
Canad. J. Math. Vol. 61 (3), 2009 pp. 656–673

Generalized Polynomials and
Mild Mixing

Randall McCutcheon and Anthony Quas

Abstract. An unsettled conjecture of V. Bergelson and I. Håland proposes that if (X,A, µ, T) is an

invertible weak mixing measure preserving system, where µ(X) < ∞, and if p1, p2, . . . , pk are gener-

alized polynomials (functions built out of regular polynomials via iterated use of the greatest integer or

floor function) having the property that no pi , nor any pi − p j , i 6= j, is constant on a set of positive

density, then for any measurable sets A0, A1, . . . , Ak, there exists a zero-density set E ⊂ Z such that

lim
n→∞

n6∈E

µ(A0 ∩ T p1(n)A1 ∩ · · · ∩ T pk (n)Ak) =

k
Q

i=0

µ(Ai).

We formulate and prove a faithful version of this conjecture for mildly mixing systems and partially

characterize, in the degree two case, the set of families {p1, p2, . . . , pk} satisfying the hypotheses of

this theorem.

1 Introduction

A single operator, strongly mixing measure preserving system may be defined as a

quadruple (X, A, µ, T), where (X, A, µ) is a probability space and T is an invertible

measure preserving transformation of X having the property that for every A, B ∈ A,
limn→∞ µ(A ∩ TnB) = µ(A)µ(B). An outstanding open problem in ergodic theory

is that of whether such systems must exhibit “strong mixing of higher orders”. So, for
example, it is unknown whether the above entails limm,n,m−n→∞ µ(A∩TnB∩TmC) =

µ(A)µ(B)µ(C). More (or less, if one is betting against) modestly, it is unknown

whether limn→∞ µ(A∩TnB∩T2nC) = µ(A)µ(B)µ(C) must hold for mixing systems.

On the other hand, there are other notions of mixing for which such questions

do have satisfying answers, for example weak mixing and mild mixing. A system
(X, A, µ, T) is weakly mixing if L2(X) has no non-constant eigenfunctions under the

unitary action T f (x) = f (Tx). Another characterization of weak mixing, running
more along the lines of the prior characterization of strong mixing, goes as follows:

for a set E ⊂ Z, define the upper density of E by d(E) = lim supn→∞
|E∩[−n,n]|

2n+1
. Next,

for x and a sequence (xn) in a topological space, we write D-limnxn = x if for ev-

ery neighborhood U of x, the complement of the set {n : xn ∈ U} has zero upper

density. We may now characterize weak mixing as follows: a system (X, A, µ, T) is
weakly mixing if and only if for every A, B ∈ A, D-limnµ(A ∩ TnB) = µ(A)µ(B).

In light of this characterization, it becomes natural to ask if one may in fact obtain,

e.g., D-limnµ(A ∩ TnB ∩ T2nC) = µ(A)µ(B)µ(C). The answer is yes. H. Furstenberg
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has shown in [6] that in weakly mixing systems, for any k ∈ N and measurable
A0, A1, . . . , Ak,

(1.1) D-limn µ(A0 ∩ TnA1 ∩ · · · ∩ TknAk) =

k
∏

i=0

µ(Ai).

A “relativized” version of this consequence of weak mixing formed an important

part of his proof, via ergodic theory, of Szemerédi’s theorem on arithmetic progres-
sions, and is often referred to as “weak mixing of all orders”, a designation that is per-

haps somewhat misleading, as we shall now see. In [1], V. Bergelson proved a result

involving polynomial powers of T for which (1.1) forms the linear case. His theorem
states that in weak mixing systems and for any polynomials pi ∈ Z[x], 1 ≤ i ≤ k,

having the property that no pi and no pi − p j is constant, 1 ≤ i 6= j ≤ k, one obtains

(1.2) D-limn µ(A0 ∩ T p1(n)A1 ∩ · · · ∩ T pk(n)Ak) =

k
∏

i=0

µ(Ai).

Thus we see that weak mixing implies not merely weak mixing of higher linear orders
but of higher polynomial orders as well. The next question that arises is this: do such

polynomial functions constitute a suitably “most general class” of integer sequences

along which weak mixing systems are well behaved? In other words, are polynomial
orders all orders?

Again, the answer seems to be no. Bergelson and I. Håland proved that for some
interesting and non-trivial classes of generalized polynomials pi , (1.2) remains valid

under suitable hypotheses.1 Generalized polynomials Z → Z may be defined as

follows. For r ∈ R, let [r] denote the integer part of r, i.e., the greatest integer less
than or equal to r. Put also {r} = r−[r], the fractional part of r. The set of generalized

polynomials Z → Z is the smallest set G that is a function algebra (i.e., is closed under

sums and products) containing Z[x] and having the additional property that for all
m ∈ N, c1, . . . , cm ∈ R and p1, . . . , pm ∈ G, the mapping n → [

∑m
i=1 ci pi(n)] is in G.

Though we cannot explain here precisely which classes prove amenable to the
Bergelson–Håland analysis (the definitions are quite technical), it is simple to under-

stand why (1.2) cannot possibly hold for arbitrary generalized polynomials pi under

the hypothesis that each pi and each pi−p j fails to be constant. Consider for example
p(n) = [2{πn}], a generalized polynomial that, while not constant, is finite-valued.

Or, for an only slightly more exotic example, q(n) = np(n), which, while taking on

infinitely many values, is zero for many (roughly half, in the sense of asymptotic den-
sity) n. Note that these examples violate (1.2) for the same rather pedestrian reason:

they are constant on a set E having positive upper density. Indeed as Bergelson and
Håland note, (1.2) cannot possibly hold across all weak mixing systems if there ex-

ists a set E of positive upper density on which some pi or some pi − p j is constant.

Accordingly, any k-tuple (p1, . . . , pk) for which they are able to prove (1.2) has a for-

tiori the following property P : on no set E having positive upper density is any pi or

pi − p j constant, 1 ≤ i 6= j ≤ k.

1V. Bergelson and I. Håland. Higher order weak mixing along generalized polynomials. Manuscript.
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Interestingly, Bergelson and Håland could find no counterexample to (1.2) hav-
ing property P. On the other hand, they were unable to prove that P entails (1.2).

Accordingly, they formulate the following conjecture.

Conjecture A (Bergelson–Håland). If pi are generalized polynomials, 1 ≤ i ≤ k,

such that no pi and no pi − p j , 1 ≤ i 6= j ≤ k, is constant on a set of positive upper

density, then for any weakly mixing system (X, A, µ, T) and any Ai ∈ A, 0 ≤ i ≤ k,

(1.2) holds.

