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Abstract
China’s small-scale agricultural producers face many challenges to increasing productivity and efficiency.
In recent years, the Chinese government has provided support for farmer professional cooperatives (FPCs)
to connect small farms with upstream and downstream processes in the food supply chain. This study
combines propensity score matching and sample selection-corrected stochastic production frontier anal-
ysis to estimate the impacts of FPC participation by greenhouse vegetable producers on technical efficiency
and income. Results indicate that FPCs help participants improve returns to scale and marginal returns to
land and labor, increase technical efficiency, and obtain ¥4,460 (18%) greater income per greenhouse than
nonparticipants.

Keywords: Farmer professional cooperatives; greenhouse vegetables; metafrontier; propensity score matching; selection bias;
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1. Introduction
China’s small-scale agricultural producers face many challenges to increasing productivity and effi-
ciency. The average farm size in China is only about 0.6 ha, and among vegetable producers, the
average size is even smaller—about 0.03 ha in northern China (Wang et al., 2009). Adopting new
production techniques can entail high learning and adjustment costs, compounded for small farm-
ers in China by a lack of agricultural extension agents to disseminate information on new techniques
(Hu et al., 2012; Jin et al., 2010). Most small farm households cannot access modern marketing
channels because of an inability to meet the required food safety and quality standards (Jia,
Huang, and Xu, 2012). In small-scale vegetable production, many farmers have attempted to
overcome these challenges by adopting greenhouse production to control growing conditions
and thereby improve the quality and quantity of output (Ti, Luo, and Yan, 2015). However, green-
house production is relatively intensive in capital and labor, and endowment constraints can inhibit
adoption by small-scale farm households or even limit the technical efficiency and output
price because of food retailers’ buyer power (Mugera and Langemeier, 2011; Sheldon, 2017;
Wang et al., 2013).

In response to these challenges, the Chinese government in the early 2000s supported vertical
coordination in the food supply chain and resource-provision contracts for small farmers.
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Studies for other countries have found a strong correlation between the contractual support pro-
vided to farmers and the degree of transformation of agricultural practices (Reardon et al.,
2009). However, in the case of China, these government interventions largely failed. Huang et al.
(2009), for example, found almost no written contracts in a survey of vegetable farmers in Shandong
province.

Since the failure of vertical coordination and contracts to emerge, the Chinese government has
provided policy and financial support for the creation of farmer professional cooperatives (FPCs)
to act as an intermediary connecting farmers with upstream and downstream processes in the
food supply chain (Huang and Liang, 2018; Yang, Klerkx, and Leeuwis, 2014). FPCs are concep-
tualized as nonneutral entities that assist farmers in attaining better positions in agricultural inno-
vation systems and modern value chains (Hussein, 2001). FPCs typically provide services such as
assistance in purchasing material inputs; guidance regarding new technologies, equipment, and
production management practices; connections to modern marketing channels; and primary
product processing (Deng et al., 2010; Yang, Klerkx, and Leeuwis, 2014). In 2017, there were about
1.9 million FPCs in China, with about 10% of these being vegetable cooperatives (Huang and
Liang, 2018). For small farms in particular, FPCs can reduce the information and transaction costs
associated with farm management and marketing (Hoken and Su, 2018).

Existing studies find that cooperatives can play an important role in accelerating adoption of
agricultural technologies, raising prices received by farmers via the market power that comes from
aggregating numerous producers, and penetrating modern marketing channels (Abebaw and Haile,
2013; Cakir and Balagtas, 2012; Courtois and Subervie, 2015; Hoken and Su, 2018; Jia, Huang, and
Xu, 2012; Ma and Abdulai, 2016; Reardon et al., 2009). However, the benefits of participating in
cooperatives are not uniform given differences among farmers in resource endowments, institu-
tional arrangements, product types, market conditions, and managerial ability (Garnevska et al.,
2011; Ito, Bao, and Su, 2012; Michelson, 2012; Reardon et al., 2009). In China, concerns have also
been raised about the ownership and governance structure, capital constraints, small size, and man-
agement effectiveness of many FPCs (Huang and Liang, 2018; Xu et al., 2017). Jin et al. (2010) found
that the rapid rates of productivity growth for horticultural crops in China were driven entirely by
technological change, with declines over time in levels of technical efficiency (TE).

In empirically analyzing the impact of participating in a cooperative on TE and income, two
issues should be carefully considered. First, because farms self-select into FPC participation, there
may be selection bias because of either observable farm characteristics (e.g., size), unobserved
characteristics (e.g., managerial ability), or both. Second, there may be differences in the produc-
tion frontiers between FPC participants and nonparticipants because of the services provided by
FPCs (O’Donnell, Rao, and Battese, 2008). We disentangle these issues by integrating the frame-
work developed by Villano et al. (2015), which employs propensity score matching (PSM) and
sample selection-corrected stochastic production frontier (SPF) analysis (Bravo-Ureta, Greene,
and Solís, 2012), and a new approach to estimating the production metafrontier by Huang,
Huang, and Liu (2014). The metafrontier is an overarching function that encompasses the deter-
ministic components of stochastic frontier production functions for firms operating under differ-
ent technologies (Battese, Rao, and O’Donnell, 2004).

