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Dispersion of droplets in an emulsion is commonly seen in several chemical,
pharmaceutical and petroleum industries. Electric field has been shown to affect the
stability of these dispersions. We study the dynamics of a pair of leaky dielectric droplets
in a leaky dielectric liquid in the presence of an externally applied electric field. A pair of
droplets may coalesce or repel each other in the presence of an electric field. Interactions
between a pair of drops have been shown to be governed by the ratio εr/σr, where εr
and σr are the ratios of drop to ambient fluid electric permittivities and conductivities,
respectively. When inertia is neglected, the droplets approach each other if εr/σr > 1,
whereas droplets repel when εr/σr < 1. However, inclusion of inertia permits interesting
transient behaviour, where the droplets may attract due to the electrostatic dipole–dipole
attraction even for εr/σr < 1. The approach velocity then is governed by the electrostatic
forces and varies as 1/h4, where h is the separation distance between the droplets, in
contrast to being hydrodynamically driven as predicted in the Stokes flow limit by Baygents
et al. (J. Fluid Mech., vol. 368, 1998, pp. 359–375). For compound droplets, interactions
between droplets are essentially governed by the electrical properties of the outer droplet
and the ambient fluid. However, transient dynamics may also result in the breakup of a
compound droplet and lead to formation of single droplets.

Key words: emulsions, electrohydrodynamic effects

1. Introduction

An emulsion is a dispersion of drops of one fluid in another. Emulsions are ubiquitous
in nature and are extensively used in chemical, coating, food, cosmetics, agricultural and
medical industries to achieve products with desired properties. The shelf life of products
such as paints, lotions, insecticides, medicines, etc., directly depends on the stability of
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the emulsions. Usually, emulsions are stabilised using compatible surfactants, also called
emulsifiers. While the stability of emulsions is desired in most applications, in some
applications, naturally occurring emulsions need to be phase-separated, for example in
oil and petroleum industries. Interesting applications utilising the convection currents
generated in droplets due to an electric field are emerging. For example, Penkova et al.
(2006) show that the electric-field-driven flow in a droplet affects the nucleation of
protein clusters. Chung & Oliver (1990) showed that electric-field-induced circulation
results in enhanced heat transfer in a spherical droplet translating in a dielectric medium.
Electric field also affects the wetting characteristics which can be harnessed for various
applications in microfluids (see Romero Herreros 2014). Electric field can also be
employed to control the size of droplets and bubbles from a nozzle as shown in Notz
& Basaran (1999) and Sunder & Tomar (2013). Application of an electric field across an
emulsion has been shown to affect the stability of emulsions (Barnes 1994; Kilpatrick
2012; Goodarzi & Zendehboudi 2019). For instance, in the oil refining industry, where the
conventional methods for oil dehydration, namely centrifugation, chemical treatment and
gravity separation, have shown only limited success, electric field has been recently used
effectively for separation of water from emulsified oil (Mhatre & Thaokar 2015). The effect
of electric field on a liquid drop has been studied extensively since the time of Rayleigh
(1882). Garton & Krasucki (1964) observed in their experiments that bubbles in insulating
liquids deform in prolate shapes and showed that with an increase in electric field beyond
a critical value, the bubbles can become unstable. Curious flow patterns around a droplet
were observed in the experimental investigations of Allan & Mason (1962), Bungenberg
de Jong & Hoskam (1941) and O’Konski & Harris (1957), and were explained in the
seminal work of Taylor (1966) by incorporating a small but finite conductivity for both
the drop and the ambient fluid. Taylor (1966) not only could explain the origin of the
circulatory flow, but also showed that the flow generated by the tangential electric stresses
at the drop surface can lead to oblate deformation of the droplets, where only prolate
drop deformations are expected for perfectly conducting or perfectly dielectric fluids. The
leaky dielectric theory, based on these results, is presented in detail in Melcher & Taylor
(1969) and has been extensively used since then to explain the behaviour of an isolated
droplet in an emulsion. Saville (1997) provides a detailed review of electrohydrodynamics
showing the connection between the electrokinetic and the leaky dielectric theories (also
see Zholkovskij, Masliyah & Czarnecki 2002).

Subsequent to the deformation predictions in the low-Reynolds-number limit by
Taylor (1966), several improvements on the solution have been proposed. Second-order
corrections to drop deformation were given by Ajayi (1978), followed by the effect of
charge convection on drop deformation as discussed in Feng & Scott (1996), Shutov
(2002), Xu & Homsy (2006), Vlahovska (2011), Fernandez (2013) and Lanauze, Walker &
Khair (2015). The primary objective of those investigations was to resolve the discrepancy
between some of the experimental results of Torza, Cox & Mason (1971) and the
theoretical predictions obtained using Taylor’s linear theory (Taylor 1966). Taylor’s theory
is valid only in the limit of small electric capillary number, defined as the ratio of the
electric stresses and the capillary pressure, CaE = εE2∞R/γ , where ε is the permittivity of
the medium, E∞ is the strength of the externally applied electric field, R is the radius of the
droplet and γ is the surface tension coefficient. Drop deformation at higher CaE has also
been investigated, mostly numerically (Sherwood 1988; Feng & Scott 1996; Feng 1999;
Basaran 2002; Lac & Homsy 2007; Supeene, Koch & Bhattacharjee 2008; Fernandez
2013; Wang, Wang & Qiu 2014; Das & Saintillan 2017a), but also theoretically by Ajayi
(1978). Stability and breakup of perfectly dielectric droplets under large deformation
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have been investigated by Cheng & Chaddock (1984) using energy arguments, and that
of charged droplets in air by Brazier-Smith, Jennings & Latham (1971), and for leaky
dielectric droplets in a leaky dielectric ambient fluid by Feng & Scott (1996) and Lac &
Homsy (2007). Giglio et al. (2008) studied the onset of Rayleigh instability in charged
conducting microdroplets. The transient dynamics of droplets in electric field has been
computationally studied by Sherwood (1988), Esmaeeli & Sharifi (2011), Lanauze, Walker
& Khair (2013), Zhang, Zahn & Lin (2013) and Das & Saintillan (2017b). The importance
of the ratio of charge relaxation time scale to the time scale of other processes such
as charge convection due to fluid flow or drop deformation due to local shear has been
discussed in Saville (1971), Collins et al. (2013) and Lanauze et al. (2015). The effect of
electric field on compound droplets in double emulsions has also been studied theoretically
and experimentally (Gouz & Sadhal 1989; Tsukada et al. 1997; Ha & Yang 1999; Behjatian
& Esmaeeli 2013; Soni, Juvekar & Naik 2013; Abbasi et al. 2017). Most of these studies
of compound droplets have focused on the relative deformation of the inner and the
outer droplets, and also the possibilities of breakup and release of the inner droplet into
the ambient fluid. Gouz & Sadhal (1989) used a bipolar coordinate system to examine
various configurations of compound droplets under which a compound droplet is stable in
a translational flow for a given set of suitable electrical conductivities and permittivities
of the constituent fluids. Ha & Yang (1999) used a domain perturbation method, similar
to Taylor (1966), to predict the equilibrium shapes of the inner and the outer droplets
and also computed the rheological response of a dilute double emulsion of compound
droplets. Recently, Abbasi et al. (2017), using a level set method, studied the various modes
under which a double emulsion may break up. Abbasi et al. (2017) showed that the inner
droplet may undergo large oblate deformation whereas the outer droplet undergoes prolate
deformation, and thus can lead to bursting of the compound droplet ejecting the inner
droplet fluid into the ambient. They showed that, if the inner droplet is not concentrically
placed, it may migrate to the outer surface of the compound droplet and be ejected out for
certain conductivity and permittivity ratios.

