then propagate along a ‘ray’ in the direction of the extrinsic group velocity

dx
dt

= ∂ω

∂k
= ū + ĉg,x,

dz
dt

= ∂ω

∂m
= ĉg,z, (2.16a,b)
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where ĉg is the intrinsic group velocity detailed in (2.13). Since the mean flow is
independent of time, the extrinsic frequency will be conserved along the ray, that is
dω/dt = 0. The wave vector k = (k, m) must therefore vary along the ray such that

dk
dt

= −∂ω

∂x
= 0,

dm
dt

= −∂ω

∂z
= −k

dū
dz

. (2.17a,b)

The horizontal wavenumber k = k0 is conserved along the ray, whereas the vertical
wavenumber m will change according to the mean shear.

In the simple case of a constant mean shear ∂ ū/∂z = S0, the vertical wavenumber
satisfies dm/dt = −kS0. For positive k, the vertical wavenumber therefore decreases in the
presence of positive shear, and increases in the presence of negative shear. As m increases,
with k kept constant, the intrinsic frequency ω̂ decreases and the group velocity vector
becomes closer to horizontal (as can be inferred from (2.13) for large m). Conservation
of ω ≡ ω0 combined with the form of (2.15) can predict the existence of a critical level
where the intrinsic frequency ω̂ drops to zero and m becomes infinite. Setting ω̂ = 0 in
(2.15) implicitly defines the height of a critical level as

ω0 = ū(zc)k0. (2.18)

As waves propagate towards a critical level, they typically grow in amplitude until they
‘break’ through instabilities.

These ray-tracing calculations are commonly used to investigate the propagation
of a localised wavepacket through a large-scale (i.e. slowly varying compared with
characteristic length scales of the wavepacket) mean flow, where they can be formally
derived using a classical WKBJ (Wentzel–Kramers–Brillouin–Jeffreys) asymptotic
approximation argument. Our set-up of a relatively large-amplitude plane wave superposed
on a shear flow throughout the entirety of our computational domain is quite different, and
in particular, the required scale separation underlying the validity of the derivation of the
ray-tracing equations does not occur. Nevertheless, as we demonstrate below, solutions
to these equations still provide valuable qualitative insight into the behaviour of the full
nonlinear (and relatively rapidly spatially varying) flow. We attempt to model this system
by considering the paths of wavepackets (traced using these linear ray equations) with the
same properties as the plane wave, from different initial positions. All wavepackets have
the initial wave vector (1/4, 3), and hence also have the same initial intrinsic frequency.
However, the extrinsic frequencies, that are conserved along each ray, depend on the initial
height z0.

Figure 2 displays the results of numerically solving (2.16a,b) for the mean flow ū =
sin z. The vertical propagation of 17 wavepackets, equally spaced out at time 0, is shown
in figure 2(a). The majority of the rays end up in the centre of the domain where the
background shear is negative, and their vertical propagation decreases. This is consistent
with our earlier discussion of wave propagation through a uniform shear. Since each initial
wavepacket height has a different extrinsic frequency ω0, (2.18) can predict critical levels at
multiple heights. For the flow considered, (2.18) gives the predicted critical levels through

sin zc = sin z0 + 1√
k2 + m2

= sin z0 + 4√
145

. (2.19)

Figure 2(b) plots the critical levels (if they exist) associated with each of the rays in
figure 2(a). The above equation predicts critical levels for approximately 75 % of possible
initial heights z0. The upper and lower bounds on critical levels are also shown in
figure 2(b).
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20 40 60 80

Time t ū (z)
0

2π

π

(a) (b) (c)

z

−2 0 2

Figure 2. (a) The vertical position of wavepackets over time z(t) from the solution of (2.16a,b) from various
initial heights. (b) Critical levels zc predicted from (2.18) for each of the initial positions of (a). Black lines
represent the maximum and minimum critical levels that can arise from any initial height. (c) The mean shear
flow ū = sin z.

Before moving on to analyse the results of the direct numerical simulations, we must
emphasise that we do not expect the above linear analysis to describe the development
of the flow quantitatively. We instead believe that the analysis illustrates qualitatively
some key phenomena that occur in the flow and provides some physical insight into its
behaviour. In particular, we expect energy to build up in the region of negative shear
due to wave refraction and the appearance of critical levels. A subsequent breakdown to
turbulence is then likely through small-scale instabilities and nonlinearities, although this
may be affected by diffusion if the instabilities develop on a sufficiently slow time scale.

3. Results

3.1. Flow phenomenology and wave breakdown
We now describe the results of the (inherently nonlinear) 3-D direct numerical simulations
outlined in § 2.1. We begin by outlining key features of the flow arising from the initial
condition with wave steepness s = 1, and later compare these results to those with less
energetic initial conditions. Figure 3 presents vertical plane snapshots of the total buoyancy
field b = z + θ at various times of simulation R8s1 up to t = 32. Figure 4 shows the
vorticity field associated with the same vertical planes, with the streamwise vorticity
ζx = ∂yw − ∂zv plotted in the yz-planes and the spanwise vorticity ζy = ∂zu − ∂xw in the
xz-planes.