The objective of this study is to estimate the impacts of FPCs in China on TE and income
among greenhouse vegetable producers while addressing the two issues just mentioned. This study
uses plot-level survey data for 2014 from 451 greenhouse vegetable farms in five regions of north-
ern China that are the nation’s primary producers of greenhouse vegetables. Greenhouse vegetable
production has grown rapidly in China in recent years, and about one-third of total vegetable
production in 2016 came from greenhouses.1

This study makes three contributions to the literature. First, it applies a methodologically rig-
orous procedure for estimating the impacts of FPC participation in a setting with cross-sectional

1Source: http://news.cctv.com/2017/09/18/ARTIYcw2vRCIknQh1V33oCc2170918.shtml (accessed July 10, 2019).
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data where the participation decision may depend on both observed and unobserved variables.
Second, this study examines FPCs as one potential avenue for addressing a long-standing problem
in China and other developing countries: how to increase incomes among small farm households.
Third, unlike most impact evaluations in agriculture, which examine production or income, this
study digs deeper by also examining TE. Agricultural growth can be decomposed into growth in
inputs and productivity growth, and productivity growth can in turn be decomposed into tech-
nological change and improvements in TE. Each component of agricultural growth has a distinct
set of driving factors (Bravo-Ureta et al., 2007), so that understanding how to foster agricultural
growth requires an understanding of each component.

2. Empirical framework
2.1. Propensity score matching

If there are observed variables that are correlated with productivity and efficiency, as well as with
participation in FPCs, then failure to account for self-selection in FPC participation will lead to
biased estimates of the impacts of FPCs on TE and income. PSM can be used to construct a control
group of nonparticipants who share similar observable characteristics to farmers participating in
FPCs to address selection bias arising from observed variables (González-Flores et al., 2014;
Todd, 2008).

We generate propensity scores using a binary choice model that incorporates the observed var-
iables hypothesized to influence farmers’ FPC participation decisions. The propensity scores are
then used to identify a control group among the nonparticipants to match with the participant
group (treatment group). There are a variety of algorithms in the literature for performing
matches, including nearest-neighbor matching (NNM), caliper matching, radius matching, strat-
ification matching, interval matching, kernel-based matching (KBM), and local linear matching
(Caliendo and Kopeinig, 2008). Most of these algorithms limit the construction of matches to
regions of common support, where the matches are sufficiently close. We tried NNM with caliper
and KBM, which are two of the most popular algorithms, and selected NNM based on its better
performance with our data.

With the treatment and control groups identified, the average treatment effect for the treated
(ATT) can be estimated. The ATT is the average effect of treatment on those subjects (farms) who
receive the treatment (FPC participation). The ATT is defined as

τPSMATT � EP Z� �jI�1 E R1jI � 1; P�Z�� � � E R0jI � 0; P�Z�� �f g: (1)

P(Z) represents the propensity scores, where Z is a vector of variables hypothesized to influence
the participation decision. R1 and R0 are outcomes (e.g., income) for the treatment and control
groups, respectively. I= 1 indicates participation, and I= 0 indicates nonparticipation.

2.2. Sample selection-corrected group production frontiers

Following Huang, Huang, and Liu (2014) and Villano et al. (2015), suppose that vegetable farmers
are divided into two groups, FPC nonparticipants (group 0) and FPC participants (group 1), with
all the farms in a given group sharing the same production frontier. The group sizes are N0 and
N1, respectively. The group-specific SPFs can be written as

lnYji � ln f j Xji

� �� εji � ln f j Xji

� �� vji � uji: (2)

Yji is the output of farm i in the jth group (i= 1, : : : , N0 for j= 0; i=N0� 1, : : : , N0�N1 for
j= 1). Xji denotes a vector of production inputs, f j(·) is the group-specific production technology,
vji is a random error representing statistical noise and unobserved variables, uji≥ 0 is a nonnega-
tive random error representing technical inefficiency that is independent of vji, and ϵji= vji – uji is
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a composite error. vji is assumed to be normally distributed with zero mean and group-specific
variance σ2

vj. uji is assumed to follow a folded normal distribution (i.e., uji= |Uji|), where Uji is a
normally distributed random variable with zero mean and group-specific variance σ2

uj. A farm’s
TE is defined as

TE j
i �

Yji

f j Xi� �evji � e�uji ≤ 1: (3)

Technical inefficiency arises when a farm produces less than the maximum possible output from
the inputs it employs. TE can be increased through better managerial decisions. This study focuses
on FPCs as a vehicle for improving farms’ managerial ability.