The rheological response of an emulsion has been shown to be altered in the presence of
an electric field. Where a considerable effort has been invested in studying the behaviour of
isolated droplets in electric fields, which has led to a better understanding of the rheology
of dilute emulsions in electric fields (Ha & Yang 1999; Vlahovska 2011; Sengupta, Walker
& Khair 2017; Mandal et al. 2018), the effect of interactions between the droplets on
the rheology and stability of dense emulsions needs to be understood better. There have
been some studies of the interaction between droplets and particles suspended in a perfect
insulator in the presence of an externally applied electric field (Latham & Roxburgh 1966;
Brazier-Smith et al. 1971; Arp, Foister & Mason 1980). Due to the relevance to the oil
industry and atmospheric science, interactions between conducting droplets suspended in
an insulating fluid (such as in water-in-oil systems and water droplets in clouds) in the
presence of an electric field have been studied extensively (Pearce 1954; Brazier-Smith
1971; Atten 1993; Zhang, Basaran & Wham 1995; Mhatre & Thaokar 2015) and more
recently by Sorgentone et al. (2020). A curious phenomenon of electrocoalescence, or
rather the phenomenon of non-coalescence, of charged droplets in an electric field has
also revived some interest lately in the study of interactions between a pair of droplets
in the presence of an electric field (Aryafar & Kavehpour 2007; Ristenpart et al. 2009;
Anand, Juvekar & Thaokar 2019; Sunder & Tomar 2020). For uncharged droplets in
perfectly dielectric fluids, the droplets always attract each other due to dipole–dipole
electrostatic interactions. Interactions between a pair of leaky dielectric droplets suspended
in a leaky dielectric fluid were first studied theoretically by Sozou (1975). Sozou (1975)
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used bispherical harmonics, considering the two drops to be of the same size, to solve
for the electric field and the velocity field due to the tangential electric stresses at the
drop interface. The key conclusion was that the non-uniformity in the electric field in the
region between the droplets increases as the droplets approach distances shorter than two
diameters of the droplets and affects the nature of deformation and coalescence dynamics
of the droplets. Zhang et al. (1995) used a population dynamics approach to study the
interaction between droplet pairs, but their study was conducted using perfectly conducting
drops dispersed in a perfect dielectric liquid. Using a boundary integral method, Baygents,
Rivette & Stone (1998) performed axisymmetric simulations of interactions between two
leaky dielectric droplets in leaky dielectric ambient fluid with the axis of symmetry
aligned with the electric field. They showed that the hydrodynamic forces dominate
the electrostatic forces in the limit of small Reynolds number and dictate the stability
of emulsions. An emulsion is rendered unstable when the droplets attract, whereas the
emulsion is stable when the droplets repel. Droplets attract each other if the flow due to the
electric stresses at the droplet surface is from the poles towards the equator, thus resulting
in a velocity field which pulls the droplets together along the axis, with the externally
applied electric field direction aligned with the axis. On the other hand, droplets repel
each other when the flow is from the equator to the poles. The flow direction can be
simply predicted by comparing the drop to ambient electric conductivity and permittivity
ratios, σr and εr, respectively. If σr < εr, flow is from poles to equator and thus droplets are
expected to attract, whereas when σr > εr flow is from the equator to the poles. Baygents
et al. (1998) showed that the relative velocity between the droplets of perfectly dielectric
systems is governed by h−4, where h is the separation distance between the droplets.
They showed that, in contrast, for leaky dielectric fluids, droplets attract or repel at a
rate proportional to h−2 due to the hydrodynamic forces. Tomar et al. (2007) proposed
a CLSVOF-based method to simulate two-phase leaky dielectric electrohydrodynamics
and showed good agreement with the results for drop–drop interaction of Baygents et al.
(1998). Lin, Skjetne & Carlson (2012) used a phase-field method to simulate interaction
between a pair of droplets in the presence of an electric field. The effect of viscosity ratio
on the time scale of coalescence was discussed, but the scaling for the relative velocity
between the droplets was not examined.

In the present study, we investigate drop–drop interactions in single and double
emulsions in the presence of an electric field using a two-phase flow solver based on
a volume of fluid method. The scaling for the relative velocity between the interacting
droplets is studied first and it is shown that it can vary as h−2 or h−4 (where h is the
centre-to-centre distance between the droplets) depending upon the Reynolds number of
the flow generated by the tangential electric stresses. Then, we present simulations for
low-viscosity fluids (with the ambient to drop viscosity ratio as one), for which the droplets
attract initially but eventually repel each other. For certain electric properties of the drops
and the ambient fluid, we show that the droplets attract, but the coalescence phenomenon
is delayed due to the slow drainage of the film between the droplets and a drop-pair doublet
is formed similar to the particle pairs formed in Arp & Mason (1977), chain of droplets
in Holto, Berg & Lundgaard (2009) and cell–cell (vesicle) doublets in Zimmermann &
Vienken (1982). These nonlinear effects due to the finite Reynolds number have not been
explored before. Finally, we study the behaviour of compound droplets in an electric field
and the effect of electric field on the drop–drop interactions between compound droplets.

The paper is organised as follows. The problem definition and numerical scheme used
in this study are discussed in § 2. Results and discussions of the simulations of single
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Figure 1. Schematic (not to scale) showing a pair of compound droplets interacting in the presence of an
externally applied electric field. The radii of the outer and inner droplets are Ro and Ri, respectively. Various
electric, transport and thermodynamic properties are marked in the schematic.

and compound droplets in single and double emulsions, respectively, are presented in § 3.
Important conclusions from the study are discussed in § 4.