We do not directly address the foregoing conjecture in this paper. We do, however,

offer a faithful rendition of the conjecture in the context of mild mixing, then provide
an affirmative answer to this recasting of the problem. First, some background.

Let (X, A, µ, T) be an invertible measure preserving system, where µ(X) = 1, and

suppose that f ∈ L2(X). If there is some sequence of natural numbers (nk) such
that Tnk f → f (weakly or strongly, in measure or pointwise), then f is said to be a

rigid function. (X, A, µ, T) is mildly mixing if the only rigid functions in L2(X) are

the constants. Any mildly mixing system is weakly mixing, for eigenfunctions are
rigid. To see this, suppose that T f = α f . Since T acts unitarily on L2(X), |α| = 1,

and we may choose a sequence (nk) of natural numbers with αnk → 1, etc. On the

other hand, there are weakly mixing systems that fail to be mildly mixing and mildly
mixing systems that fail to be strongly mixing (see [9] for details).

We have seen that weak and strong mixing each have characterizations running

roughly as follows: for any system (X, A, µ, T), it is both necessary and sufficient for
(insert version of, i.e., weak or strong) mixing that for any A, B ∈ A and any ǫ > 0 the

set of n for which |µ(A ∩ TnB) − µ(A)µ(B)| < ǫ is (in an appropriate sense) “large”.

Here “large” means “co-finite” in the case of strong mixing, and “complement of a
set of density zero” in the case of weak mixing. Mild mixing has a characterization

of this form as well; the sense of “large” appropriate to it is “IP∗”. (A subset E of an
additive semigroup S is IP∗ if for any sequence (xi) in S, there is some finite, non-

empty α ⊂ N such that
∑

i∈α xi ∈ E. See below.)

One may now guess that a mild mixing analogue of (1.1) would say that for every

ǫ > 0, the set M = {n : |µ(A0 ∩ TnA1 ∩ · · · ∩ TknAk) − ∏k
i=0 µ(Ai)| < ǫ} is IP∗.

(By IP∗ here and elsewhere, we mean IP∗ as a subset of N, not as a subset of Z. The

reason this distinction is important in that any set that is IP∗ as a subset of Z must
contain zero; M does not.) This is in fact true for mild mixing systems, as is shown

in [7, Section 9.5], entitled “Mild mixing of all orders.” Here again, however, linear
orders proved not to be “all”. Indeed, Bergelson already states [1, Theorem 4.8] as

an unproved corollary to (the proof of) his main result the following mild mixing

version.

Theorem B Let (X, A, µ, T) be a mildly mixing system, and suppose pi(x) ∈ Z[x]

are polynomials with no pi and no pi − p j constant, 1 ≤ i 6= j ≤ k. Then for any

ǫ > 0 the set {n : |µ(A0 ∩ T p1(n)A1 ∩ · · · ∩ T pk(n)Ak) − ∏k
i=0 µ(i)| < ǫ} is IP∗.

Let us consider now how best to formulate a version of Theorem B for generalized

polynomials. By analogy with the discussion leading up to Conjecture A, the hy-

potheses must be strengthened to preclude the possibility of some pi or pi − p j being
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constant on a non-trivial set, for some appropriate interpretation of “non-trivial”.
(In the weak mixing case, “non-trivial set” meant “positive upper density set.”) A

moment’s reflection indicates that the correct interpretation of “non-trivial set” in
the mild mixing case is “IP set.” In other words, given generalized polynomials pi ,

1 ≤ i ≤ k, and ǫ > 0, an obvious necessary condition for {n : |µ(A0 ∩ T p1(n)A1 ∩
· · · ∩ T pk(n)Ak) − ∏k

i=0 µ(Ai)| < ǫ} to be IP∗ across mildly mixing systems is for pi

and pi − p j to be non-constant on every IP set in N. (For example, if pi − p j = C on
an IP set R, then taking A j to be the complement of TC Ai yields a zero-measure in-

tersection on R.) A faithful mild mixing version of Conjecture A, then, would assert

that this necessary condition is also sufficient.

Theorem C If pi are generalized polynomials, 1 ≤ i ≤ k, such that no pi and no

pi − p j , 1 ≤ i < j ≤ k, is constant on an IP set of natural numbers, then for any mild

mixing system (X, A, µ, T) and any A0, A1, . . . , Ak ∈ A, the set {n : |µ(A0∩T p1(n)A1∩
· · · ∩ T pk(n)Ak) − ∏k

i=0 µ(Ai)| < ǫ} is IP∗.

The structure of the paper is as follows. In Section 2, we give our proof of Theo-

rem C. Then in Section 3, we offer a partial characterization, in the degree 2 case, of

the set of families of generalized polynomials meeting the hypotheses of Theorem C.
Finally, in Section 4, we discuss some Zr extensions of our results.

Remark The class of totally ergodic systems is also suitable for multiple mix-

ing, at least for families of polynomials that are independent over the rationals, as
N. Franzikinakis and B. Kra established in [5]. The question as to which families

of generalized polynomials this may work for is an interesting one that we shall not
attempt to address here.

2 Proof of the Main Theorem

We denote by F the family of non-empty finite subsets of N. An F-sequence in a

set G is a function v : F → G. There is a special sense of convergence applicable to
F-sequences when G is a topological space, on which we will elaborate in a moment.

For α, β ∈ F, we write β < α if max β < min α. Suppose αi ∈ F, i ∈ N, with

α1 < α2 < · · · . The set F(1) of non-empty finite unions of the αi ’s is called an IP

ring. Note that F(1) is the isomorphic image of F under the map β → ⋃

i∈β αi . The

restriction of a given F-sequence to an IP ring F(1) plays a role analogous to that of a
subsequence of a given sequence.

Having defined IP rings, we are in a position to state the following well-known

result of N. Hindman [10, Corollary 3.3]: given any finite coloring of an IP ring F(1),
there exists a monochromatic IP subring F(2) ⊂ F(1). (In saying that F(2) is a subring

of F(1), we mean nothing over and above set-theoretic inclusion.) Now suppose G is

an abelian (semi-)group. If v is an F-sequence into G satisfying v(α∪β) = v(α)v(β)
when α∩β = ∅, then we say that v is an IP system, and we refer to its range v(F) ⊂ G

as an IP set. An IP∗ subset of G is a set E ⊂ G that intersects every IP set in G

nontrivially.