To deal with biases from unobserved variables (e.g., managerial ability) within an SPF formulation,
we employ the procedure introduced by Greene (2010), which is a sample selection correction for the
stochastic frontier model. In this procedure, there is a probit sample selection equation:

Ii � Probit α0Zi � ωi� �: (4)

Ij= 1 if farm i participates in an FPC, and Ii= 0 if it does not participate. As previously, Zi is a vector
of variables hypothesized to influence the participation decision, α is a vector of parameters, and ωi is
a normally distributed error term with zero mean and unit variance. In the estimation of the SPF for
nonparticipants, v0i and ωi are assumed to follow a bivariate normal distribution with correlation
coefficient ρ0. Similarly, in the estimation of the SPF for participants, v1i and ωi are assumed to follow
a bivariate normal distribution with correlation coefficient ρ1. The parameters ρ0 and ρ1 capture the
presence or absence of selection bias from unobserved variables.

2.3. Metafrontier production function

After estimating the group-specific SPFs, we perform a likelihood ratio test to determine whether
the TEs for the two groups can be explained by a common technology. If the null hypothesis of a
common technology is rejected, and it is rejected with our data, the estimation can proceed fol-
lowing a metafrontier framework (Battese, Rao, and O’Donnell, 2004).

We use a procedure developed by Huang, Huang, and Liu (2014) to estimate the metafrontier.
It involves quasi–maximum likelihood estimation of the following equation:

ln f̂ j Xji

� � � lnf M Xji

� �� vMji � uMji : (5)

f̂ j Xji

� �
: is the SPF estimate given previously of the frontier for farm i in group j, fM(Xji) is the

metafrontier production function to be estimated, vMji � εji � ε̂ji is the error from the SPF esti-
mation, and uMji ≥ 0 is a nonnegative error representing the gap between group j's production
frontier and the metafrontier. uMji is assumed to be truncated normal—that is,

uMji 	 N��µM Sji
� �

; σM
u

� �
2�: (6)

Sji is a vector of variables representing the production environment for farm i in group j. The
vector Sji can include the services provided by FPCs to participants.

The gap between group j’s production frontier and the metafrontier is known as the technology
gap ratio (TGR), which is defined as

TGRj
i �

f j Xji

� �

f M Xji

� � � e�u
M
ji ≤ 1: (7)

The TGR can be attributed to a farmer’s choice of a technique, which in our case is either partici-
pating or not participating in an FPC. Defined as the gap between group-specific production fron-
tiers to the metafrontier, TGRs can also be seen as the result of technological change. Because
FPCs are hypothesized to assist farmers in attaining a better production environment through

594 Ying Dong et al.

https://doi.org/10.1017/aae.2019.22 Published online by Cambridge University Press

https://doi.org/10.1017/aae.2019.22


access to agricultural innovation systems and modern value chains, this gap can also be referred to
as an environment-technology gap ratio. A farm’s metatechnical efficiency (MTE) is defined as its
TE relative to the metafrontier, and is related to TE and the TGR as

MTE j
i �

Yji

f M Xji

� �
ev

M
ji

� TGRj
i × TEj

i ≤ 1: (8)

3. Data, variables, and econometric model
This article analyzes data collected in a household-level survey of greenhouse-grown vegetable
planting in a large area of northern China that surrounds Beijing and consists of five provinces—
Beijing, Tianjin, Hebei, Liaoning, and Shandong. To facilitate our comparisons of greenhouse
production between FPC participants and nonparticipants, we restricted the sampling frame to farm-
ers who produced fruit vegetables (tomatoes, cucumbers, eggplants, and green peppers), which share
similar production techniques and equipment. Based on the information from local agricultural offi-
ces, we carried out an initial investigation of the main greenhouse planting areas surrounding Beijing
1 year prior to the formal survey work. Then we randomly selected three greenhouse vegetable plant-
ing counties from each main greenhouse vegetable producing area, and then two random villages
from each county, and obtained a total sample of 465 observations. Of those, 150 participated in
an FPC and 315 did not. After removing observations with missing values on one or more variables
in the analyses, the total sample became 451 (150 participants and 301 nonparticipants). As discussed
subsequently, the PSM results indicated that 14 of the 301 nonparticipants were off support (i.e., not
matched with the participants in terms of their propensity scores), reducing the samples for the group-
specific SPF and metafrontier estimations to 437 in total (150 participants and 287 nonparticipants).

Respondents completed a structured questionnaire composed of multiple modules covering
their vegetable output, input allocation, technology adoption, marketing channel choices, and
whether they were participating in an FPC. They were asked to report inputs and outputs for
the entire previous year for their main greenhouse vegetable plot(s) (i.e., across all the growing
seasons within the year), farm characteristics, and operator characteristics. Because the study
focuses on greenhouse fruit vegetables, the rotation time(s) and greenhouse types,2 which are
the main characteristics that vary depending on which crops are produced, were also included
in the questionnaire to further improve the accuracy and reliability of our comparisons between
FPC participants and nonparticipants.