By time t = 8, shown in panel (d), the tilted structure of the internal gravity wave has
been distorted by the shear flow. As predicted by the ray tracing calculations in § 2.2,
vertical length scales associated with the wave decrease where the mean shear is negative,
at mid-heights in the domain. The effect of this wave refraction on the buoyancy field
can be seen in figure 3(d). In the centre of the domain, regions with statically unstable
buoyancy profiles emerge, flanked by ‘sheets’ of strong stratification where buoyancy
contours are pushed close together. This is consistent with the predictions of figure 12 for
the local wave steepness to increase near z = π, and points to a local buildup of available
potential energy. In contrast, the buoyancy contours closer to the top and bottom of the
domain flatten and relax towards the mean uniform stratification.
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Figure 3. Vertical plane snapshots of buoyancy b = z + θ in the planes x = 0 (a,c,e,g,i) and y = 0 (b,d, f,h, j)
from simulation R8s1, where Re = 8000 and s = 1. Evenly spaced contours are overlaid on the colour plot to
highlight structures. The evolution of the buoyancy field is also available as an animation in supplementary
movie 1 available at https://doi.org/10.1017/jfm.2021.506.

Panel (e) is the first to highlight 3-D motion in the flow at time t = 16. Coherent normal
mode-like disturbances emerge in the streamwise vorticity of figure 4(e) with a spanwise
wavenumber of l ≈ 20. These vorticity structures are generated in the regions where the
buoyancy field is statically unstable, which suggests that they are generated through a
convective instability. Indeed, the mushroom-like plumes in figure 3(e) further suggest
that the structures can be classified as convective rolls aligned on the streamwise axis.
Preliminary simulations at lower resolution showed that the wavenumber l associated with
the rolls is independent of the width of the domain in the y direction. We are therefore
confident that the narrow domain still captures sufficient three-dimensionality in the flow,
particularly since the rolls subsequently break down into smaller scale turbulence as they
are advected by the flow.
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Figure 4. Vertical plane snapshots of streamwise vorticity ζx = ∂yw − ∂zv in the plane x = 0, and snapshots
of spanwise vorticity ζy = ∂zu − ∂xw in the plane y = 0 from simulation Res1. Panel ( f ) is annotated with a
length scale estimate for a shear layer. The evolution of the vorticity field is also available as an animation in
supplementary movie 2.

At the same time as the appearance of the convective rolls, spanwise vorticity intensifies
locally in the xz-plane. The dark green regions in figure 4( f ) highlight strong negative
vertical shears that emerge in the centre of the domain. In a canonical stratified shear layer,
the stability of such a region would be determined by the gradient Richardson number, but
in this case such a number is difficult to quantify. Firstly the shear layer depth λSL, for
which an estimate is shown on figure 4( f ), varies in both space and time. Secondly, the
maximum shear is offset compared with the peak in stratification. In fact the shear layer
spans regions where the buoyancy field transitions between static instability and strong
stratification. The strong local shears nevertheless present a potential route for further
instabilities to develop.
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By time t = 24, shown in panels (g,h), the small-scale convective disturbances have
interacted with the strong shears in the centre of the domain, generating a turbulent flow
characterised by relatively intense small-scale vortices. Comparing the vorticity field in
figure 4(h) with the buoyancy field in figure 3(h), we find that the turbulence emerges in
a region of highly variable local stratification. This can have a significant impact on local
irreversible mixing of the buoyancy field, as we investigate further in Howland, Taylor &
Caulfield (2021).

The final snapshots presented in figures 3 and 4 highlight a striking organisation of
the turbulence into large structures. Undulations in the isopycnals in figure 3( j) are closely
reflected by intense patches in the vorticity field of figure 4( j). These patches are somewhat
reminiscent of the ‘billows’ that arise from the development of Kelvin–Helmholtz
instability (KHI). The emergence and evolution of these flow structures can be seen in
supplementary movies 1 and 2. Although it is plausible that these billows are essentially
finite-amplitude manifestations of a linear shear instability, we must add a number of
caveats to this interpretation. As mentioned above, the shear layer that develops is not
steady and its depth and velocity jump both vary in space and time. Further work is
needed to understand better the nature of instabilities in temporally varying stratified flows.
Kaminski, Caulfield & Taylor (2017) and Kaminski & Smyth (2019) have also shown
that finite-amplitude perturbations and pre-existing turbulence can significantly impact the
development of shear-driven billows in a stratified shear layer. The disturbances introduced
by the convective rolls therefore make it difficult to estimate the size of the billows from the
initial wave set-up. An alternative hypothesis is that small-scale vortices, formed through
shearing of the convective disturbances, undergo a form of inverse cascade in the presence
of the mean shear.

By the time t = 32 of the final snapshots, the turbulent dissipation rate ε′ has already
peaked and the subsequent flow is that of a turbulent decay. Figure 5 highlights the
change in various horizontally averaged quantities between the initial condition and the
flow state at the late time t = 80. As the turbulence decays, the buoyancy contours flatten
in the middle of the domain and leave alternating regions of relatively weak and strong
stratification. This variation is clear in the mean vertical profiles of N2 shown in figure 5(c),
with three strong peaks in the middle of the domain associated with a 30 %–50 % increase
in the local buoyancy gradient. The mean shear shows similar vertical variation in figure 5.
At mid-heights in the domain, local extrema in S2 appear offset from local extrema in N2,
akin to the form of an internal wave. Despite this offset, regions with significant shear
exhibit a gradient Richardson number of Rig ≈ 1, similar to the initial profile. The most
intense mean shears lead to a minimum Richardson number of Rim ≈ 1/2, significantly
above the value of 1/4 that ensures linear stability. The simulations are continued up until
t ≈ 150, although the remaining dynamics after t = 80 in case R8s1 could primarily be
characterised as relaminarisation, with the smaller-scale variations seen in figure 5 being
smeared out by diffusion.