As for the notion of convergence, here it is: if G is a topological space, x ∈ G,

v is an F-sequence in G and F(1) is an IP ring, we write IP-limα∈F(1) v(α) = x, or
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say that v(α) → x, α ∈ F(1), if for every neighborhood U of x there exists α0 ∈ F

such that for every α ∈ F(1) with α > α0, v(α) ∈ U . If p : N → G, we write

IP∗- limn∈N p(n) = x if for every neighborhood U of x, the set {n ∈ N : p(n) ∈ U}
is IP*.

The following can be proved by substituting Hindman’s theorem for the pigeon-
hole principle in the proof of the Bolzano–Weierstrass theorem.

Theorem 2.1 Let X be a compact metric space and suppose v is an F-sequence in X.

Then for some IP ring F(1) and some x ∈ X, IP-limα∈F(1) v(α) = x.

The following result is well known. (See [8, Theorem 1.7].)

Lemma 2.2 Let U be an IP system into a commutative group of unitary operators of a

Hilbert space H. If F(1) is an IP ring such that IP-limα∈F(1) U (α) f = P f exists weakly

for all f ∈ H, then P is the orthogonal projection onto a closed subspace of H.

At first glance it might appear that the hypotheses of Lemma 2.2 could rarely be

satisfied; however this is not the case. Indeed, with the help of Theorem 2.1 and
a standard diagonalization argument, one can always find an IP ring F(1) such that

IP-limα∈F(1) U (α) f exists weakly for all f ∈ H, provided H is separable.

We now pass to VIP systems, which are polynomial-like variants of IP systems (for

more information, see [2] and [12]). Suppose again that G is an abelian group (from
now on, however, we shall write the operation of G additively). For a set α, let |α|
denote its cardinality. Suppose there exist d ∈ N and a function f : {∅} ∪ {α ∈
F : |α| ≤ d} → G satisfying f (∅) = 0 and f (γ) 6= 0 for some |γ| = d. Then,
letting v(α) =

∑

γ⊂α,|γ|≤d f (γ), v is called a VIP system of degree d. f is called the

generating function of v. It is a simple exercise to show that the generating function

of a VIP system is unique, so that in particular the degree is well defined.

Given a VIP system v into Z and some fixed β ∈ F, we define, for α > β, vβ(α) =

v(α ∪ β) − v(α) − v(β). The family of VIP systems into Z itself forms an abelian

group under addition, and one may check that the map β → vβ is, modulo a certain

technicality we shall address presently, a VIP system into this group. The technicality
involves the fact that vβ is only defined for α > β. One may overcome this difficulty

as follows: given an IP ring F(1), let Ω
′
= Ω

′(Z, F(1)) be the group of all VIP systems
F(1) → Z and define an equivalence relation on Ω

′ whereby v1 is equivalent to v2 if

there exists some α ∈ F such that v1(α) = v2(α) for every α ∈ F(1) with α > α0.

One easily checks that the group structure lifts in a well-defined way to the set of
equivalence classes, which we may denote by Ω = Ω(Z, F(1)). Now it is easy to see

that β → vβ has a natural interpretation as a VIP system F(1) → Ω, and moreover

that deg vβ
= deg v−1. We shall utilize this construction in the proof of Theorem 2.7

below.

What we require of the connection between VIP systems and generalized polyno-

mials is summarized in Proposition 2.3, which is a weak form of [3, Theorem 2.9].

Proposition 2.3 Let p(x) be a generalized polynomial and suppose n is an IP system

in N. Then for every IP ring F(1) there exists an IP ring F(2) ⊂ F(1) and c ∈ Z such that

the restriction of v(α) = p(n(α)) + c to F(2) is a VIP system.
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The following lemma is standard (see [8, Lemma 5.3]).

Lemma 2.4 Suppose (xα)α∈F is a bounded F-sequence in a Hilbert space and F(1) is

an IP-ring. If

IP-lim
β∈F(1)

IP-lim
α∈F(1)

〈xα, xα∪β〉 = 0

then along some subring F(2) ⊂ F(1), xα → 0 in the weak topology.

Proposition 2.5 Suppose (X, A, µ, T) is a mildly mixing system. If f , g ∈ L∞(X)

and n is an IP system into Z that is not identically zero when restricted to any IP subring

of a given IP ring F(1), then there exists a refinement F(2) ⊂ F(1) such that

IP-lim
α∈F(2)

∫

f Tn(α)g dµ =

(

∫

f dµ
)(

∫

g dµ
)

.

Proof As remarked earlier, by passing to a refinement F(2) ⊂ F(1), we may assume

that in the weak operator topology Tn(α)h converges to a limit Qh for all h ∈ L2(X).
By Lemma 2.2, Q is an orthogonal projection. In particular, Q is idempotent, so that

Tv(α)Qg → Q2g = Qg. Since Qg is rigid and T is mildly mixing, Qg is constant. In
fact, as Q is an orthogonal projection, we have Qg =

∫

g dµ. In other words, Tn(α)g

converges weakly to
∫

g dµ as α → ∞, α ∈ F(2). The result follows.

The following theorem is a special case of [11, Lemma 1.2].

Proposition 2.6 Let G be a commutative group with identity I and suppose that v is

a VIP system into G. If v(α) = g ∈ G for every α in an IP ring F(1), then g = I.

The next theorem forms the bulk of the work required for our main result. It

uses an inductive scheme originally used in [1] under the moniker “PET-induction”,
and which runs in our case as follows: given two VIP systems v and w, we write

v ∼ w if deg v = deg w > deg(v − w). One easily checks that ∼ is an equivalence

relation. Given a finite set A = {v1, . . . , vk} of VIP systems, define the weight of
A by w(A) = (w1, w2, . . .), where wi is the number of equivalence classes of degree

i VIP systems represented in A. Finally for distinct weights w = (w1, w2, . . .) and

u = (u1, u2, . . .), one writes w > u if wd > ud, where d is the largest j satisfying
w j 6= u j . This is a well-ordering of the set of weights, and PET-induction is simply

induction on it.
We shall use one other combinatorial fact as well. Recall that Hindman’s theorem

states that for any finite coloring of an IP ring F(1), there exists a monochromatic

refinement F(2) ⊂ F(1). In fact, for any finite coloring of the pairs {(β, α) : β, α ∈
F(1), β < α}, there exists a refinement F(2) ⊂ F(1) such that {(β, α) : β, α ∈
F(2), β < α} is monochromatic. (This is a special case of the Milliken–Taylor theo-

rem. See [13, 14].)