Based on the literature and our experience, we hypothesized that both variables influencing
farmers’ income benefit and cost restrictions may affect farmers’ decisions about joining FPCs,
which also indicates their TE. Therefore, the vector of covariates Zi in the FPC participation
equation (4) include farm size (hectares), family size, operator’s age, operator’s education
(a dummy for whether or not the operator has attended senior high school),3 vegetable farming
experience, rotation time(s), and greenhouse type. To capture how important vegetable produc-
tion is to a farm, the share of farmland planted with vegetables is also included. Although the
five provinces in the survey share similar climates and production techniques, three of them
(Beijing, Tianjin, and Hebei) are a little different from the others because they are closer to
the major population centers of Beijing and Tianjin. To capture this, we include a dummy vari-
able for the Beijing-Tianjin-Hebei region. The results from estimation of equation (4) are used
in PSM analyses.

2The farms surveyed here have two main types of greenhouses: (1) ordinary greenhouses that are not suitable for produc-
tion in the winter and (2) warmhouses with heating to produce vegetables during the winter.

3Previous research (Dong, Mu, and Ito, 2015) indicates that senior high school education provides farmers with skills and
abilities that can aid in technology adoption to reduce technical inefficiencies, whereas less education does not.
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To facilitate comparability across vegetable farms in our sample operating at different scales,
output and production inputs are measured on a per greenhouse basis for each farm. There are
four production inputs (Xji) in the group-specific production functions (2) and metafrontier pro-
duction function (5): land (hectares per greenhouse), labor (days of work per greenhouse), fertil-
izer (chemical and organic fertilizers, plus manure, in yuan, per greenhouse), and an aggregate of
other inputs (seeds, water, electricity, and primary processing fees, in yuan, per greenhouse).4

Output (Yji) is measured by fruit vegetable income per greenhouse (in yuan). The commercial-
ization ratios of the farmers surveyed are almost 100%, so that income can be represented by the
value of output. We measure output by value rather than quantity because value incorporates not
only the quantity of each vegetable but also the mix of vegetables produced and price premiums or
discounts based on quality, market timing, and other factors affected by farm management deci-
sions.5 This means that observed technical inefficiencies in the group-specific production frontiers
or the metafrontier may be because of producing too little quantity given the inputs at hand; pro-
ducing a mix of vegetables that does not maximize income given the relative prices of different
vegetables; selling at prices that are too low because of quality, timing, or other management deci-
sions; or some combination of these three factors. This also means that our estimates of impacts of
FPCs on TE may arise through one or more of these three management factors.6

We use a translog functional form for the group-specific production functions f j(Xji) and the
metaproduction function fM(Xji) because it is more flexible in input-output relationships and input
substitution possibilities than the standard Cobb-Douglas form. The translog can be written as

ln f k Xi� � � βk0 �
X

4
p
βk
p lnXip

� �� 1=2
X

4
p�1

X
4
q�1

βk
pq lnXip

� �
lnXiq

� �
; (9)

where k= 0, 1 (group-specific production functions), or M (metaproduction function). The β's are
parameters to be estimated, with βk

pq � βkqp for all p and q. The translog reduces to the Cobb-Douglas
if βk

pq � 0 for all p and q. A likelihood ratio test using the results given subsequently rejects the null
hypothesis of a Cobb-Douglas form in favor of the translog.

With respect to the variables in the vector Sji affecting the metafrontier technology gap in equa-
tions (6) and (7), we include three FPC service variables, all of which are dummy variables: FPC
assistance in materials purchasing, FPC provision of guidance on production technologies, and
FPC-enabled access to marketing channels. We express the mean of the error term �uMji � repre-
senting the gap between group j’s production frontier and the metafrontier as a linear function of
these service variables:

µM Sji
� � � δ0Sji; (10)

where δ is a vector of parameters to be estimated, including an intercept.

4A potential source of measurement error for fertilizer and other inputs, because they are measured in value terms, is that
their values may be affected by differences among farms in unit prices paid for these inputs that do not reflect differences in
input quality.

5One potential drawback of measuring output by value is that prices may differ between FPC participants and nonparti-
cipants or according to a variable such as farm location that may be associated with FPC participation. To test whether this is
an issue in our case, we ran unit price tests both for FPC participants and nonparticipants and for farms inside and outside the
Beijing-Tianjin-Hebei circle. In both cases, the means are close to each other, with t-statistics equal to −0.82 and −1.13, which
means that prices are not significantly different either by participation or by location. This may be attributable to significant
improvements in recent years in transportation infrastructure, market infrastructure, and vegetable supply chains in the five
provinces that are the focus of our study.