3.2. Energetics
With a basic understanding of how the flow develops in simulation R8s1, we now
investigate how the Reynolds number Re and initial wave steepness s modify the dynamics.
We begin by further investigating the emergence of 3-D motion associated with the
convective rolls in figures 3(e) and 4(e). Time series for each component of the kinetic
energy

K = Ku + Kv + Kw =
〈
u2〉
2

+
〈
v2〉
2

+
〈
w2〉
2

, (3.1)

921 A24-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

50
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.506


Shear-induced breaking of internal gravity waves

−1 0 1 1 2 0.5 1.0 1.5 2 4

π /2

3π /2

2π

π

0

π /2

3π /2

2π

π

0

π /2

3π /2

2π

π

0

π /2

3π /2

2π

π

0

z

t = 0

t = 80

ū
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Figure 5. Comparison between times t = 0 and t = 80 from simulation R8s1 of vertical profiles of: (a) mean
streamwise velocity; (b) squared mean shear; (c) mean buoyancy gradient; (d) gradient Richardson number,
where ‘mean’ refers to a horizontal average.

and the potential energy P = Ri0〈θ2〉/2 are plotted in figure 6, where 〈·〉 denotes a volume
average. The time series are plotted on a logarithmic scale, and in every simulation we see
a period where the energy of the spanwise velocity Kv increases with an approximately
linear slope, indicating exponential growth. This growth in Kv is less steep for the two
cases with initial wave steepness, and occurs significantly later for simulation R8s0, where
s = 0.5.

To demonstrate further evidence that the mechanism driving this growth is convective,
we calculate a Rayleigh number, defined in our dimensionless framework as

Ra = Ri0Re2Pr�b(�z)3, (3.2)

where �b and �z are calculated as follows. For every horizontal position (x, y), we
consider the vertical profile of buoyancy b(z). In this profile we identify the largest
continuous region with ∂b/∂z < 0 and denote its size by �z. We then take �b as the
buoyancy difference across this region to compute the Rayleigh number through (3.2).
Taking the maximum Rayleigh number across all horizontal positions then provides us
with some information on whether convection is likely to be occurring somewhere in the
domain. Classical linear stability results predict the onset of convection above a Rayleigh
number of O(1000), with the critical value varying depending on the boundary conditions
considered (see, for e.g. Drazin & Reid 2004). In figure 6 we additionally plot the time
at which the maximum value of Ra in the domain first exceeds 2000 for each simulation.
Every case shows that the growth in Kv only occurs after statically unstable regions form
and the Rayleigh number gets sufficiently large. This, together with the quasi-exponential
energy growth, provides strong evidence that 3-D motion is brought about through a
convective linear instability. To be clear, this result only informs us of the first source
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Figure 6. Energy time series for each of the simulations, separated into individual components of velocity and
buoyancy. A logarithmic scale is used on the y-axis. Red dots denote the time at which the maximum local
Rayleigh number in the domain exceeds 2000.

of small-scale disturbances in the flow, and it cannot be used to determine how energy is
supplied to turbulence for mixing at later times.

For simulation R8s0, with the smallest initial wave steepness s = 0.5, the peak in the
energy of the spanwise velocity Kv is significantly lower than in any of the other cases.
The fact that the energy growth occurs later and more slowly than in other cases may
allow diffusive effects to impact the saturation of the convective instability. To investigate
this, we present a simple extension to add diffusion to the linear ray-tracing theory in
Appendix A. From this analysis, it is plausible that diffusive effects are impacting the
development of the wave for the cases with s < 1, but quantitative predictions cannot be
drawn from the linear theory.

The ray theory analysis introduced in § 2.2 of course relies on a number of bold
assumptions that are not even well satisfied by the initial conditions. It is therefore
remarkable how well ray theory can provide useful intuition for certain aspects of the flow,
such as in figure 7, where we plot the horizontally averaged buoyancy flux J = Ri0wθ for
each simulation. Recall that positive values of J describe a transfer of potential energy to
kinetic energy. The net buoyancy flux associated with the plane wave initial condition is
zero, but as the wave is distorted by the mean flow, large and reversible exchanges between
the kinetic and potential energies occur. Figure 7 highlights that these exchanges are
qualitatively similar at early times for all of the simulations. In the top half of the domain,
alternating patches of high and low buoyancy flux appear to propagate downwards over
time. Particularly for the cases with lower initial wave steepness, shown in panels (c,d),
this propagation is qualitatively reminiscent of the wave refraction seen in the ray-tracing
results. At late times in panel (c), significant wave activity, inferred from the buoyancy
flux, is only present at heights similar to the critical level locations specified in figure 2(b).
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Figure 7. Space–time plots of horizontally averaged buoyancy flux.

In some cases turbulence is intensified when the internal wave rays converge at the
critical level. This is reflected in the horizontally averaged dissipation rate of turbulent
kinetic energy (TKE) ε′, shown in figure 8, where

ε′(z, t) = 1
Re

∂u′
i

∂xj

∂u′
i

∂xj
. (3.3)

As before, an overbar denotes a horizontal average and a prime denotes the perturbation
from the horizontal average. In the simulations with s = 0.75 and s = 1, a patch of
large ε′ emerges in the middle of the domain in the range t = 15–30. This is consistent
with internal wave energy converging near the middle of the domain, transitioning
to turbulence through small-scale shear and/or convective instabilities and generating
localised turbulence and energy dissipation. Despite the chaotic, small-scale turbulence
present in the s = 1 simulations, panels (a) and (b) are remarkably similar. Raising Re
from 5000 to 8000 results in minimal changes to the flow structure, which reassures us that
the simulations are at sufficiently high Re to resolve oceanographically relevant turbulent
mixing. By contrast ε′ does not exhibit a strong burst when s = 0.5 in panel (c). Here,
downward propagating structures, most likely associated with the refracted internal wave,
are most prominent. The relationship between TKE production and dissipation will be
explored in more detail using the perturbation potential and kinetic energy budgets in the
next section.