Theorem 2.7 Suppose (X, A, µ, T) is a mildly mixing system, k ∈ N, and let

v1, . . . , vk be VIP systems into Z such that neither vi nor vi − v j is identically zero on

any IP subring of a given IP ring F(1), 1 ≤ i 6= j ≤ k. If f0, . . . , fk ∈ L∞(X), then

there exists a refinement F(2) ⊂ F(1) such that

IP-lim
α∈F(2)

∫

f0Tv1(α) f1 · · ·Tvk(α) fk dµ =

k
∏

i=0

(

∫

fi dµ
)

.
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Proof The proof is by induction on the weight vector w(A) of A = {v1, . . . , vk}. By
Proposition 2.5, the result holds when the weight vector is (1, 0, 0, . . .). Suppose for

induction that the result holds for families having weight vector w < w(A).
For standard reasons, we may assume without loss of generality that

∫

fa dµ = 0

for some a, 0 ≤ a ≤ k. We reduce the general case to this special case by employing

the identity

k
∏

i=0

ai −
k
∏

i=0

bi = (a0 − b0)
k
∏

i=1

bi + a0(a1 − b1)
k
∏

i=2

bi + · · · +
( k−1

∏

i=0

ai

)

(at − bt )

under the integral, with ai = Tvi (α) fi and bi =
∫

fi dµ, 0 ≤ i ≤ k. Indeed, by

composing through by T−vi (α), if necessary, where vi is of minimal degree (this does
not change the weight vector), we may in fact assume that 1 ≤ a ≤ k. Also without

loss of generality we may assume that ‖ fi‖∞ ≤ 1, 0 ≤ i ≤ k.

We shall complete the proof by showing that for some refinement F(2) ⊂ F(1),
∏k

i=1 Tvi (α) fi → 0 weakly. Using Lemma 2.4, with xα =
∏k

i=1 Tvi (α) fi , it will suffice

for this purpose to show that (by passing to a refinement if necessary),

IP-lim
β∈F(1)

IP-lim
α∈F(1)

〈xα, xα∪β〉

= IP-lim
β∈F(1)

IP-lim
α∈F(1)

∫

k
∏

i=1

Tvi (α) fi

k
∏

i=1

Tvi (α∪β) fi dµ

= IP-lim
β∈F(1)

IP-lim
α∈F(1)

∫

k
∏

i=1

Tvi (α) fi

k
∏

i=1

Tvi (α)+v
β
i (α)(Tvi (β) fi) dµ = 0,

(2.1)

where v
β
i (α) = vi(α ∪ β) − vi(α) − vi(β). Recall that deg(v

β
i ) < deg vi , so that in

particular vi + v
β
i ∼ vi .

We claim that we can pass now to a refinement (we continue to call it F(1)) having

the property that for all β, α ∈ F(1) with β < α, v
β
i (α) 6= v j(α) − vi(α) for all

i, j. For, otherwise, by Milliken and Taylor we could pass to a refinement for which

there exist i, j such that for all β, α ∈ F(1) with β < α, v
β
i (α) = v j(α) − vi(α),

which would require that the VIP system β → v
β
i from F(1) into Ω(Z, F(1)) take

on the constant value v j − vi , which by hypothesis is not equal to I in violation of
Proposition 2.6. It follows that for any β ∈ F(1) there exists no IP subring of F(1)

restricted to which v
β
i = v j − vi . Similar considerations achieve the same conclusion

regarding the equations v
β
i − v

β
j = v j − vi , 1 ≤ i 6= j ≤ k.

Again by a similar consideration, we may assume that v
β
i is either the identity for

all β ∈ F(1) (as will happen when vi is of degree one), or for no β ∈ F(1). Let w

be the number of indices for which the former occurs. Permuting indices so that

deg vi is non-decreasing with i, we may assume v
β
i = I if 1 ≤ i ≤ w and v

β
i 6= I if

w < i ≤ k. For β ∈ F(1), write Aβ
= {v1, · · · , vk, vw+1 + v

β
w+1, · · · , vk + v

β
k }. By the

facts obtained in the previous paragraph, Aβ is a mixing set, meaning there is no IP

subring of F(1) on which some member of Aβ , or some difference of two members, is

constant. Moreover, w(Aβ) = w(A).
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The double limit in the last line of (2.1) may be rewritten as

(2.2) IP-lim
β∈F(1)

IP-lim
α∈F(1)

∫

w
∏

i=1

Tvi (α)( fiT
vi (β) fi)

k
∏

i=w+1

Tvi (α) fiT
vi (α)+v

β
i (α)(Tvi (β) fi) dµ.

For fixed β ∈ F(1) the set

Bβ
= {v2 − v1, . . . , vw − v1, vw+1 − v1, . . . , vk − v1, vw+1 + v

β
w+1 − v1, . . . , vk + v

β
k − v1}

precedes Aβ . The reason for this is that v1 is of minimal weight, so that subtracting

throughout by v1 will decrease the degree of every VIP system that is equivalent to v1,

while failing to change the degrees of the other ones. Moreover, if neither vi nor v j is
equivalent to v1, then vi ∼ v j if and only if vi − v1 ∼ v j − v1. These considerations

imply that Bβ has one less equivalence class under ∼ of degree deg v1 and the same

number of equivalence classes at any degree greater than deg v1.
At any rate, by the fact that T is measure preserving, and making use of the induc-

tion hypothesis to pass to the limit in α, (2.2) may now be rewritten

IP-lim
β∈F(1)

IP-lim
α∈F(1)

∫

w
∏

i=1

Tvi (α)−v1(α)( fiT
vi (β) fi)

×
k
∏

i=w+1

Tvi (α)−v1(α) fiT
vi (α)+v

β
i (α)−v1(α)(Tvi (β) fi) dµ

= IP-lim
β∈F(1)

w
∏

i=1

(

∫

fiT
vi (β) fi dµ

) k
∏

i=w+1

(

∫

fi dµ
) 2

=

k
∏

i=1

(

∫

fi dµ
) 2

= 0,

as required.

We now come to our main result. Denote by GNC the set of those p ∈ G that are

constant on no IP set in N.

Theorem 2.8 Suppose (X, A, µ, T) is a mildly mixing system, k ∈ N, and let

p1, . . . , pk be generalized polynomials such that pi ∈ GNC and pi − p j ∈ GNC,

1 ≤ i 6= j ≤ k. If f0, . . . , fk ∈ L∞(X), then

IP∗- lim
n∈N

∫

f0T p1(n) f1 · · ·T pk(n) fk dµ =

k
∏

i=0

(

∫

fi dµ
)

.