6With respect to inputs, figures in Table 1 indicate significant heterogeneity among farms in input usage, especially fertilizer
and the “other inputs” aggregate. The figures in Table 1 also show that FPC participants are significantly less likely than
nonparticipants to have a warmhouse, and that participants plant fewer rotations of vegetables per year than nonparticipants.
These two factors would tend to work against the TE of FPC participants relative to nonparticipants, and yet our results
indicate that participants have significantly higher levels of TE than nonparticipants.
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Table 1 presents summary statistics for the variables in the econometric model, for FPC par-
ticipants and nonparticipants. In terms of the variables entering the sample selection equation and
PSM, compared with nonparticipants, participants on average are older, have a higher average
level of education, do fewer rotations of vegetable crops per year, are more likely to have ordinary
greenhouses (as opposed to warmhouses), devote a slightly smaller percentage of their land area to
vegetables, and are more likely to be located in the Beijing-Tianjin-Hebei region. Looking at out-
put and inputs, participants on average have a higher vegetable income than nonparticipants. The
FPC service variables are equal to 0 for all nonparticipants. Among participants, more than two-
thirds received FPC assistance in materials purchasing (73%) and guidance on technologies (71%).
About one-half (48%) received assistance in accessing marketing channels.

Table 1. Summary statistics

Variable

FPC Participants FPC Nonparticipants

Mean Standard Deviation Mean Standard Deviation

Sample selection equation and propensity score matching

Farm size (hectares) 0.657 0.277 0.533 0.117

Family size (people) 3.940 0.113 4.051 0.084

Operator age (years) 49.04* 0.706 47.410 0.482

Operator has senior high school
education (yes= 1, no= 0)

0.480*** 0.041 0.352 0.027

Vegetable farming experience
(years)

15.033 8.273 15.430 8.377

Rotations per year (number) 1.360** 0.055 1.495 0.037

Greenhouse type (ordinary= 1,
warmhouse= 0)

0.747*** 0.036 0.571 0.028

Vegetable planting share (%) 72.250** 5.202 72.452 1.702

Beijing-Tianjin-Hebei region
(yes= 1, no= 0)

0.647*** 0.039 0.521 0.028

Output and inputs

Vegetable income
(yuan per greenhouse)

28,851** 1,451 25,236 1,027

Land (hectares per greenhouse) 0.668*** 0.023 0.823 0.027

Labor (days per greenhouse) 205 6.864 193 4.812

Fertilizer (yuan per greenhouse) 3,854 6,525 3,221 4,969

Other inputs (yuan per greenhouse) 3,575 4,202 3,516 5,080

Metafrontier technology gap

FPC assistance in materials
purchasing (yes= 1, no= 0)

0.727*** 0.036 0 —

FPC guidance on technologies
(yes= 1, no= 0)

0.713*** 0.037 0 —

FPC-enabled access to marketing
channels (yes= 1, no= 0)

0.480*** 0.409 0 —

Note: Asterisks (***, **, and *) denote differences in the means between farmer professional cooperative (FPC) participants and
nonparticipants that are significant at the 1%, 5%, and 10% levels, respectively.
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4. Estimation results
4.1. Propensity score matching

Probit estimates of the sample selection equation (4) are in Table 2. These results are used to
generate propensity scores. Farm operators with a senior high school education are more likely
to participate in FPCs, which is consistent with the literature (e.g., Wollni and Zeller, 2007) and is
often attributed to the greater ability of more educated farmers to access, process, and act on new
information. Farms with ordinary greenhouses or fewer crop rotations per year are more likely to
participate in FPCs. These farms face more risk because they are more limited in their ability to
change production plans based on the weather or market situation. For them, participating in an
FPC may be a risk-reduction strategy. Farms located in the Beijing-Tianjin-Hebei region are more
likely to participate, which makes sense because the greater economic development and clustering
of agribusinesses in this region mean that FPCs have more to offer participants.

Results of balancing tests for PSM are shown in the Appendix (Table A1). We tried two popular
matching algorithms, NNM with caliper and KBM, and NNM was selected based on its superior
performance with better-matched and balanced samples. Figure 1 presents the distribution of sup-
port for the treated (participants) and untreated (nonparticipants) using the NNM results. The
samples are balanced with only 14 nonparticipants (4%) off support (i.e., not matched with the
participants in terms of their propensity scores), and none of the participants off support (not
matched with the nonparticipants). This implies that selection bias from observables is not a
major issue with our data. After removing the 14 nonparticipants who are off support, the samples
for the SPF and metafrontier estimations became 150 participants and 287 nonparticipants
(437 total).