3.3. Turbulence and mixing
For the simulations with higher initial wave steepness, the turbulent wave breaking event,
identified by heightened dissipation of kinetic energy in figure 8, leads to high-frequency,
small-scale features in the buoyancy flux of figure 7. However, the large-scale pattern
in the buoyancy flux J remains present during the burst of turbulent activity for times

921 A24-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

50
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.506


C.J. Howland, J.R. Taylor and C.P. Caulfield

20 40 60 80 20 40 60 80

10−5

10−4

10−3

10−2

T
K

E
 d

is
si

p
at

io
n
 r

at
e 

ε
′

Time t Time t

0

2π

π

πz

z

0

2π

0

2π

π

π

0

2π

(a)

(c)

(b)

(d )
20 40 60 80 20 40 60 80

Re = 5000Re = 8000

s = 1

s = 0.75

s = 1

s = 0.5

Figure 8. Space–time plots (as in figure 7) of the horizontally averaged TKE dissipation rate ε′, defined in
(3.3), for each simulation.

20 < t < 40, with patches of alternating sign overlaying the small-scale details associated
with turbulence. This is significant in the context of irreversible mixing, where J is often
used to infer a diapycnal mixing rate when appropriately averaged.

Consider (as in e.g. Howland, Taylor & Caulfield 2020) decomposing the kinetic and
potential energies into contributions from the horizontally averaged fields ū, θ̄ and their
perturbations u′, θ ′. For example the volume-averaged potential energy can be decomposed
as P = P̄ + P ′, where

P̄ = Ri0
2

〈
θ̄ 2

〉
, P ′ = Ri0

2

〈
θ ′2

〉
, (3.4a,b)

and 〈·〉 denotes the volume average. Performing a similar decomposition for the kinetic
energy leads to the following evolution equations for the energy components:

dK̄
dt

= −Sp − ε̄,
dK′

dt
= Sp + J − ε′, (3.5a,b)

dP̄
dt

= −Np − χ̄ ,
dP ′

dt
= Np − J − χ ′. (3.6a,b)

The mean-perturbation exchange terms are defined as

Sp = −
〈
w′u′ · ∂ū

∂z

〉
, Np = −

〈
w′θ ′ ∂θ̄

∂z

〉
, (3.7a,b)

and the dissipation rates of the perturbation energies are given by

ε′ = 1
Re

〈
∂u′

i
∂xj

∂u′
i

∂xj

〉
, χ ′ = Ri0

RePr

〈
∂θ ′

∂xj

∂θ ′

∂xj

〉
. (3.8a,b)

Dissipation rates associated with the mean quantities are defined as ε̄ = 〈|∂ū/∂z|2〉/Re and
χ̄ = Ri0〈(∂θ̄/∂z)2〉/RePr. Note that the above decomposition cannot distinguish between
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energy in internal waves and energy in turbulence since both contribute to the perturbation
energy quantities. Here, we also assume that the available potential energy of the system
can be approximated by P = Ri0〈θ2〉/2, and therefore that χ is an appropriate measure of
irreversible diapycnal mixing. The validity of this approximation is revisited in Howland
et al. (2021), where we find only small discrepancies between χ and the ‘true’ rate of
diapycnal mixing M for the flows considered here.

In a statistically steady state where energy is supplied from the mean flow through the
shear production Sp, we expect the buoyancy variance destruction rate χ ′ to balance −J .
This in turn implies that J < 0 and the buoyancy flux represents a mean transfer of kinetic
energy to potential energy. In our simulations, however, turbulence is most intense in
regions where the larger-scale wave–mean flow interaction leads to a positive buoyancy
flux (for example, see z ≈ π in panel (a) for 20 < t < 40). In fact the total mean buoyancy
flux (integrated over the domain and in time) is positive in all of the simulations, indicating
a net transfer of potential energy to kinetic energy. The magnitude of this transfer varies
significantly between the simulations, taking values between 24 % and 40 % of the initial
perturbation potential energy. The classic shear-driven steady state assumption, as used
by Osborn (1980), clearly does not apply in this case. Indeed this assumption does not
even apply to the canonical evolution of a stratified shear layer (Mashayek & Peltier 2013).
Despite the emergence of flow structures related to vertical shear (as seen in figure 4),
the turbulence in the flow primarily draws energy from the wave rather than the mean
shear flow. We therefore use the volume-averaged dissipation rates defined in (3.8a,b) to
investigate mixing properties and the evolution of turbulence in the simulations.

Time series of the decomposed dissipation rates are plotted for each simulation
in figure 9. Comparing the time series with the vorticity snapshots in figure 4, we
unsurprisingly see that the dissipation rates peak when intense small-scale turbulence
spans the domain at mid-heights. In figures 9(a) and 9(b), the fact that χ ′ peaks at the
same time as ε′ suggests that, although the convective rolls seen in figures 3(e) and
4(e) are the first small-scale structures to emerge, their contribution to mixing is small.
Indeed the overall shape of the time series curves for s = 1 in figure 9 are reminiscent
of those for the development of KHI in a stratified shear layer (see e.g. Salehipour et al.
2015). Particular features that stand out include a sharp, early rise in ε′, a short-lived
‘fully turbulent’ stage where the dissipation rates are approximately constant, and a fast
decay from this regime. This is in contrast to some other canonical flows, such as the
development of Holmboe instability, which lead to more long-lived turbulent activity
(Salehipour, Caulfield & Peltier 2016).