Proof Let n be an arbitrary IP system into N and let ǫ > 0 be arbitrary. By Propo-

sition 2.3 there exist an IP ring F(1) and constants ci , 1 ≤ i ≤ k, such that vi(α) =

pi

(

n(α)
)

− ci define VIP systems, and since moreover pi ∈ GNC and pi − p j ∈
GNC, we may assume as well (invoking Theorem 2.1 in the extended integers) that
|vi(α)| → ∞ and |vi(α)− v j(α)| → ∞, α ∈ F(1), 1 ≤ i 6= j ≤ k. Thus Theorem 2.7

applies, so there exists a refinement F(2) ⊂ F(1) with

IP-lim
α∈F(2)

∫

f0Tv1(α) f1 · · ·Tvk(α) fk dµ =

k
∏

i=0

(

∫

fi dµ
)

.
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This means that for some α ∈ F(2),

∣

∣

∣

∫

f0T p1(n(α)) f1 · · ·T pk(n(α)) fk dµ −
k
∏

i=0

(

∫

fi dµ
)∣

∣

∣

=

∣

∣

∣

∫

f0T p1(n(α))−c1(Tc1 f1) · · ·T pk(n(α))−ck (Tck fk) dµ −
k
∏

i=0

(

∫

fi dµ
)∣

∣

∣

=

∣

∣

∣

∫

f0Tv1(α)(Tc1 f1) · · ·Tvk(α)(Tck fk) dµ −
k
∏

i=0

(

∫

Tci fi dµ
)

∣

∣

∣
< ǫ,

as required.

Theorem C from the introduction follows from Theorem 2.8 by letting f = 1A.

3 A Partial Characterization of GNC in the Degree 2 Case

In this section we offer conditions for identifying whether or not a generalized poly-

nomial of degree two belongs to GNC. The most general form we consider is

(3.1) H(n) =

n1
∑

i=1

[ain[bin + ui] + vi] +

n2
∑

i=1

[cin + wi][din + xi]

+

n3
∑

i=1

[ein + yi] +

n4
∑

i=1

[ fin
2 + zi].

Any generalized polynomial of order at most 2 can be reduced to this form, up to a

bounded error term, excepting those which contain iterated expressions of the type

G(n) = [a1[a2[· · · [akn]] · · · ]][b1[b2[· · · [bln]] · · · ]].

Cases of this type are usually considered pathological; Bergelson and Håland, for

example, exclude them from their treatment.

We will write [x] for the integer part of x and {x} for the fractional part of x. We
also put [[x]] = [x+ 1

2
] for x rounded to the nearest integer and we let {{x}} = x−[[x]].

We will use ⊗ to denote the Q-linear tensor product. We will consider R ⊗ R so that

1 ⊗ 2 = 2 ⊗ 1 = 2(1 ⊗ 1), but
√

2 ⊗
√

3 6=
√

3 ⊗
√

2.
For the moment we shall restrict our attention to the subclass obtained by requir-

ing ui = vi = wi = xi = yi = zi =
1
2

in (3.1); in other words, where [[ · ]] replaces
[ · ] and these constants are missing. Using generalized polynomials with rounding

will cause us a few problems we shall have to deal with when we return to the general

form (3.1) later.
There are however some advantages. For example, given real numbers ai , 1 ≤ i ≤

k, and any IP system n into N, there exists an IP ring F(1) such that

(3.2) IP-lim
α∈F(1)

{{ain(α)}} = 0, 1 ≤ i ≤ k.
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The corresponding statement for { · } fails (for example, consider a case where
a2 = −a1). If |xi | < 1/(2|n|) for i = 1, . . . , n, we see that {{x1 + . . . + xn}} =

{{x1}}+ . . . + {{xn}}. It follows that if |x| < 1/(2|n|) then {{nx}} = n{{x}} (where n is
an integer). A corollary of these observations is the following fact that we exploit in

several places.

Lemma 3.1 Suppose that (ai)1≤i≤m and (b j)1≤ j≤n are related by the equalities ai =
∑

j Ci jb j . Then given any IP-system n into N, there is an IP-ring F(1) such that

{{ain(α)}} =

∑

j

Ci j{{b jn(α)}} for all 1 ≤ i ≤ m and α ∈ F(1).

Suppose we are given sequences (ai)
n1

i=1, (bi)
n1

i=1, (ci)
n2

i=1, (di)
n2

i=1, (ei)
n3

i=1, and ( fi)
n4

i=1

of reals. Define

(3.3) F(n) =

n1
∑

i=1

[[ain[[bin]]]] +

n2
∑

i=1

[[cin]][[din]] +

n3
∑

i=1

[[ein]] +

n4
∑

i=1

[[ fin
2]].

Then one has the following.

Theorem 3.2 Let F be as in (3.3). Suppose there is an IP system n into N such that

F ◦ n is constant. Then the following three conditions must be satisfied:

(1)
∑n1

i=1 ai bi +
∑n2

i=1 cidi +
∑n4

i=1 fi = 0;

(2)
∑n3

i=1 ei = 0;

(3)
∑n1

i=1 ai ⊗ bi +
∑n2

i=1(ci ⊗ di + di ⊗ ci) ∈ R ⊗ Q.

Conversely, suppose (1), (2), and (3) are satisfied. Then for any IP system n into N,

there exists an IP ring F(1) such that F ◦ n is constant on F(1).

We shall prove Theorem 3.2 with the help of the following lemma, whose proof is,
for the moment, deferred.

Lemma 3.3 Let (ai)
k
i=1 and (bi)

k
i=1 be real numbers. Then the following are equivalent

(i) There is an IP system n into N such that
∑

i ai{{bin(α)}} = 0 for all α ∈ F.

(ii) Given any IP system n into N, there exists an IP ring F(1) such that

∑

i

ai{{bin(α)}} = 0 for all α ∈ F(1).

(iii)
∑

i ai ⊗ bi ∈ R ⊗ Q.
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Proof of Theorem 3.2 We start by observing the following:

F(n) =

n1
∑

i=1

[[aibin
2 − ain{{bin}}]] +

n3
∑

i=1

(ein − {{ein}}) +

n4
∑

i=1

( fin
2 − {{ fin

2}})

+

n2
∑

i=1

(cin − {{cin}})(din − {{din}})

= n2
(

n1
∑

i=1

aibi +

n2
∑

i=1

cidi +

n4
∑

i=1

fi

)

+ n

n3
∑

i=1

ei + B(n)

+ n
(

n1
∑

i=1

ai{{bin}} +

n2
∑

i=1

(

ci{{din}} + di{{cin}}
)

)

,

(3.4)

where B(n) is bounded.

Suppose that F is constant on the range of some IP system n. We must establish

(1), (2), and (3). Since the coefficient of n in the above expression is bounded, it is
immediately clear that in order for the expression to be constant, the coefficient of n2

must be zero, yielding (1). Restricting now to an IP ring F(1), we may assume that the
{{bin}}, {{cin}}, {{din}} terms converge to 0. Hence in order for F ◦ n to be constant,

it is required that
∑

ei = 0, yielding (2).