4.2. Sample selection-corrected group production frontiers

The sample selection-corrected, group-specific SPF estimation results using matched samples are
shown in Table 3. The results in Table 3 indicate that there are important differences between the

Table 2. Probit estimates of farmer professional cooperative participation

Variable Estimated Coefficient Standard Error

Farm size 0.0005 0.001

Family size 0.0742 0.104

Operator age 0.023*** 0.009

Operator has senior high school education 0.453*** 0.136

Vegetable farming experience −0.008 0.008

Rotations per year −0.264** 0.105

Greenhouse type 0.446*** 0.139

Vegetable planting share −0.002 0.003

Beijing-Tianjin-Hebei region 0.394*** 0.142

Constant −1.785*** 0.602

Number of observations 451

Log-likelihood function −267.565

Likelihood ratio χ2 33.64

Note: Asterisks (***, **, and *) denote significance at 1%, 5%, and 10% levels, respectively.
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Table 3. Sample selection-corrected stochastic production frontier model estimates using matched samples

Variables

Participants ( j = 1) Nonparticipants ( j = 0)

Estimated Coefficient Standard Error Estimated Coefficient Standard Error

Constant 0.423** 0.192 0.235** 0.110

ln land 0.600*** 0.120 0.119 0.089

ln labor 0.508*** 0.106 0.038 0.092

ln fertilizer 0.201*** 0.053 0.252*** 0.052

ln other inputs −0.067 0.084 0.234*** 0.056

0.5× (ln land)2 0.522* 0.316 −0.057 0.097

0.5× (ln labor)2 0.102 0.260 0.109 0.112

0.5× (ln fertilizer)2 0.022* 0.012 0.035*** 0.012

0.5× (ln other inputs)2 0.034 0.079 0.016 0.050

ln land× ln labor 0.246 0.410 0.262* 0.141

ln land× ln fertilizer 0.216* 0.131 −0.063 0.099

ln land× ln other inputs −0.370 0.253 0.067 0.132

ln labor× ln fertilizer 0.077 0.152 0.094 0.104

ln labor× ln other inputs −0.253 0.203 −0.106 0.124

ln fertilizer× ln other inputs −0.044 0.059 −0.123 0.046

σuj 0.426*** 0.138 0.549*** 0.127

σvj 0.269*** 0.068 0.450*** 0.046

ρj 0.105 0.503 −0.564* 0.330

Sample size 150 287

Log-likelihood function −216.67 −348.35

Notes: The variables used in the estimation are normalized by their geometric means, so that the first-order estimates are partial output
elasticities with respect to individual inputs at geometric mean values. Asterisks (***, **, and *) denote significance at 1%, 5%, and 10% levels,
respectively.

Frequency Distribution

0 .2 .4 .6 .8
Propensity Score

Untreated: Off support Untreated: On support
Treated

0

Figure 1. Distribution and common
support for propensity score
matching.
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SPFs for participants and nonparticipants, suggesting that FPCs change the production technol-
ogies used by their member farms. We ran a likelihood ratio test of a null hypothesis of equality in
production function parameter values between participants and nonparticipants, and the null
hypothesis was rejected (X2= 86.52, P< 0.001).

The variables used in the estimation of the Table 3 results were normalized by their geometric
means, so that the first-order estimated coefficients on the inputs (estimates of the βkp in
equation 9) are partial output elasticities with respect to individual inputs when evaluated at their
geometric mean values. For example, the estimated partial output elasticity of land at the sample
geometric means for participants is about 0.6. The sum of the partial output elasticities for par-
ticipants is greater than 1 (about 1.2), indicating increasing returns to scale per greenhouse. For
nonparticipants, the sum of the partial output elasticities is significantly less than 1 (about 0.6),
indicating decreasing returns to scale per greenhouse.

For both participants and nonparticipants, the estimated coefficient on the log squared of fer-
tilizer is positive and statistically significant, which indicates that the partial output elasticity of
fertilizer increases as fertilizer use increases. For participants, the estimated coefficient on the log
squared of land is positive and statistically significant, indicating that the partial output elasticity
of land increases as farm size increases. The significant positive coefficient on the land-fertilizer
interaction term for participants suggests a complementary relationship between these two inputs,
in the sense that an increase in one of these two inputs will raise the partial output elasticity of the
other. The significant positive coefficient on the land-labor term for nonparticipants points to a
similar complementary relationship for those two inputs. The sample mean estimate of the partial
output elasticity of labor is about 0.60 and statistically significant for participants, but only about
0.12 and not statistically significant for nonparticipants. For land, the estimated partial output
elasticity is about 0.51 for participants and statistically significant, versus 0.04 and not statistically
significant for nonparticipants. This suggests that FPCs help participants get a greater percentage
boost in output than nonparticipants from additional land or labor.