2. Problem formulation

We study the interaction dynamics of a pair of leaky dielectric single and compound
droplets in a leaky dielectric ambient fluid under the influence of an externally applied
electric field using an axisymmetric formulation. The initial configuration of the emulsion
droplets for the computations is shown in the schematic in figure 1. The dashed line marks
the axis of symmetry (along the horizontal direction). The extent of the domain in the
radial and axial directions is 5Ro and 10Ro, respectively, where Ro is the radius of the outer
shell of the compound droplet (see figure 1). The chosen computational domain is large
enough to neglect the effect of the boundary on the dynamics of the droplets at the time
scales considered in this study. The initial separation distance between the droplets is 4Ro.
An external electric field is applied along the axial direction and is imposed using φ = φ0
as the boundary condition on the right-hand boundary, where φ denotes the electric
potential (marked in figure 1). The left-hand boundary is electrically grounded using
the boundary condition φ = 0. Neumann boundary condition for the electric potential is
imposed on the top boundary (r = 5Ro), ∂φ/∂r = 0, where ∂/∂r denotes the derivative in
the radial direction. Symmetry boundary conditions are imposed on the axis of symmetry
for the velocity field and the electric potential, and no-slip velocity boundary conditions
are imposed on the other boundaries.

We consider the droplets to be neutrally buoyant with densities ρ1 = ρ2. Here, the
properties of the outer fluid are denoted by subscript 1, whereas the fluid constituting
the shell of the compound droplet is denoted using the subscript 2 (as marked in figure 1).
The properties of the fluid constituting the dispersed phase of the compound droplet are
considered to be the same as those of the outer fluid and are denoted by subscript 1.
Viscosities of the fluids 1 and 2 are given by μ1 and μ2, respectively. Electric permittivities
and conductivities are ε1 and σ1, respectively, for the ambient fluid and ε2 and σ2 for
the outer-drop fluid. The two-phase system can be categorised by the following ratios
of different properties: ρr = ρ2/ρ1, μr = μ2/μ1, εr = ε2/ε1 and σr = σ2/σ1. For the
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simulations presented in this study, we assume ρr = 1 and μr = 1. The fluids involved
are assumed to be incompressible and Newtonian, and the surface tension coefficient of
the interface between the two fluids is given by γ12 = γ . In the following, we discuss the
governing equations and the numerical formulation employed for the simulations.

The two-phase system discussed above is governed by the modified incompressible
Navier–Stokes equations using the one-fluid formulation as

∇ · u = 0, (2.1)

ρ(C)

(
∂u
∂t

+ ∇ · uu
)

= −∇p + ∇ · [μ(C)(∇u + ∇uT)] + γ κnδs + F el, (2.2)

where u is the velocity field, p is the pressure and the indicator function C is given by the
volume fraction that takes a value of zero in fluid 1 and one in fluid 2. The density and
viscosity are functions of the volume fraction and are given by ρ(C) = ρ2C + ρ1(1 − C)

and μ(C) = μ2C + μ1(1 − C). Surface tension force is modelled as a volumetric force
given by γ κnδs, where γ is the surface tension coefficient, κ is the curvature at the
interface, n is the normal vector and δs is the smoothed Dirac delta function. Similarly,
electric field force F el can be modelled as a volumetric force given by (Melcher & Taylor
1969)

F el = −1
2 (E · E)∇ε + qvE, (2.3)

where E is the electric field and qv is the volumetric free charge. The first term in the
above equation is the dielectrophoretic force and the second term is the electrophoretic
force arising due to the presence of free charges. The electric force can also be written in
terms of the divergence of the Maxwell stress tensor as follows:

F el = ∇ · T e, (2.4)

where the Maxwell stress tensor T e is given by

T e = ε

(
EE − E2

2
I
)

. (2.5)

Since the time scales at which the magnetic induction effects become important are
significantly smaller than the flow time scales in this study, we ignore the electromagnetic
coupling and assume that the electric field E is curl-free (∇ × E = 0). Thus, we can
write E = −∇φ. We solve the following Poisson equation with the boundary conditions
discussed earlier:

∇ · εE = ∇ · (ε(−∇φ)) = qv. (2.6)

The charge conservation equation is given by

∂qv

∂t
+ u · ∇qv + ∇ · J = 0. (2.7)

Here, J = (σE) is the current density. The electric permittivity and conductivity, in
the one-fluid formulation, are given by ε = ε2C + ε1(1 − C) and σ = σ2C + σ1(1 − C),
respectively. The evolution of the interface is governed by an advection equation in terms
of the volume fraction (C):

∂C
∂t

+ u · ∇C = 0. (2.8)

We note that when the electric conductivities of the two fluids are such that the charge
relaxation time constants, ε1/σ1 and ε2/σ2, are small in comparison to the flow time
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scales, the charge conservation equation reduces to ∇ · J = 0. Thus, the bulk is essentially
charge-free and the free charge accumulation only occurs at the interface where there is
change in the relaxation time constant. Therefore, both the dielectrophoretic forces and the
electrophoretic forces are surface forces acting only at the interface. The surface tension
force and the surface electric force are modelled as volumetric forces in the one-fluid
formulation using a modified version of the continuum surface force framework proposed
by Brackbill, Kothe & Zemach (1992).

The above one-fluid formulation can be shown to impose the following boundary
conditions implicitly. Using Gauss’s law at the interface yields the jump condition in the
normal component of the electric field:

‖εE · n‖ = qs, (2.9)

where ‖ · ‖ indicates the jump in the quantity across the interface in the direction of the
normal vector n. Here, qs is the surface charge density of free charge and n is the normal
at the interface. Since no phase change is involved, we have velocity continuity at the
interface:

‖u · n‖ = 0. (2.10)

Normal stress balance condition at the interface yields

‖p‖ = γ κ + ‖n · T vn‖ + ‖n · T en‖, (2.11)

where ‖p‖ denotes the jump in pressure, γ κ is the component of the pressure jump due
to surface tension, ‖n · T vn‖ is the jump in the normal component of the viscous stress
(T v = μ(C)(∇u + ∇uT)) across the drop surface and ‖n · T en‖ is the jump in the normal
component of the Maxwell stress tensor defined in (2.5). In the absence of any variation
in the surface tension coefficient, tangential stress balance is given by

‖t · T vn‖ + ‖t · T en‖. (2.12)

Conservation of the surface charge is ensured by accounting for advection of the interface,
along with the change in area of the interface due to motion. Thus, surface charge
conservation equation is given by

∂qs

∂t
+ u · ∇sqs = qsn · (n · ∇)u − ‖σn · E‖ + ‖qvv · n‖, (2.13)

where the term qsn · (n · ∇)u accounts for the change in charge density due to the change
in the interfacial area. Variation in surface charge density due to the difference in the
current density across the interface is given by the term ‖σn · E‖. The term ‖qvv · n‖
corresponds to the transport of charge from the bulk to the interface by the fluid motion
near the interface as suggested by (22′) in Saville (1997).

In the one-fluid formulation, we solve a volumetric charge conservation equation which
also accounts for the surface charge conservation in a thin diffused layer (over one to three
grid cells) at the interface. The efficacy of the one-fluid formulation has been demonstrated
in Tomar et al. (2007) and López-Herrera, Popinet & Herrada (2011). The algorithm used
in the present case is from the latter study which employs a charge conservation approach.