In the simulations with s = 1, the dominant contribution to mixing (quantified by the
time integral of χ ) comes from the ‘fully turbulent’ period 25 � t � 35. The instantaneous
mixing efficiency during this period is η = χ/(χ + ε) ≈ 0.24, which matches the KHI
simulations of Salehipour et al. (2015) for Pr = 1. Together with the temporal evolution of
ε′ and the development of ‘billow’ structures in figure 4( j), this makes a strong argument
that mixing in these flows is primarily the result of turbulence driven by local shear
instabilities, despite the presence of localised convection. Indeed the similarity in mixing
efficiency is remarkable given the highly irregular buoyancy field on which the billows
develop in our simulations.

In both of the simulations with lower initial wave steepness, the peaks in dissipation
rates are far smaller than for the more energetic initial conditions. For simulation R8s0,
where s = 0.5, the maximum value of ε′ never even exceeds the dissipation rate associated
with laminar diffusion of the mean flow ε̄. To visualise how these flows differ from the
higher dissipation cases, vorticity snapshots are plotted in figure 10 for the times at which
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Figure 9. Time series of dissipation rates, as defined in (3.8a,b), for each simulation. Dashed lines denote
quantities associated with mean (vertical) profiles, and solid lines represent dissipation rates of the perturbation
energies.

ε′ is at its maximum. Panels (a,b) show that no large billow structures develop in case
R8s0, and the maximum TKE dissipation rate is instead achieved when the convective
rolls saturate in the spanwise plane. Although the buoyancy field is sufficiently distorted
by the shear to drive local convection, the local amplification of shear in the xz-plane is
reduced compared with figure 4. Treating the dynamics as that of a refracted wave, we can
think of the wave only achieving high values of steepness once its vertical wavenumber m
has also increased significantly. The smaller scales associated with high values of m are
more susceptible to viscous effects, and it is possible that locally intense shear is smeared
out by diffusion before instabilities can grow significantly. As seen in figures 10(c) and
10(d), turbulent structures emerge from regions of high shear at slightly higher initial wave
steepness (s = 0.75). The local shear layers are not as thin as for s = 0.5, consistent with
the idea that instabilities are more likely to develop when viscous effects are reduced. At
larger values of Re, it may be possible for turbulent billows to grow from s = 0.5 and lead
to significant local dissipation and mixing. The turbulence would remain far more localised
due to the thinner shear layers, but it is possible that the combination of convective and
shear mechanisms seen in the cases where s = 1 would remain relevant.

3.4. Mean flow interactions
For the simulations with the largest wave steepness, we have deduced that the majority
of turbulent dissipation and mixing can be associated with turbulence arising from shear
instabilities. As mentioned above, turbulent shear flows are often associated with a transfer
of energy from the mean flow to the turbulence through the local shear production

Sp(z, t) = −w′u′ · ∂ū
∂z

. (3.9)
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Figure 10. Plane snapshots of vorticity at times of maximum turbulent dissipation rate ε′ for simulations R8s0
and R5s0. Planes and vorticity components match those shown in figure 4. The temporal evolution of these
vorticity fields are available in supplementary movies 4 and 8.

Positive values of Sp represent an extraction of energy from the mean flow, as highlighted
by the TKE evolution equation in (3.5a,b).

From another perspective, internal waves breaking at a critical level typically provide
momentum to the mean flow as shown in the classical experiments of Koop & McGee
(1986). This momentum transfer is a vital part of the mechanism discussed by Plumb
(1977) to describe the atmospheric quasi-biennial oscillation. In our simulations, we
appear to observe shear instabilities developing near critical levels, and therefore expect
the development of the mean flow to rely on a combination of these effects.

To investigate how the wave breaking affects the mean flow, we plot the shear production
Sp from simulation R8s1 as a function of z and t in figure 11. The time series of
volume-averaged shear production, shown in figure 11(a), is dominated by large, reversible
changes at early stages of the simulation. Indeed the mean value of Sp, averaged over both
space and time for 80 time units, is only O(10−5), indicating a small net transfer of energy
between the mean flow and its perturbation (relative to the energy changes due to turbulent
dissipation). This contrasts with the evolution of KHI in a stratified shear layer (Salehipour
& Peltier 2015). Although large, reversible changes are also seen at early times in that
set-up, the lack of initial perturbation energy requires a significant net transfer of energy
from the mean flow over the course of a turbulent event.

The small net energy transfer does not, however, mean that the mean flow is unaffected
by its interaction with the breaking wave. Figure 11(c) plots the time-averaged shear
production as a function of height, showing that Sp < 0 in the centre of the domain,
whereas Sp > 0 near the edges. This suggests that, although the turbulence produced
at mid-heights in the domain is reminiscent of that triggered by shear instabilities, any
local extraction of energy from the mean flow in this region is dominated by the earlier
wave–mean flow interaction. This is emphasised in the space–time plot of figure 11(b),
where a strong patch of negative shear production persists at mid-heights even as the
turbulence develops at t ≈ 25. As hinted at earlier in figure 4, we can therefore interpret
the billows as arising from instabilities of the wave’s shear rather than the mean flow. The
evolution of the mean flow appears primarily governed by its interaction with the coherent
internal wave, and is only slightly modified by the subsequent turbulence.
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Figure 11. Spatio-temporal evolution of shear production Sp, defined in (3.9), for simulation R8s1. (a) Time
series of volume-averaged Sp; (b) pseudo-colour plot of Sp(z, t); (c) vertical profile of time-averaged Sp.