The estimated partial output elasticity for other inputs (seeds, water, electricity, and primary
processing fees) is about 0.23 and statistically significant for nonparticipants, whereas it is close to
zero and not statistically significant for participants. This suggests that FPC participants may be
maximizing output with respect to these other inputs, which in turn suggests an allocative ineffi-
ciency because these inputs have a cost. At sample geometric means, the estimated marginal prod-
uct of other inputs for nonparticipants is about 1.7 but is not statistically different at the 5%
significance level from its allocatively efficient value of 1. Similarly, the estimated marginal prod-
uct of fertilizer for participants (1.5) is not statistically different from 1 at the 5% level. However,
for nonparticipants, the estimated marginal product for fertilizer (2.0) is significantly different
from 1 at the 5% level. Other studies (e.g., Chen, Huffman, and Rozelle, 2009) have also found
significant departures from allocative efficiency in Chinese agriculture.

The estimate of the selectivity from unobservables parameter for participants (ρ1) is not statisti-
cally significant. However, the estimate of this parameter for nonparticipants (ρ0) is statistically sig-
nificant at the 10% level, which suggests that estimating the SPF model within a sample selection
framework is justified. The estimate of ρ0 is negative, implying that the selection bias is negative,
with unobserved factors positively predisposing farms toward FPC participation that also tend to
reduce their output. Managerial ability is often cited as an example of an unobserved variable in
these contexts (e.g., Bravo-Ureta, Greene, and Solís, 2012; Huang, Huang, and Liu, 2014;
Villano et al., 2015). In this case, if it is managerial ability, farms with weaker management skills,
and therefore less output, may be looking at FPC participation to compensate for this. Ma and
Abdulai (2016) also found negative selection bias in their study of FPCs for apple farms in China.

In addition to sample selection SPF models, it is also possible to follow Bravo-Ureta, Greene,
and Solís (2012) and Villano et al. (2015) in estimating so-called conventional SPF models on the
matched data, with an inverse Mills ratio variable (λ) included to account for sample selection (i.e.,
a Heckman-type correction). As Greene (2010) indicates, the conventional approach is inferior to
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the sample selection SPF approach, but it still yields a feasible consistent estimator of the produc-
tion function parameters. We estimated three models using the conventional approach: one
pooled model of both participants and nonparticipants, one for only participants, and one for
only nonparticipants.7 The estimates of λ were all statistically significant, which again suggests
that there is unobserved selection bias that should be controlled.

4.3. Metafrontier production function

Table 4 presents estimates of the parameters of the stochastic metafrontier (SMF). Again, the first-
order estimated coefficients (the βkp in equation 9) are partial output elasticities with respect to
individual inputs when evaluated at their geometric mean values. The sum of the partial output

Table 4. Estimates of the stochastic metafrontier

Variables Estimated Coefficient Robust Standard Error

Technical structure model, equation (5)

Constant 0.072*** 0.024

ln land 0.210*** 0.041

ln labor 0.155*** 0.039

ln fertilizer 0.216*** 0.020

ln other inputs 0.174*** 0.025

0.5× (ln land)2 −0.039 0.054

0.5× (ln labor)2 0.104** 0.048

0.5× (ln fertilizer)2 0.027*** 0.004

0.5× (ln other inputs)2 −0.011 0.021

ln land× ln labor 0.231*** 0.076

ln land× ln fertilizer 0.042 0.040

ln land× ln other inputs 0.079 0.060

ln labor× ln fertilizer 0.088** 0.040

ln labor× ln other inputs −0.130*** 0.052

ln fertilizer× ln other inputs −0.084*** 0.017

Technical inefficiency model, equation (10)

Constant 0.101** 0.049

FPC assistance in materials purchasing −0.417** 0.209

FPC guidance on technologies −0.204 0.257

FPC-enabled access to marketing channels −0.372* 0.218

�M
"

� �
2 � �M

v

� �
2 � �M

u

� �
2 0.111*** 0.008

�M � �M
v

� �
2= �M

v

� �
2 � �M

u

� �
2

� �
0.106*** 0.044

Log-likelihood function −128.054

Notes: The variables used in the estimation of the technical structure model are normalized by their geometric means, so that
the first-order estimates are partial output elasticities with respect to individual inputs at geometric mean values. Asterisks (***,
**, and *) denote significance at 1%, 5%, and 10% levels, respectively. FPC, farmer professional cooperative.

7These results are available from the authors upon request.
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elasticities is less than 1 (about 0.8), indicating decreasing returns to scale along the metafrontier.
Similar to the group-specific SPF results, the estimated marginal products for fertilizer (1.7) and
other inputs (1.4) are both greater than 1, and in this case, both are statistically different from 1 at
a 5% significance level. Also similar to the group-specific SPF results, the partial output elasticity
of fertilizer increases as fertilizer use increases, and land has complementary relationships with
labor and fertilizer.

Results show that two of the FPC services can help its member farmers reduce the technical
inefficiency component of the model. The estimated coefficient for FPC materials purchasing and
FPC-enabled access to marketing channels is negative and statistically significant, indicating that
these services can help make the member farmers’ group production frontier closer to the meta-
frontier to get better TGRs. The estimated coefficient for FPC guidance on technologies is also
negative but not statistically significant. This result may come from the fact that although new
technologies were applied to increase output and/or reduce costs, the producers are not able
to fully master each new technique before an even newer, better one becomes available and is
adopted, so the overall effect of the technology guidance from FPCs is not obvious.