The governing equations for mass, momentum and charge conservation along with the
Poisson equation for the electric field potential are solved numerically in the one-fluid
formulation. Geometric volume of fluid, coupled with level set method, has been used
previously for several electrohydrodynamic problems (see e.g. Tomar et al. 2007; Sunder &
Tomar 2020). Here, in order to investigate the coalescence outcomes of compound droplets
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Figure 2. Temporal variation of deformation of the shell under a steady electric field, using five different grid
refinements. The parameters considered for the simulations are electric capillary number CaE = 0.2, Oh =
1.41, σr = 0.1, εr = 2 and ReE = 0.772.

in electric field, we employ an open source, adaptive mesh refinement (AMR)-based,
parallel-flow solver: Basilisk (Popinet 2015). Basilisk, similar to Gerris (Popinet 2003,
2009; Tomar et al. 2010), is based on an Oct-Tree AMR. López-Herrera et al. (2011)
simulated electrohydrodynamics by modifying Gerris and compared the accuracy of the
numerical scheme with that of Tomar et al. (2007). A similar numerical scheme has
been used in Basilisk as well. A geometric volume of fluid method is implemented in
Basilisk with the interface approximated by a piecewise linear reconstruction. In Basilisk,
normal and curvature at the interface are computed using the height function approach,
similar to that in Popinet (2009). Geometric advection of volume of fluid (equation (2.8))
is carried out using a second-order Godunov scheme (Bell, Colella & Glaz 1989) and a
balanced-force discretisation, for both electric stresses and surface tension force, is used
to minimise spurious currents (Francois et al. 2006). A collocated grid discretisation is
used and an approximate projection scheme is used to solve the Navier–Stokes equations.
Details of the discretisation of the governing equations ((2.2), (2.6), (2.7) and (2.8)) along
with detailed validations can be found in Popinet (2015) and López-Herrera et al. (2011).

We use AMR to enhance the computational efficiency while maintaining the required
accuracy of the simulations. In the present study, we employ AMR using a cost function
based on the gradient of the volume fraction, thus using a very fine mesh near the interface
while maintaining a relatively coarser mesh elsewhere (see Popinet (2015) for details of
the AMR method). To understand the grid requirements for the simulations involving
compound droplets presented in this study, we perform a grid independence study. We use
the Taylor deformation parameter, defined as D = (L − B)/(L + B), where L is the major
axis and B is the minor axis of the deformed compound droplet, to compare numerical
convergence with the increase in refinement. We perform simulations using different grid
sizes and check the temporal evolution of D as shown in figure 2. The inset shows a zoomed
view for minimum value of deformation. The curves corresponding to Ro/Δxmin = 102
and 205 are very close with a maximum difference of 0.6 %. Here, Δxmin is the minimum
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grid size used in the present study. For the simulations presented in this study, the entire
interface is resolved using Δxmin and the grid is progressively coarsened away from the
droplet. Based on the grid independence study, we use Ro/Δxmin = 102 for the simulations
presented in this study.

The following non-dimensional parameters govern the dynamics of droplets due to
electrostatic forces and the flow generated by them. Electric capillary number CaE =
μ1Ue/γ , where μ1 is the viscosity of the ambient continuous phase, γ = γ12 is the surface
tension coefficient at the interface of fluids 1 and 2 and Ue is the velocity scale defined
based on the flow generated by the electric forces. The scaling for velocity generated due
to the electric forces can be obtained by balancing viscous stresses with Maxwell stresses
at the interface. The scale for the velocity is thus given by Ue ∼ E2∞ε1Ro/μ1. We note
here that the above scaling with an additional factor of (1 − τ 2

e /τ 1
e )σr/(σr + 2)2 would

yield a more appropriate scaling following the solution for velocity given by (27) in Taylor
(1966), where τ 1

e = ε1/σ1 and τ 2
e = ε2/σ2 are the charge relaxation time constants for

fluid 1 (ambient) and fluid 2 (drop), respectively. Indeed, in our simulations for τ 1
e = τ 2

e ,
no electrohydrodynamic flow is observed (not shown here). Thus, the above scaling for
velocity, in some cases, may be an order-of-magnitude different from the observed values.
However, for non-dimensionalising velocity, we use Ue defined above as also proposed in
Baygents et al. (1998), since it allows the delineation of the effects of electrical parameters
while comparing results for different values of σr and εr. Nevertheless, later when we
compute scaling for electrostatic and hydrodynamic forces, as well as flow, interface and
charge relaxation time scales, we account for the effect of other electrical properties of the
fluids on velocity scaling. Using Ue, the electric capillary number can now be written as
CaE = E2∞ε1Ro/γ .

The ratio of the viscous capillary time scale, τ
γ
μ = μ1Ro/γ , and the Rayleigh inertial

capillary time scale, τ
γ
ρ = √

ρ1R3
o/γ , yields a measure of the role of viscosity in the

interfacial dynamics, called the Ohnesorge number: Oh1 = μ1/
√

ρ1Roγ for the ambient
fluid; this can be defined similarly for the drop fluid: Oh2 = μ2/

√
ρ2Roγ . The Reynolds

number, based on Ue, can be defined as Re = ρ1R2
oE2∞ε1/μ

2
1 = CaE/Oh2

1. An electrical
equivalent of the hydrodynamic Reynolds number can also be defined by taking the ratio of
charge convection to conduction: ReE = Ueτ

1
e (1 + εr)/(Ro(1 + σr)) as suggested in Feng

(1999). Feng (1999) showed that the electric Reynolds number, ReE, defined above has an
effect on the extent of deformation of the droplet.

Using the definition of the electric capillary number CaE, we can non-dimensionalise
the electric field intensity with ∼ √

γ /ε1Ro (as suggested by Feng (1999)), and thus the
non-dimensionalised externally applied electric field intensity can now be written as E∗∞ ∼√

CaE. Another important parameter requiring attention is the amount of free charge per
unit area that develops at the interface: Qs ∼ 3ε1(1 − τ e

2/τ e
1 )E∞/(σr + 2) (computed from

an exact solution for a spherical droplet). The ratio of the charge relaxation time constants
for the two fluids (τ e

2/τ e
1 ) in the above expression essentially indicates the nature of the

charge distribution on the surface of the drop. If the ratio is greater than one, the ambient
fluid carries away the charge rapidly and a negative charge develops at the interface (in the
northern hemisphere of the droplet with the axis of the droplet aligned with the applied
electric field); whereas if the ratio is less than one, the drop fluid supplies positive charge
in response to the applied electric field, at a more rapid rate than can be carried away by
the ambient fluid, and thus a positive charge accumulates at the surface. The positive or
negative charge determines the direction of the tangential stress and thus also the sense of
circulation produced by the electrohydrodynamic forces, which in turn determines whether
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the nature of the interaction between the droplets is attractive or repelling (see Baygents
et al. 1998). At low Reynolds number, hydrodynamic viscous forces are stronger and drive
the interaction between the droplets, whereas at higher Reynolds numbers, as shown in
the next section, the relative velocity during attraction is governed by the electrostatic
interaction between the droplets.