This interpretation of a wave–mean flow interaction is also consistent with the shift
in mean streamwise velocity shown earlier in figure 5(a). Since the wavenumbers of the
internal wave k and m are both positive, we expect the wave to propagate to the right and
downwards (in the positive x and negative z directions) even as it is refracted by the shear
flow. If the wave then deposits its momentum as it approaches the predicted critical levels,
we would expect a positive shift in the streamwise velocity in that region, since the wave
is propagating to the right. This is precisely what we see in figure 5(a), where ū increases
over the region 3π/4 � z � 3π/2.

4. Discussion and conclusions

We have investigated the flow arising from the superposition of a large amplitude plane
internal gravity wave and a mean shear flow. This initial condition is inspired and
motivated by observations of high internal wave strain in the presence of variable shear
in regions of the thermocline by Alford & Pinkel (2000, AP). In our simulations, some
aspects of the dynamics at early times can be reasonably described by ray-tracing analysis,
despite a lack of the necessary, assumed scale separation between the base flow and the
wave field. The propagation of wave energy quantities towards the centre of the domain
shows qualitative agreement between the simulations and the linear theory, as seen in
figure 7. This analysis suggests that critical levels, whose locations are highlighted in
figure 2, exist in this region where the mean shear is negative. Ray tracing predicts an
increase in the vertical wavenumber m as waves approach the critical levels.

The DNS is consistent with this picture, (even though the underlying assumptions of the
ray theory are clearly not satisfied) as seen in the snapshots of figures 3 and 4. Vertical
length scales are reduced in the centre of the domain, and regions of statically unstable
buoyancy emerge as the wave field is distorted by the shear. Streamwise-aligned convective
rolls, best highlighted by figures 3(e) and 4(e), emerge from the regions of static instability
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in all of the simulations, regardless of their initial wave steepness. Quasi-exponential
growth in the energy of the spanwise velocity is observed in figure 6 once the maximum
local Rayleigh number in the domain becomes large. We deduce that the roll structures in
the spanwise plane are simply driven by a linear convective instability.

The accumulation of wave energy in the centre of the domain also leads to an
intensification of local shear in the xz-plane. Flows arising from the more energetic
initial condition (where s = 1) subsequently become turbulent and exhibit large-scale
organisation in the form of elliptical billow structures. These billows, visualised in
figure 4( j), are reminiscent of those arising due to KHI in a stratified shear layer.
Furthermore the time series of dissipation rates in figure 9 show that wave breaking is
characterised by a ‘burst’ or ‘flare’ of turbulence, rather than a sustained event. This
bursting nature is again reminiscent of turbulence initiated through KHI.

When turbulence persists throughout the domain at mid-heights, the mixing efficiency is
also largely similar to that found in previous studies of KHI at Pr = 1. The buoyancy field
surrounding the local shear layers in our simulations is complex, with regions of strong,
stable stratification, and static instability present either side of the shear layer. It is therefore
somewhat surprising that the mixing results are consistent with a typical stratified shear
layer, particularly given the results of Mashayek, Caulfield & Peltier (2013) highlighting
strong Richardson number dependence within that simple set-up. A future study of
shear-induced mixing for a wider range of background buoyancy profiles would be useful
in pinpointing the key parameters governing variations in mixing efficiency. Nevertheless
in the simulations with larger initial wave steepness, mixing appears predominantly
shear-driven despite the prior emergence of convective rolls in the breakdown of the wave.
To be clear, by ‘shear driven’ we mean that energy is supplied to turbulence primarily
through shear instabilities, and in this case the unstable shear is that in the velocity field
of the refracted internal wave.

As seen in figure 10, the less energetic initial conditions do not lead to as much turbulent
activity. The waves are still refracted towards the centre of the domain and reach sufficient
steepness to drive local convection, but we do not observe as intense shear amplification
in the xz-plane in these cases. We suggest that viscous effects are damping the wave before
strong shears can be generated. Although high wave steepness values occur at later times,
high local wavenumbers are still produced earlier by the wave refraction, and as time
progresses these gradients will be smeared out by diffusion. A simple model for this wave
damping is provided in Appendix A, although its inherently linear formulation prevents us
from drawing quantitative comparisons with the simulations presented here.

Even at the high resolution of our simulations, we cannot consider Reynolds numbers
that match our motivating oceanographic observations, suggesting that viscous effects
are overemphasised in our flows. It is therefore possible that the mechanisms driving
turbulence and mixing in our more energetic simulations may be relevant for flows arising
from smaller initial wave steepness. In these cases unstable shear layers would be produced
at higher wavenumbers, potentially limiting the size of the billows and the extent of the
turbulence. Nevertheless this wave breaking may be representative of a process leading to
intense mixing from internal waves in the ocean.

Shear-driven turbulence is commonly associated with an extraction of energy from the
mean shear flow, characterised by positive values of shear production Sp > 0. However,
even in our most energetic simulations, we find on average that Sp < 0 in the region of
most intense turbulence, as shown in figure 11. This instead suggests that the primary effect
on the mean flow comes from a wave–mean flow interaction, where the wave transfers its
momentum into the mean flow as it breaks. The change in the mean streamwise velocity
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shown in figure 5(a) supports this interpretation. Indeed, since the strong local shears
are associated with the wave rather than the mean flow, it may be expected that simple
energetics arguments regarding the interaction of turbulence and a mean flow do not apply
here.