4.4. Impacts of farmer professional cooperative participation

Estimated gaps in TE and income for FPC participants and nonparticipants are presented in
Table 5. These estimated gaps are based on the sample selection SPF model results in Table 3
and the SMF results in Table 4, which in turn are based on the matched samples of FPC partic-
ipants and nonparticipants. The income gap is defined as the difference in output value between
the fitted group-specific frontier and the metafrontier. The income gap is always negative, and a
smaller absolute value for the income gap means a better output performance.

The figures in Table 5 indicate that FPC participants outperform nonparticipants on average in
TE, MTE, and the income gap. In comparison of group-specific TE, most FPC participants are
closer to their SPF with an average group-specific TE of 0.72, whereas that of nonparticipants is
0.66. This result indicates that FPCs can help their participants to reduce the inner TE gap through
relative uniform production arrangements. The average TGR for participants (0.96) is statistically
significantly higher than that of nonparticipants (0.89), which means the group-specific produc-
tion frontier for participants is closer to the metafrontier than the production frontier for non-
participants with the help of the FPC services. This result also indicates that the performance of
technological change for participants is better than nonparticipants. Therefore, FPC participants
have a better overall average MTE (0.69) than nonparticipants (0.59). In terms of income, the gap
for participants and nonparticipants [−¥3,134− (−¥7,594)= ¥4,460] is sizeable and is equal to
about one-sixth (18%) of mean income per greenhouse for nonparticipants.

5. Discussion and Conclusions
FPCs, which help connect small-scale farmers in China with input markets, new agricultural tech-
nologies, and modern marketing channels, have gained considerable support from the Chinese gov-
ernment in recent years. This study combines PSM techniques with a selection-corrected stochastic
metafrontier analysis to estimate the effects of participation in FPCs on TE and income. Combining
these models permits us to control for potential selection bias on the part of the farmers in deciding
whether to participate in an FPC stemming from both observed and unobserved variables.

Our results suggest that nonparticipants may have incentives to join FPCs to increase their
income. The estimated income gap for participants and nonparticipants [−¥3,134− (−¥7,594) =
¥4,460] is significant and equal to about one-sixth (18%) of mean income per greenhouse for non-
participants. In conducting our survey, we found that FPCs were established in just 51% of the villages
in the five provinces studied, and that only 32% of the vegetable farmers in those villages were FPC
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participants. The Chinese government should encourage development of additional FPCs and
enlargement of cross-village FPCs for villages that are too small to support an FPC on their own.

Many questions remain regarding the most effective services an FPC can offer to improve the
productivity and TE of farmers. Most FPCs also provide some assistance to “informal” member
farmers who have not officially joined the cooperative. We are aware of one other study (Deng
et al., 2010) that has addressed differences between formal members and informal members who
are typically more loosely associated with the FPC, although they are included in many activities.
It would also be helpful to examine how the impacts of FPCs may vary depending on the attributes
of the locations where they are established, such as infrastructure, proximity to markets, and mar-
ket size. That was not feasible with our study because all five provinces in our survey sample have
seen significant improvements in recent years in transportation infrastructure, market infrastruc-
ture, and vegetable supply chains.

As a caveat, our use of cross-sectional data restricts our analysis while providing opportunities
for future study. Future access to panel data for inputs and outputs would allow for a more com-
prehensive analysis that could capture spillover effects of a farm’s participation in an FPC on
neighboring farms in subsequent years. Panel data would also make it possible to identify whether
the impacts of FPC participation grow over time because of learning by doing by participating
farmers and FPC personnel.
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Appendix

Table A1. Balancing test for propensity score matching

Variable

NNM with Caliper KBM

% Mean Bias t-Ratio V(T)/V(C) % Mean Bias t-Ratio V(T)/V(C)

Operator age 4.0 0.04 0.95 −0.6 −0.05 1.04

Operator has senior high school education −4.5 −0.26 1 −3.5 −0.29 1

Vegetable farming experience 4.0 0.49 0.95 2.3 0.20 0.95

Vegetable planting share −1.0 −0.08 0.80 −0.6 −0.05 0.77

Farm size 3.2 0.26 1.87* 5.5 0.47 2.56*

Family size 0.0 0.00 0.83 3.0 0.26 0.82

Rotations per year 4.4 0.40 1.41* 1.1 0.1 1.34

Greenhouse type 0.7 0.07 0.99 4.2 0.37 0.96

Beijing-Tianjin-Hebei region 4.9 0.42 0.97 2.7 0.24 0.98

Notes: NNM denotes nearest-neighbor matching. KBM denotes kernel-based matching. Asterisks (***, **, and *) denote significance at 1%, 5%,
and 10% levels, respectively.
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