In the next section, we discuss the effects of an externally applied electric field on a pair
of single and compound droplets.

3. Results and discussion

In this section, we study the interaction dynamics of a pair of droplets, single and
compound, suspended in another immiscible fluid under the action of an externally applied
electric field. We perform two-dimensional axisymmetric simulations with outer droplet
radius Ro and inner droplet radius Ri, as shown in the schematic in figure 1. First,
we present results for droplets in a single emulsion (Ri = 0). Based on the interaction
dynamics of a pair of droplets, we comment on the stability of an emulsion in the presence
of an electric field. Subsequently, we discuss interaction dynamics between a pair of
compound droplets.

3.1. Single emulsion in an externally applied electric field
We validate the numerical model employed in this study by comparing the deformation of
a droplet with the theoretical predictions of Taylor (1966) and also previous computational
studies (Tomar et al. 2007; López-Herrera et al. 2011). The size of the domain is the
same as that used previously (Tomar et al. 2007; López-Herrera et al. 2011). All the
computations have been performed up to the steady state. Figure 3 shows variation in D
with σr for εr = 10, CaE = 0.18 and Oh = 3.16. We observe that the droplet deforms into
an oblate shape (D < 0) for low values of σr and into a prolate shape (D > 0) for higher
values of σr. In the presence of an electric field, depending on the electrical properties of
the two phases, the drop deforms either into an oblate or a prolate shape. Taylor (1966)
provided an analytical expression for the deformation of a drop as a function of the fluid
properties and the electric field intensity, in the limit of small deformation, as

D = 9
16

CaE

(2 + σr)2

[
1 + σ 2

r − 2εr + 3
5
(σr − εr)

2 + 3μr

1 + μr

]
, (3.1)

where D = (L − B)/(L + B) is the Taylor deformation parameter, with L being the length
of the droplet along the direction of the electric field and B the width of the droplet in the
plane perpendicular to the applied electric field.

The accuracy of Taylor’s linear theory has been discussed in several previous studies
(Ajayi 1978; Feng 1999), especially in the context of not-so-good agreement with some
of the experiments of Torza et al. (1971) for low-conductivity fluids. In particular, the
deformation of the drop is expected to be proportional to E2∞ from the theory, but the
experiments of Torza et al. (1971) showed only qualitative agreement and the extent of
deformation in some cases was over twofold different from the predictions of the theory.
Feng (1999) suggested that the possible origin of this discrepancy could be due to the
neglect of charge convection in Taylor’s theory (see (2.3) in Feng 1999). At low, but finite,
electric Reynolds numbers (ReE), the deviation was shown to be significant especially
for very low-conductivity fluids such as silicone and castor oils. In our simulations, we
account for charge convection effects. We observe that for small drop deformation there
is good agreement between the computational results and Taylor’s theory (as shown in
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Figure 3. Comparison of deformation (D) of a single droplet with theoretical and computational studies.
Other non-dimensional parameters for the computations are CaE = 0.18, Oh = 3.16 and εr = 10.

figure 3), and only at larger D is there deviation from the theory essentially due to the
breakdown of the assumption of linearity. Comparison with Ajayi’s second-order theory
shows good agreement with the simulation results. We note that we have focused here
on cases where electrical conductivities of the fluids investigated are not as low as those
considered by Feng (1999). We will address the physics of the interaction between droplets
in very poorly conducting emulsions (e.g. silicone oil droplets in castor oil) in a separate
study.

Figure 4 shows the drop shapes and the streamlines of the flow generated by the
tangential electric forces. Due to the accumulation of the free charge at the drop interface,
a tangential electric force acts at the interface that leads to fluid flow inside the droplet as
well as in the ambient fluid, as shown in figure 4 for three different values of σr. Other
parameters for all three cases shown in figure 4 are CaE = 0.18, Oh = Oh1 = 3.16 and
εr = 10. For σr = 1.81 and σr = 5.1, the flow is from poles to equator, resulting in the
oblate shape for σr = 1.81 but the droplet remains spherical for σr = 5.1. As indicated
by the deformation curve shown in figure 3, a droplet can deform prolately even for
σr < εr (for σr > 5.1 when εr = 10 and μr = 1) when the electrostatic forces normal to
the interface are stronger compared with the hydrodynamics forces. For σr = 5.1, εr = 10
and μr = 1, the droplet remains spherical. This no-deformation case corresponds to the
electrical and fluid properties for which the Maxwell stresses are exactly balanced by
the normal viscous stress and the surface tension forces for a spherically shaped droplet.
Nevertheless, non-zero tangential electric stresses generate a flow from poles to equator as
shown in figure 4(b). The switchover of the flow from poles-to-equator to equator-to-poles
occurs when σr > εr as shown in figure 4(c) for σr = 14 and εr = 10. All the computations
shown here are in good agreement with the analytical results, as well as with the previous
computational studies (Tomar et al. 2007; López-Herrera et al. 2011).

We now investigate interaction dynamics of two droplets in a single emulsion in the
presence of an electric field. The computational domain size for these simulations is
17Ro × 34Ro. Charge accumulation at the interface of initially neutrally charged droplets
results in the formation of electric dipoles and the droplets interact electrostatically
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(b)

E∞ E∞ E∞

(a) σr = 1.81 σr = 5.1 σr = 14(c)

Figure 4. Streamlines and variation in the drop shape for different conductivity ratios. The electric Reynolds
number ReE is (a) 2.228, (b) 1.027 and (c) 0.417. Other parameters are εr = 10, CaE = 0.18 and Oh = 3.16.

(b)

E∞ E∞ E∞

(a) t/τρ
γ = 1 t/τρ

γ = 20 t/τρ
γ = 30(c)

Figure 5. Drop interaction along with the streamline patterns observed at different non-dimensional time
(t/τγ

ρ ) for σr = 6 and εr = 8 at CaE = 1.5 and Oh = 0.63. The electric Reynolds number is ReE = 4.86.

through dipole–dipole electrostatic forces. In the large-separation limit, the electrostatic
force between the droplets can be shown to be proportional to E2∞/h4, where h is the
centre-to-centre spacing between the droplets. On the other hand, flow generated by the
electric stress would generate a drag proportional to the relative velocity in the low-Re
limit. Thus, the hydrodynamic drag force on one droplet due to the flow generated at
the other is proportional to E2∞/h2. However, at higher Re, the hydrodynamic drag is
proportional to velocity squared, and thus a drag force proportional to E4∞/h4 should be
expected. Simulations presented in this study are for low CaE values that correspond to
low Re = CaE/Oh2 ∼ O(1) and therefore we expect the linear drag law to be valid.