Define G(n) by

G(n) =

n1
∑

i=1

ai{{bin}} +

n2
∑

i=1

(ci{{din}} + di{{cin}}).

We require nG(n) to be bounded on S = n(F(1)) so that G(n) ≤ C
n

for some C.

Choose pairwise disjoint αk ∈ F(1) and let nk = n(αk), so that |{{bink}}|, |{{cink}}|,
|{{dink}}| are less than 2−k for each i. Fix n ∈ S. Now for large k, m = n + nk ∈ S so
that G(m) ≤ C

m
. On the other hand, for large k, G(n + nk) = G(n) + G(nk); it follows

that G ◦ n is identically zero on F(1) and so by Lemma 3.3 we get (3).

Conversely, suppose (1), (2), and (3) are satisfied and let n be an IP system into N.
Looking at (3.4), we see that the only non-trivial, potentially unbounded term of F◦n

is n
(

G ◦ n
)

. But according to Lemma 3.3, G ◦ n is 0 restricted to some IP ring F(1).

A routine application of Hindman’s theorem finishes the proof.

We need the following for the proof of Lemma 3.3.

Lemma 3.4 Let f1, . . . , fℓ be independent over Q. For n ∈ N, define the vector gn by

(gn)i = [[ fin]]. Then for any infinite set S ⊂ N, {gn : n ∈ S} spans Qℓ.

Proof Suppose not. Then the vectors (gn)n∈S span a proper subspace of Qℓ. Pick

ξ ∈ Qℓ such that 〈ξ, gn〉 = 0 for each n ∈ S. Dividing by n and taking the limit, we

get ξ1 f1 + · · · + ξℓ fℓ = 0, a contradiction.
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Proof of Lemma 3.3. Adding an index k+1, if necessary, with ak+1 = 0 and bk+1 = 1,
does not change the truth value of any of the conditions, so we may assume without

loss of generality that 1 is in the rational linear span of the (bi). Let e1, e2, . . . , em be
a basis (over Q) for the subspace of R spanned by (ai). Similarly, let f1, . . . , fℓ be a

basis for the subspace of R spanned by bi . These bases may be chosen in such a way

that the ai and bi are integer combinations of the e j and f j. Specifically, we will have
ai =

∑

j Ai je j and bi =
∑

k Bik fk, where the Ai j and Bik are integers. As noted above,

1 is assumed to be in the rational linear span of the (bi) and hence of the ( fi). We

assume f1 ∈ Q. Write C jk =
∑

i Ai jBik. C is an m × ℓ integer matrix.

Assume (i) holds. We establish (iii). Using Lemma 3.1, choose a subsystem n of
the system guaranteed by (i) such that

{{bin(α)}} = {{
∑

k

Bik fkn(α)}} =

∑

k

Bik{{ fkn(α)}}, α ∈ F.

Let S = range n.

For n ∈ S one has

0 =

∑

i

ai{{bin}} =

∑

i

∑

j

Ai je j

∑

k

Bik{{ fkn}}

=

∑

j,k

(

∑

i

Ai jBik

)

e j{{ fkn}}

=

∑

j,k

C jke j{{ fkn}}.

Let e denote the column vector having coordinates e1, . . . , em, let f denote the

column vector having coordinates f1, . . . , fℓ, and let gn denote the column vector
whose i-th coordinate is [[n fi]].

By assumption, we have eTC(nf−gn) = 0 for all n ∈ S. Let h = eTC. We consider

two cases: either 〈h, f〉 = 0 or not. In the latter case, we write 〈h, f〉 = γ and we set

h̃ =
h
γ so that 〈h̃, f〉 = 1.

If 〈h, f〉 = 0, then we must have 〈h, gn〉 = 0 for all n ∈ S. However since by
Lemma 3.4 the gn span Qℓ, as real vectors they span Rℓ. It follows that h = 0. Since

the ei were assumed to be independent, it then follows that the matrix C was 0 so that
∑

i ai ⊗ bi =
∑

j,k C j,ke j ⊗ fk = 0 ∈ R ⊗ Q.

If 〈h̃, f〉 = 1, then we must have 〈h̃, gn〉 = n for all n ∈ S. Since the gn span Qℓ,

it follows that the map x 7→ 〈h̃, x〉 maps points in Qℓ to rational values, so that h̃ is
a rational vector. Since f1, f2, . . . , fℓ are independent over Q, and 〈h̃, f〉 is a rational

multiple of f1, the (rational) vector h̃ must have a non-zero first entry and zero in all
other entries, and so the same is true of h = eTC. Since the coordinates of e were

assumed to be rationally independent and C has integer entries, it follows that all

columns of C except for the first must be 0.
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This yields

∑

i

ai ⊗ bi =

∑

i

(

∑

j

Ai je j

)

⊗
(

∑

k

Bik fk

)

=

∑

j,k

(

∑

i

Ai jBik

)

e j ⊗ fk

=

∑

j,k

C jke j ⊗ fk =

∑

j

C j1e j ⊗ f1 =

(

∑

j

C j1e j

)

⊗ f1 ∈ R ⊗ Q,

where, in the second equality, we used the fact that ⊗ is Q-linear in both factors.
Thus we have shown that (i) implies (iii).

We now show that (iii) implies (ii). Assume that condition (iii) holds. Let the

denominator of f1 (the rational element of the basis) be q. We have

∑

i

ai ⊗ bi =

∑

j,k

C jke j ⊗ fk =

∑

k

(

∑

j

C jke j

)

⊗ fk.

Since this sum was assumed to be in R ⊗ Q, it follows that the terms involving
f2, . . . , fℓ in this sum must vanish, so that for k ≥ 2,

∑

j C jke j = 0. Since the e j are

assumed to be independent over Q and the C jk are integers, it follows that C jk = 0

for k ≥ 2, so that C has non-zero entries only in the first column.

Let n be an IP system into N. Choose an IP ring F(1) such that n(α) ∈ qN for all

α ∈ F(1) and note that for all α ∈ F(1) one has {{ f1n(α)}} = 0. Now using Lemma

3.1, pass to a further sub-ring F(2) ⊂ F(1) such that for all α ∈ F(2),

{{bin(α)}} = {{
∑

k

Bik fkn(α)}} =

∑

k

Bik{{ fkn(α)}}.

Thus for α ∈ F(2),

∑

i

ai{{bin}} =

∑

j,k

C jke j{{ fkn}} =

∑

j

C j1e j{{ f1n}} = 0,

as required. Thus we have shown that (iii) implies (ii). Since (ii) obviously implies

(i), we are done.