Although this counterexample to the traditional picture of shear-driven turbulence is
specific to our set-up, it highlights a generic difficulty in analysing turbulent stratified
flows. The effects of internal gravity waves and turbulence are often considered in
isolation, although their interplay is vital at the scales associated with wave breaking that
are of interest to us. Waves break to produce turbulence, turbulence itself can emit internal
waves, and the evolution of a turbulent patch in a stratified fluid is affected at leading order
by the presence of internal waves (as reviewed e.g. by Davidson 2013). Continuous energy
transfer between waves and turbulence can lead to great difficulties in interpreting their
respective roles in the dynamics.

In our simulations, the internal wave appears to drive both the generation of turbulence
and the modification of the mean flow. However, our set-up of an initial value problem
superimposing a wave and shear is not typical of how such an interaction would arise
in the ocean. Internal waves in the ocean continuously propagate away from generation
sites such as topographic features where waves are generated through tidal flows (Sarkar
& Scotti 2017). Future studies could extend the relevant set-up of Lamb & Dunphy (2018),
who consider the interaction of a tidal flow over a ridge with a mean shear, but only in
two dimensions. It is unclear what behaviour could be expected over a longer time scale
as more waves propagate towards the breaking event through the shear. If a critical level
were responsible for the breakdown, one might expect a continuous supply of energy to
maintain the turbulence as waves propagate towards it.

Our simulation of an isolated ‘burst’ of turbulence arising from a large amplitude
internal wave is, however, more consistent with the time scales of overturning events
observed by AP. Taking the dimensionless duration of the wave breaking event in
simulation R8s1 as N0t = 50 and the background buoyancy frequency as N0 = 5 ×
10−3 s−1, we deduce an event duration of T = 1 × 104 s ≈ 0.116 d, consistent with the
time scales shown in figure 11 of AP. Of course those observations rely on individual
vertical profiles, and it is possible for longer lasting turbulent patches to simply be advected
away from the profiler.

Although not present in the observations of AP, the existence of coherent ‘staircases’
in density is common in many regions of the ocean. The propagation and instability
of internal waves in such regions, where the background stratification varies strongly,
is far different to the case of uniform stratification (Sutherland 2016). Nevertheless, the
fundamental mechanism of shear refracting small-scale internal waves seems relevant
at sharp density interfaces, at least in situations with large internal solitary waves as
considered by Xu & Stastna (2018). Understanding how generic the mixing properties
of this shear–wave interaction are for arbitrary N2(z) is vital for the general application of
our results.

In the context of the ocean thermocline, we have also neglected the effect of the Earth’s
rotation in our simulations. For the field site of AP, buoyancy effects are important on
much faster time scales than rotation, as evidenced by the typical ratio f /N = 1.6 × 10−3.
The slowly varying shear may, however, be intrinsically modified by rotation, and it is most
likely associated with a slowly propagating near-inertial wave. Although the observations
of AP tell us the strength of the vertical shear, they do not report on the orientation of
the mean flow or how it changes. This orientation may have significant consequences on
the nature of the wave breakdown. For example Fritts et al. (2013) find that a spiralling
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fine-scale shear flow weakens the spanwise convective instability relative to the case
of a shear flow aligned with the internal wave. Broutman et al. (1997) also add the
time-dependent nature of propagating near-inertial shear to their ray-tracing analysis and
find that this can reduce the proportion of short internal waves that end up dissipated in
critical layers. Determining whether these types of interaction could impact our results
on mixing and mean flow acceleration would be useful in understanding how specific the
results are to our set-up.

In regions away from the thermocline, f /N typically takes larger values and rotation can
be expected to play more of an important role, although similar wave breaking mechanisms
may still be relevant. For example the deep ocean measurements of Waterman, Naveira
Garabato & Polzin (2012) highlight a local peak in turbulent dissipation and internal wave
energy approximately 1 km above the ocean floor, where stratification remains relatively
weak. From corresponding measurements of the mean shear flow, they attribute this peak
to waves breaking at critical levels. Waterman et al. (2012) also find a mismatch in this
region between dissipation rates measured from microstructure and those inferred from
the internal wave energy. One explanation for this is that, like in our simulations, wave
energy is split between the mean flow and turbulence as the waves break. Investigating
how incoming wave energy is distributed between mean flow acceleration, turbulent
dissipation and mixing in a fully turbulent critical layer would be useful for improving
parameterisations for such scenarios. Such parameterisations could depend strongly on
the properties of the incoming waves, and therefore require a fundamental understanding
of the various sources of internal waves in the ocean. A key open question remains of how
much mixing can be attributed to each of these sources, such as tidal beams (Dauxois et al.
2018), lee waves (Legg 2021) and near-inertial waves (Alford et al. 2016).

Supplementary material and movies. Supplementary material and movies are available at https://doi.org/
10.1017/jfm.2021.506.
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Appendix A. Wave action and laminar diffusion for linear internal waves

As noted in the main text, we have utilised linear ray tracing to gain some qualitative
insight into the interaction between the (finite-amplitude) internal gravity waves and the
background shear flow we have simulated. It is always important to remember that a
key assumption in this analysis is that the mean flow varies on a much larger scale
than the wave. In our set-up of (2.9)–(2.11) the vertical wavelength of the mean shear
is only three times that of the internal wave, so the analysis presented in § 2.2 and here
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cannot (of course) be expected to describe the dynamics quantitatively. Furthermore
the large values of wave steepness we consider (s � 0.5) break the underlying linear
assumption at the heart of the theory. Nevertheless, perhaps surprisingly, valuable
qualitative insight can still be gained from a linear ray-tracing analysis. In this Appendix
we further extend this analysis by calculating the (predicted) modification of a linear
(i.e. infinitesimal-amplitude) internal gravity wave in a ‘slowly varying’ shear flow due
to laminar diffusion.