As discussed earlier, the direction of the flow depends upon the sign of (1 − τ 2
e /τ 1

e ), and
therefore is expected to also govern the hydrodynamic interactions between the droplets in
an emulsion. Based on the convection currents, the droplets are expected to move towards
each other for τ 2

e /τ 1
e > 1, or equivalently σr < εr, whereas they will move away from each

other for τ 2
e /τ 1

e < 1, that is, σr > εr. Here, we present two cases with parameters chosen
from Baygents et al. (1998) such that the droplets attract in the first case with σr = 6
and εr = 8 (τ 2

e /τ 1
e = εr/σr = 1.33 > 1) as shown in figure 5 and therefore are expected

to render the emulsion unstable, whereas the droplets repel each other for σr = 1.04 and
εr = 0.2 (τ 2

e /τ 1
e ∼ 0.2 < 1) as shown in figure 6, and the electric field is expected to

stabilise the emulsion.
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(b)

E∞ E∞ E∞

(a) t/τρ
γ = 1 t/τρ

γ = 40 t/τρ
γ = 120(c)

Figure 6. Drop interaction along with the streamline patterns observed at different non-dimensional time
(t/τγ

ρ ) for σr = 1.04 and εr = 0.2 at CaE = 1.5 and Oh = 0.63. The electric Reynolds number is
ReE = 2.223.

252015105–5–10–15–20–25qv: 1512963–3–6–9–12–15qv:

E∞ E∞

t/τρ
γ = 20 t/τρ

γ = 40
(b)(a)

Figure 7. Variation in volumetric charge density (qv) along the interface for (a) σr = 6 and εr = 8
(ReE = 4.86) and (b) σr = 1.04 and εr = 0.2 (ReE = 2.223) at CaE = 1.5 and Oh = 0.63.

In the first case with τ 2
e /τ 1

e > 1, charge develops much faster (t/τγ
ρ ∼ 0.02–0.1 �

1) than the morphological evolution of the droplet t/τγ
ρ ∼ 2. Also, the morphological

evolution is much faster than the drop migration time scale t/τγ
ρ ∼ 40. Thus, the drops first

deform and subsequently without deforming much, either migrate towards each other or
move away depending upon the ratio τ 2

e /τ 1
e . The streamlines for t/τγ

ρ ∼ 1 are similar (see
figures 5a and 6a) for both cases due to the initial prolate deformation. Subsequently, the
electric stresses result in a flow which is opposite for the two cases as shown in figures 5(b)
and 6(b). Droplets in figure 5 coalesce, whereas those shown in figure 6 move apart.

Charge distributions for the two cases are presented in figure 7. As discussed earlier, the
signs of the charges developing on the drop surfaces are opposite for the two cases shown
in figure 7(a,b). Free charge distribution on the interface for a spherically shaped droplet
is given by Qs cos(θ), where the angle θ is measured from the horizontal direction aligned
with the applied electric field (as marked in the insets of figure 8). Thus, the charge is
maximum at the poles and zero at the equator. For the first case, negative charge develops
on the northern hemisphere of the droplet with the axis of the droplet aligned with the
electric field, whereas positive charge appears for the second case. Figure 8 shows the
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Figure 8. Temporal variation in volumetric charge density (qv) along the interface and the charge distribution
around the interface for (a) σr = 6 and εr = 8 (ReE = 4.86) and (b) σr = 1.04 and εr = 0.2 (ReE = 2.223) at
CaE = 1.5 and Oh = 0.63.

variation in the charge density on the drop surface for different time instances. Initially
when the droplets are far apart, charge develops symmetrically on the northern and the
southern hemispheres, similar to the isolated droplet case. However, when the interfaces
of the droplets come closer than one diameter, due to non-uniformity in the electric field
in the region between the droplets, charge increases in the regions where the droplets face
each other.

The dynamics of the droplets shown in the sequence of images in figures 5 and 6 can
be understood by comparing the time scales for the different phenomena active during the
interaction between the droplets. The time scale of charge accumulation at the drop surface
is given by τ 1

e /τ
γ
ρ , which is much shorter due to relatively high conductivities of the fluids

considered in the simulations presented in this study. The time scale for the development
of the flow due to the tangential electric stresses is given by the time scale for the diffusion
of the momentum τμ ∼ h2ρ1/μ1. Thus, τμ/τ

γ
ρ ∼ h2/(Oh R2

o) yields the time scale for
the influence of the electric-stress-driven flow near one drop to reach the other drop. If
the droplets are far apart, it will take longer for the flow to develop and thus electrostatic
forces may initially influence the droplets before being overtaken by the hydrodynamic
forces. Similarly, for low Oh values, even for droplets as close as h/Ro ∼ 5, τμ/τ

γ
ρ will be

large and the droplets would first respond to the attractive electrostatic forces. Figure 9
demonstrates the above phenomenon for low Oh = 0.02 and high ReE = 44.131. The
electric Reynolds number is much higher relative to previous cases, thus indicating that
the convection is dominant mode of charge transport compared to conduction for the
present case, essentially due to the higher ambient velocities for low viscosities (low
Oh). For Oh = 0.63, droplets repel each other for σr = 1.04 and εr = 0.2. However, for
Oh = 0.02, as shown in figure 9, we observe that the droplets initially attract each other
and subsequently when the flow has developed and the hydrodynamic forces are stronger,
droplets repel each other.
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0 5 20 27 45 70

E∞

Figure 9. Motion of a pair of droplets for low Ohnesorge number (Oh = 0.02) at different non-dimensional
time (t/τγ

ρ ) for σr = 1.04 and εr = 0.2 using CaE = 1.5, ReE = 44.131 and Oh = 0.02.

Thus, to determine the nature of the interaction between the droplets, it is not
sufficient to look at the ratio of the relaxation time constants (or the direction of the
electrically driven convective flow) alone. Baygents et al. (1998) also suggested that, in the
low-Reynolds-number limit, the droplets interact hydrodynamically when the separation
distance is large and they are essentially driven by electrostatic forces when the separation
distance is of the order of two droplet diameters. In what follows, we estimate the
hydrodynamic and electrohydrodynamic forces, and use the ratio of the forces to determine
the nature of the dynamics of a pair of droplets.