We now prepare to apply Theorem 3.2 to generalized polynomials expressed with
the greatest integer function (not rounding). Let a1, . . . , ak ∈ R \ Q. Choose a

basis e1, . . . , es for the Q-linear span of {a1, . . . , ak} over Q in such a way that ai =
∑

j Ai je j , 1 ≤ i ≤ k, where the Ai j are integers. Write A for the k × s matrix (Ai j).

Proposition 3.5 Let ǫi ∈ {−1, 1}, 1 ≤ i ≤ k. The following are equivalent.

(i) There exists an IP system n into N such that sgn{{ain(α)}} = ǫi , 1 ≤ i ≤ k and

α ∈ F.

(ii) There exists a column vector u ∈ Rs such that, letting v = (v1, . . . , vk)T
= Au,

one has sgn vi = ǫi , 1 ≤ i ≤ k.
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Proof Suppose (i) holds. One has nai =
∑

j Ai j(ne j). Again, using Lemma 3.1,

choose an IP-ring F(1) such that for all α ∈ F(1), {{n(α)ai}} =
∑

j Ai j{{n(α)e j}}.

Fixing such an α and letting u be the column vector whose coordinates are given by
u j = {{n(α)e j}}, 1 ≤ j ≤ s, one has Au = v = (v1, . . . , vk), where vi = {{n(α)ai}},

1 ≤ i ≤ k. Thus (ii) follows from (i).

Next suppose (ii) holds. We may assume without loss of generality that both u

and v have sufficiently small modulus to guarantee the linearity we presume in the

expressions to follow. For m ∈ N, choose by density of (ne1, . . . , nes) on the torus

some nm ∈ N such that the vector h = ({{nme1}}, . . . , {{nmes}})T is sufficiently close
to 2−mu to ensure that Ah = ({{nma1}}, . . . , {{nmak}})T is very close to 2−mv, in

particular, close enough that all coordinates have the same sign. Now for α ∈ F, let
n(α) =

∑

m∈α nm.

Remark Proposition 3.5 restricts the (ai) to irrational values; note that {{ain}} = 0

can always be arranged along IP systems n for rational values of ai .

Now consider the case of a generalized polynomial having the form

(3.5) F(n) =

n1
∑

i=1

[ain[bin]] +

n2
∑

i=1

[cin][din] +

n3
∑

i=1

[ein] +

n4
∑

i=1

[ fin
2].

We would like to determine whether or not there is an IP system n into N such that
F ◦ n is constant. Our first (obvious) observation is that we can change three sets

of outer brackets to rounding brackets, changing the value by a uniform bounded
amount.

F(n) =

n1
∑

i=1

[[ain[bin]]] +

n2
∑

i=1

[cin][din] +

n3
∑

i=1

[[ein]] +

n4
∑

i=1

[[ fin
2]] + B(n),

where B(n) is bounded. (By Hindman’s theorem we can make B constant along rel-

evant IP systems so we will omit the B(n) term in what follows.) In changing the
remaining brackets to rounding brackets, we do introduce potentially significant new

terms:

F(n) =

n1
∑

i=1

[[ain([[bin]] + ǫi(n))]] +

n2
∑

i=1

([[cin]] + δi(n))([[din]] + γi(n))

+

n3
∑

i=1

[[ein]] +

n4
∑

i=1

[[ fin
2]],

where now ǫi(n) = [bin] − [[bin]], δi(n) = [cin] − [[cin]] and γi(n) = [din] −
[[din]] take values in {−1, 0}. Now, again using Hindman’s theorem, we can choose

constants xi , yi , and zi in {−1, 0} and an IP system n into N such that ǫi ◦ n = xi ,
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δi ◦ n = yi and γi ◦ n = zi on F. Now for n = n(α) one has:

F(n) =

n1
∑

i=1

[[ain([[bin]] + xi)]] +

n2
∑

i=1

([[cin]] + yi)([[din]] + zi)

+

n3
∑

i=1

[[ein]] +

n4
∑

i=1

[[ fin
2]]

=

n1
∑

i=1

[[ain[[bin]]]] +

n1
∑

i=1

[[xiain]] +

n2
∑

i=1

[[cin]][[din]] +

n2
∑

i=1

[[di yin]]

+

n2
∑

i=1

[[cizin]] +

n3
∑

i=1

[[ein]] +

n4
∑

i=1

[[ fin
2]] + B ′(n),

where B ′ is bounded and hence negligible. Applying now the condition of Theo-
rem 3.2 to the above form yields the following.

Theorem 3.6 Let F be given by (3.5). There exists an IP system n into N such that

F ◦ n is constant if and only if there are choices xi , yi , and zi in {−1, 0} having the

following properties.

(i) For some IP set S ⊂ N, one has, for all n ∈ S, [bin]−[[bin]] = xi , [cin]−[[cin]] =

yi and [din] − [[din]] = zi .

(ii) These hold:

(1)
∑n1

i=1 ai bi +
∑n2

i=1 cidi +
∑n4

i=1 fi = 0;

(2)
∑n3

i=1 ei +
∑n1

i=1 xiai +
∑n2

i=1(yidi + zici) = 0;

(3)
∑n1

i=1 ai ⊗ bi +
∑n2

i=1(ci ⊗ di + di ⊗ ci) ∈ R ⊗ Q.

Notice that, since [x] − [[x]] is −1 when sgn {{x}} = −1 and 0 otherwise, condi-

tion (i) can be determinately checked for any candidate values of xi , yi , and zi using
Proposition 3.5 and the remark following it; hence the necessary and sufficient con-

ditions given in Theorem 3.6 are wholly explicit.

We now return to the general form H(n) given in (3.1). Our first observation
is that by moving integer parts outside of brackets we may assume without loss of

generality that ui, vi, wi , xi, yi and zi are all in [0, 1). Next, we may assume vi =

yi = zi =
1
2

while changing H(n) by a bounded amount. Finally, by (3.2), given
any IP system n, every IP ring contains a subring along which the value of H ◦ n will

be unaffected by setting all the non-zero ui , wi , and xi equal to 1
2

(in other words,
we may assume that ui, wi , xi ∈ {0, 1

2
}). The most general form we must therefore

consider is much as before, namely

(3.6) F(n) =

n1
∑

i=1

[[ain([[bin]] + ǫi(n))]] +

n2
∑

i=1

([[cin]] + δi(n))([[din]] + γi(n))

+

n3
∑

i=1

[[ein]] +

n4
∑

i=1

[[ fin
2]],
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where ǫi is either given by ǫi(n) = [bin] − [[bin]] or is identically zero, δi is either
given by δi(n) = [cin] − [[cin]] or is identically zero, and γi is either given by γi(n) =

[din] − [[din]] or is identically zero.