When subjected to a mean flow, internal waves do not conserve energy as they propagate
along a ray. In the linear framework considered in § 2.2, another quantity known as wave
action instead satisfies a conservation equation. We define wave action as

A = Ē
ω̂

, E = 1
2
|u′|2 + Ri0

2
|θ |2, (A1a,b)

where Ē is the horizontally averaged energy of the wave. The conservation equation for
wave action can be derived from the linearised momentum equation (as first shown by
Bretherton & Garrett 1968) and takes the form

∂A

∂t
+ ∂(A cg,z)

∂z
= 0. (A2)

We can now combine this conservation equation with the ray equations of (2.16a,b) to
give a system of three ordinary differential equations that describe the evolution of the
path and amplitude of the internal wave. Recall that in (2.16a,b), the time derivative is
defined as d/dt = ∂/∂t + cg · ∇, so we can rewrite (A2) as

dA

dt
= −A

∂cg,z

∂z
. (A3)

An analytic expression for the vertical derivative of the group velocity can also be obtained
by expressing cg,z as a function of m and using the chain rule, namely

∂cg,z

∂z
= dm

dz

[
k0

(
2m(z)2 − k0

2)(
k0

2 + m(z)2)5/2

]
. (A4)

Here, m(z) can be inferred from the dispersion relation (2.15) as

m(z) = k0

√
1

(ω0 − ū(z)k0)
2 − 1. (A5)

We now have a closed system to solve numerically for initial values of x, z, k, m and A .
To investigate how the waves behave as they are refracted towards the middle of the

domain, we now also consider the evolution of the wave action along the rays. As described
previously, the vertical wavenumber m increases as a wave approaches a critical level. This
means that molecular diffusion, thus far neglected in the analysis, may become important,
particularly for the Reynolds numbers of our direct numerical simulations. We therefore
propose a simple modification to the ray tracing equations that incorporates diffusive
effects below.

Consistent with the assumption that m is larger than the vertical wavenumber of the
shear, we only consider diffusion associated with the internal wave, and assume that the
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Figure 12. Comparison of wave steepness evolution with and without diffusive effects. From an initial
condition of s = 0.5, the evolution of wave action is calculated from (A7) and then inverted to give wave
steepness by (A8a,b).

mean shear flow ū(z) is constant in time. Defining the wave energy density E as in (A1a,b),
diffusive effects will appear in the energy equation as a dissipation rate D

∂E
∂t

+ ∂

∂z

(
cg,zE

) + u′w′ dū
dz

= −D = − 1
Re

(
∂u′

i
∂xj

∂u′
i

∂xj
+ Ri0

Pr
∂θ

∂xj

∂θ

∂xj

)
. (A6)

For Pr = 1, if we substitute the internal gravity form of (2.7a–c) (where ω in the velocity
pre-factors should be replaced with the intrinsic frequency ω̂) then the dissipation term
simplifies to D = 2(k2 + m2)E/Re. By doing this, we assume that the polarisation of the
velocity and buoyancy field in (2.7a–c) is maintained even as the vertical wavenumber
varies due to refraction. Dividing D by ω̂ then gives the corresponding dissipation rate to
add to the wave action equation, which becomes

dA

dt
= −A

∂cg,z

∂z
− 2

(
k0

2 + m(z)2)
Re

A . (A7)

This equation can be solved in conjunction with the ray-tracing equations of (2.16a,b) to
provide an estimate of the energy buildup in the centre of the domain.

Although now straightforward to calculate, wave action can be difficult to interpret
intuitively. In particular, it is not clear what a specific value of A can tell us about
how susceptible a wave is to different instabilities. Stability analyses of finite-amplitude
internal waves have shown that the local wave steepness s is a key parameter in determining
the nature of wave breakdown (e.g. Lombard & Riley 1996). We therefore convert wave
action to wave steepness by assuming the wave locally maintains the polarisation given in
(2.7a–c), even as the local wave vector is modified by the Doppler shifting. In this form,
the energy density of the wave is simply given by E = s2/2m. Wave steepness and wave
action can then be exchanged through the equations

A (z) = s(z)2
√

k0
2 + m(z)2

2k0m(z)2 , s(z) =
√

2A (z)k0m(z)2√
k0

2 + m(z)2
. (A8a,b)

Figure 12 presents the results of solving (A7) in terms of the wave steepness obtained
through (A8a,b) for a range of initial wavepacket heights z0. The initial wave steepness is
set at s = 0.5, and we compare the results for the inviscid limit in figure 12(a) with the
results for Re = 5000 in figure 12(b). In the inviscid case, s increases consistently over
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time for those rays that approach a critical level. The high values of s seen in figure 12(a)
predict the development of highly unstable convective regions in the centre of the domain.
However, once diffusion is taken into account, wave steepness is shown to peak on a time
scale of O(50) and then decrease as the critical levels are approached. This time scale is
comparable with the time at which spanwise perturbations peak in the simulations with
s < 1, shown in figure 6. It is plausible that the wave breakdown in these cases may be
affected by diffusive effects. This diffusion may also lead to the lower growth rates seen
in figure 6 for s < 1, since reduced values of local steepness produce smaller negative
buoyancy gradients to drive convective instabilities.
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