Assuming linear drag law for low-Re cases discussed here, we can estimate the net
hydrodynamic force on the droplet as (cf. § 4.9 in Batchelor 2000)

Fh ∼ 4πμ1UeRo
1 + 3/2μr

1 + μr
(u − v), (3.2)

where v is the velocity of the centre of mass of the droplet, non-dimensionalised by Ue,
and the magnitude of the ambient flow velocity u ∼ (Ro/h)2(σr − εr)/(σr + 2)2 defines
the non-dimensionalised velocity of the ambient fluid. The factor (σr − εr)/(σr + 2)2 is
the correction for the velocity scale as discussed in the previous section. Electrostatic force
between the droplets can be estimated by considering the interactions between the dipoles
defined by the sum of the net free and bound charges on the drop surface. For spherical
droplets in an electric field, the total charge in the northern hemisphere is given by

Qnet = 3πε0E∞R2
o
(σr − 1)

(σr + 2)
, (3.3)

where ε0 is the permittivity of free space. An estimate of the corresponding electrostatic
force between the droplets (dipole–dipole interaction), placed at a centre-to-centre
separation distance of h, can be obtained as

Fe ∼ 2Q2
net

4πε1

R2
o(R

2
o − 3h2)

h2(h2 − R2
o)

2 . (3.4)

The above electrostatic force in the limit of large h results in E2∞/h4 dependence discussed
in Baygents et al. (1998). The relative strengths of the electrostatic to hydrodynamic forces
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can be estimated from the following expression:

Fe

Fh
∼ 9

8

(
ε0

ε1

)2
(σr − 1)2

(σr − εr)

(
(1 + μr)

2

2 + 3μr

)
1 − 3(h/Ro)

2

((h/Ro)2 − 1)2 . (3.5)

Thus, from the above expression, the key parameters that govern the relative velocity
between the droplets are the ratio of electric conductivities σr, initial separation distance
between the droplets h/Ro, the ratio of charge relaxation time τ 2

e /τ 1
e = εr/σr and also the

permittivity of the ambient fluid ε1. Permittivity of the ambient fluid has a detrimental
effect on the electrostatic interactions due to dielectric screening effects.

Further, response of the droplets to the hydrodynamic forces is also governed by the
relaxation time that accounts for the inertia of the droplet. The relaxation time for a droplet
in a flow (cf. Batchelor 2000), τR, can be written as

τR

τ
γ
ρ

= 2ρr

3Oh
(1 + μr)

(2 + 3μr)
. (3.6)

In the simulations presented in the current study, we have ρr = μr = 1. Thus, τR/τ
γ
ρ =

4/(15Oh). This indicates that at low Oh, a droplet will not relax to the ambient flow
immediately, and thus the droplet may first respond to electrostatic attraction before being
driven by the hydrodynamic forces as shown in figure 9. For Oh ∼ 0.02, we observe that
the droplets initially tend to come together but as they approach each other, the flow
becomes stronger and they eventually repel each other. The relaxation time constants
tR/tγρ for Oh = 0.63 and Oh = 0.02 are 0.42 and 13.33, respectively. Therefore, for
Oh = 0.63, the droplets quickly relax to the ambient fluid velocity, whereas for Oh = 0.02,
electrostatic forces initially drive the droplet before the hydrodynamic forces set in.
Moreover, as discussed earlier, time for flow development τμ/tγρ (∼1250 for Oh = 0.02)
is slower for low-viscosity fluids and therefore adds to the effect of slow relaxation time
of the droplets. Further, for even lower-viscosity fluids, the droplets can be expected to
actually coalesce due to the electrostatic attraction instead of repelling each other due to
the hydrodynamic forces (not shown here). Thus, the mutual interaction between the drops
of an emulsion is expected to become complex due to the presence of inertial effects in
addition to the viscous and electrostatic forces.

For the cases shown in figures 5 and 6, tR/tγρ ∼ 0.42 corresponding to a fast deformation
of the droplets in response to the electrostatic forces and τμ/tγρ ∼ 39.68 which corresponds
to the time scale of migration of the droplets. The order of this time scale is in good
agreement with the observations from the simulations. For these cases, Fe/Fh is 1.44
and 0.00022, thus clearly suggesting that electrostatic forces are dominant in the first
case for σr = 6 and εr = 8, whereas for σr = 1.04 and εr = 0.2 hydrodynamic forces
are dominant. Thus, it is expected that the velocity of attraction will be proportional to
1/h4 for the former case and to 1/h2 for the latter. We present in figure 10 the variation
in the relative centre-of-mass velocity with the separation distance between the droplets
on a log–log scale. As expected, relative velocity between the droplets varies as 1/h4 for
approaching droplets as shown in figure 10(a) and as 1/h2 for repelling droplets as shown
in figure 10(b).

Other possible interesting behaviour is also observed for a certain set of parameters.
For instance, we show that the droplets may approach each other, come close, but not
coalesce and instead form a doublet as shown in figure 11. For σr = 25 and εr = 2,
when the droplets are initially at a separation of h/Ro = 4, we obtain Fe/Fh ∼ 4.7
where the electrostatic forces are attractive but the hydrodynamic forces are repulsive.
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Figure 10. Velocity variation with respect to centre-to-centre distance between the drops for (a) σr = 6 and
εr = 8 (ReE = 4.86) and (b) σr = 1.04 and εr = 0.2 (ReE = 2.223) at CaE = 1.5 and Oh = 0.63.

0 30 44 44 70 70

E∞

Figure 11. Enlarged view of a pair of non-coalescing droplets at different non-dimensional time (t/τγ
ρ ) for

σr = 25 and εr = 2 (ReE = 0.092) at CaE = 0.2 and Oh = 0.5 and the flow patterns around the drop. Also
shown are the zoomed-in views (representing the same area) at t/τγ

ρ = 44 and 70 and streamlines at t/τγ
ρ = 70.

Since electrostatic forces are stronger, droplets attract but the drainage of the film between
the droplets is delayed leading to the formation of a drop–drop doublet the drops of
which being separated by a thin film of the ambient fluid as shown in the zoomed-in
view in figure 11. The electric Reynolds number ReE = 0.092 is much smaller compared
to the other cases presented in this study. A low ReE indicates much stronger influence
of the electrostatic forces compared to the hydrodynamic drag which should have led to
coalescence of the droplets. However, due to the nature of the hydrodynamic flow around
the droplets, a thin film of the ambient fluid is captured. To resolve the thin film, we use
a more refined grid with Δxmin = R0/410 for the current case. The gap at t/τγ