Theorem 3.7 Let F be given by (3.6). There exists an IP system n into N such that

F ◦ n is constant if and only if there are choices xi , yi , and zi in {−1, 0} having the

following properties:

(i) For some IP set S ⊂ N, one has, for all n ∈ S, ǫi(n) = xi , δi(n) = yi and

γi(n) = zi .

(ii) (1), (2), and (3) above hold.

Theorem 3.7 gives an explicit answer to the question when a generalized polyno-
mial F having form (3.6) has the property that F ◦ n is constant for some IP system n.

On the other hand, as we have argued, if H has form (3.1), then there is some readily

computable F having form (3.6) such that for any IP system n and any IP ring there
is a subring on which |H ◦ n− F ◦ n| is bounded. Invoking Hindman, the verdict that

Theorem 3.7 gives in regard to F will apply equally to H.

4 A Note on Mildly Mixing Zr Actions

Up to now, we have restricted ourselves to Z-actions, however our main theorem does

have a Zr version. Given a measure preserving Zr-action {Tn} of a probability space

(X, A, µ), and f ∈ L2(X), f is said to be rigid if there is a sequence (nk) ⊂ Zr with
|nk| → ∞ such that Tnk

f → f . {Tn} is mildly mixing if there are no non-constant

rigid functions.
For fixed l ∈ N, the set of generalized polynomials Zl → Z is the smallest set

G(l,1) that is a function algebra (i.e., is closed under sums and products) containing

Z[x1, . . . , xl] and having the additional property that for all m ∈ N, c1, . . . , cm ∈
R and p1, . . . , pm ∈ G(l,1), the mapping n →

[
∑m

i=1 ci pi(n)
]

is in G(l,1). A map

p : Zl → Zr is a generalized polynomial if its coordinate functions are generalized

polynomials, and we write p ∈ G(l,r).
We now indicate how one would get a version of Theorem C for mildly mixing

Zr-actions and generalized polynomials Zl → Zr. One ingredient is the following

strengthening of Proposition 2.3.

Proposition 4.1 ([3, Theorem 2.9]) Let p(x) be a generalized polynomial Zl → Zr

and suppose n is a VIP system in Zl. Then for every IP ring F(1) there exists an IP ring

F(2) ⊂ F(1) and some c ∈ Zr such that the restriction to F(2) of v(α) = p(n(α)) + c is

a VIP system.

Next, we state (without proof) a Zr version of Theorem 2.7.

Theorem 4.2 Suppose (X, A, µ, {Tn : n ∈ Zr}) is a mildly mixing system, k ∈ N,

and let v1, . . . , vk be VIP systems into Zr such that neither vi nor vi − v j is identically

zero on any IP subring of a given IP ring F(1), 1 ≤ i 6= j ≤ k. If f0, . . . , fk ∈ L∞(X)

then there exists a refinement F(2) ⊂ F(1) such that

IP-lim
α∈F(2)

∫

f0Tv1(α) f1 · · ·Tvk(α) fk dµ =

k
∏

i=0

(

∫

fi dµ
)

.
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Deriving a satisfactory (for our purposes) analog of Theorem 2.8 is a bit more
of an adventure. Notice that Theorem B from the introduction contains no proviso

vis-à-vis degeneration along IP sets, only one precluding constant polynomials from
consideration. This is because non-constant polynomials Z → Z do not degenerate

along IP sets, however such is not the case for polynomials Zl → Zr. For example, let

p(x1, x2) = x2 − x1 and let n be any IP system into N. Then n(α) →
(

n(α), n(α)
)

defines an IP system into Z2 having the property that p
(

n(α)
)

= 0 for every α ∈ F.
This is all somewhat vexing, as we wish to formulate questions concerning po-

tential degeneration of generalized polynomials Zl → Zr, and we would like to have

regular polynomials acting as a kind of ideal base case free of degeneration, as before.
In other words, we are interested in which ways generalized polynomials Zl → Zr

can degenerate along IP rings, however, we wouldn’t like to count as “legitimate” ex-

amples such as the foregoing. This perspective can be adopted at minimal cost, as we
now outline.

Note that the cause of degeneration in the example just considered is a linear de-
pendence existing between the coordinate functions of N. Accordingly, we agree to

call an IP system n into Zl “degenerate” if for some non-trivial vector c ∈ Zl and some

IP ring F(1), c · n(α) = 0 for every α ∈ F(1). (Here · denotes ordinary dot product.)
An IP system that is not degenerate in this sense will be called an NIP system. NIP∗

subsets of Zl and NIP∗-limits are defined in the obvious ways.

Now by [4, Lemma 6.9], if p : Zl → Zr is a non-constant polynomial and n is
an NIP system into Zl, the restriction of α → p(n) to any IP ring F(1) cannot be

constant. This leads to the following theorem, which is a special case of [4, Theo-
rem 6.10].

Theorem 4.3 Suppose (X, A, µ, {Tn : n ∈ Zr}) is a mildly mixing system, k ∈ N,

and let p1, . . . , pk be polynomials Zl → Zr such that neither pi nor pi − p j is constant,

1 ≤ i 6= j ≤ k. If f0, . . . , fk ∈ L2(X) then

NIP∗- lim
n∈Zl

∫

f0Tp1(n) f1 · · ·Tpk(n) fk dµ =

k
∏

i=0

(

∫

fi dµ
)

.

Now, denote by G
(l,r)
NC the set of all p ∈ G(l,r) having the property that p(n(α)) is

not constant for any NIP system n into Zl. (Hence, as desired, polynomials Zl → Zr

comprise a subclass of G
(l,r)
NC .) The following extension of Theorem 4.3 can now be

established from Theorem 4.2, using Proposition 4.1.

Theorem 4.4 Suppose (X, A, µ, {Tn : n ∈ Zr}) is a mildly mixing system, k ∈ N,

and let p1, . . . , pk ∈ G(l,r) such that pi ∈ G
(l,r)
NC and pi − p j ∈ G

(l,r)
NC , 1 ≤ i 6= j ≤ k. If

f0, . . . , fk ∈ L2(X), then

NIP∗- lim
n∈Zl

∫

f0Tp1(n) f1 · · ·Tpk(n) fk dµ =

k
∏

i=0

(

∫

fi dµ
)

.

In order to appreciate Theorem 4.4 more fully, it would be nice to know something

about G
(l,r)
NC in some simple cases other than l = r = 1.
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