ρ ∼ 44 is
less whereas a dimple forms at the centre of the droplets around t/τγ

ρ ∼ 50 and remains
stable at later times, as shown in figure 11 for t/τγ

ρ ∼ 70. We note that once the flat
film is fully formed at t/τγ

ρ ∼ 50, further evolution leads to the formation of a dimple
essentially due to the drop shape relaxation during which the thin film is pulled together,
thus resulting in the formation of the dimple. The minimum thickness of the film is towards
the periphery (∼0.0073Ro) and in the dimple region it is 0.061Ro. The streamlines shown
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in figure 11 indicate that the ambient fluid is driven towards the thin film from the surface
of the droplets essentially slowing the drainage of the film. In the simulations, we find that
these doublets do not change significantly with time indicating a steady-state behaviour
in the time scales of interest. Since we are not incorporating the effect of van der Waals
forces, the drainage time is dictated by the slow viscous time scale which in this case
is further slowed down due to the ambient fluid flow towards the film. The formation
of a dimple in the centre is similar to that observed during coalescence of bubbles or
the impact of a droplet on a flat surface. The above phenomenon of non-coalescence
and formation of a drop–drop doublet is different from the non-coalescence phenomenon
observed for charged droplets, where charged droplets initially approach each other, form
a conical neck, exchange charge and then repel each other (Aryafar & Kavehpour 2007;
Ristenpart et al. 2009; Anand et al. 2019; Sunder & Tomar 2020). Although there is no
direct mention of the above phenomenon in experimental observations, there is evidence
in certain experiments. For example, figures 3 and 4(a) of Zimmermann & Vienken (1982)
show two vesicles forming doublets during cell–cell fusion in the presence of electric field.
Also, figure 5 of Holto et al. (2009) suggests the formation of a chain of water droplets
in an oil and indicating that the droplets align with the electric field but do not coalesce
in spite of being in the immediate neighbourhood of each other. We note that the electric
stability of the ambient medium will also play a role in determining the complete physics
of interaction, since electric field intensity between the droplets is high which can lead to
an electric breakdown leading to a more complex phenomenon involving local heating as
discussed in the case of particles by Arp & Mason (1977). We hope that this observation
would motivate some careful experiments for drop–drop coalescence in this regime.

3.2. Double emulsion in an externally applied electric field
In this section, we first simulate the deformation of a single compound droplet, constituting
a double emulsion in an externally applied electric field and compare the results with
those of Abbasi et al. (2017). As shown in figure 12, the results are in good agreement
for the deformation of the constituent droplets. A compound droplet with shell radius
Ro and inner droplet radius Ri is suspended in a continuous medium and an externally
applied electric field acts along the horizontal direction. The core radius Ri is equal to
βRo. An axisymmetric computational domain of size (3Ro × 6Ro) is chosen with the
compound drop at the centre of the domain. An external electric field is applied such
that the right-hand boundary of the domain is considered at a higher potential and the
left-hand boundary is grounded as discussed earlier in § 2. The deformation of the outer
droplet is similar to that expected for single droplets for low aspect ratios β. For the inner
droplet, the deformation will depend on the reduced electric field intensity in the outer
droplet and the ratio of the permittivities and conductivities. However, for higher aspect
ratios some deviation is expected (see Abbasi et al. 2017). The stability of a compound
droplet was investigated numerically by Abbasi et al. (2017), where it was suggested that
if εr > σr, the compound drop is unstable and the inner droplet would exit the outer
droplet, whereas if εr < σr the inner droplet migrates to the centre of the outer droplet.
Abbasi et al. (2017) also investigated droplet bursting due to excessive deformation of
the inner droplet, especially when the aspect ratio β is large. In figure 12(a), εr is kept
constant at 2 and simulations are performed over a range of σr varying from 0.1 to 20.
When σr < εr, we can observe that both the interfaces experience large deformation. When
σr > εr, the magnitude of deformation at both the interfaces decreases which is depicted
by the flattening of the curves. In figure 12(b), σr is kept constant at 2.5 and simulations are
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Figure 12. Comparison of deformation of the core and the shell of a compound droplet at CaE = 0.2 and
Oh = 1.41 for (a) εr = 2 and (b) σr = 2.5.

performed over a range of εr varying from 0.01 to 50. When εr < σr (for a sufficiently large
σr for a given ε as discussed previously in the case of an isolated single droplet), the core
shows oblate deformation whereas the shell shows prolate deformation. For εr > σr, the
shell now shows oblate deformation and the core shows prolate deformation. We note that
the deformations of the inner and outer droplets obtained from the simulations presented
in this study are in good agreement with those of the simulations of Abbasi et al. (2017).

Interactions between compound droplets in a double emulsion can lead to various
interesting configurations for different values of σr and εr. To investigate this, we consider
a pair of compound droplets, each with outer radius Ro and inner droplet radius Ri,
separated by a centre-to-centre distance of 4Ro. The shell is three times the size of the
core (β = 1/3). An axisymmetric computational domain of size (5Ro × 10Ro) subjected
to an externally applied electric field along the axial direction is considered (see figure 1).
The flow parameters used for the simulations are CaE = 0.2 and Oh = 0.5. In figure 13(a),
for σr = 11 and εr = 16.5 (σr < εr), droplets attract and come together and so do the inner
droplets, leading to the formation of a single larger compound droplet. The outer droplet
(shell) deforms prolately, whereas the deformation of the inner droplet is small. Electric
field intensity inside the outer droplet is ∼3E∞/(σr + 2) and thus, for higher σr, it is
expected to reduce significantly. The effective CaE for the inner droplets is thus much
smaller due to the reduced electric field intensity and increased capillary pressure because
of smaller radius. Therefore, the inner droplets deform significantly less. Interestingly,
during coalescence the inner droplets approach faster than the centroid of the outer droplet.
Since the ratio of the electrostatic to hydrodynamic forces is Fe/Fh ∼ 3.42, electrostatic
forces dominate and drive the droplets together, and thus also drag the inner droplets along.
Subsequently, hydrodynamic forces on the inner droplets drag them further towards the
periphery. This suggests the possibility of the inner droplet escaping the outer droplet as
is shown later for σr = 10 and εr = 27.5. For σr = 3 and εr = 0.15 (σr > εr), shown in
figure 13(b), the outer droplets move apart at a very slow rate, and therefore do not show
much variation in terms of droplet shapes with time for the duration investigated in this
study. Further, since σr > εr, the inner droplets are also expected to remain at the centre of
the compound droplets. This is in agreement with the observations from the simulations of
Abbasi et al. (2017), where for σr < εr, an off-centred inner droplet is driven by a flow in
the outer droplet from the centre towards the pole, and the inner droplet is ejected out of the
outer droplet. On the other hand, if the flow generated in the outer droplet is such that the
flow is from the poles towards the centre along the centreline of the droplet (as observed
for σr > εr), the inner droplet would be pushed back to the centre of the outer droplet.
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Figure 13. Drop deformation and translation at different non-dimensional time (t/τγ
ρ ) for (a) σr = 11 and

εr = 16.5 (ReE = 1.167) and (b) σr = 3 and εr = 0.15 (ReE = 0.23) using the flow parameters CaE = 0.2 and
Oh = 0.5. We also plot the flow patterns in and around the core and the shell.

Figure 14 shows the variation in the relative velocity of the compound droplets with the
separation distance. Oscillations in the relative velocity of the outer droplet as well as for
the inner droplets are observed in the repulsion case, as shown in figure 14(b). Since the
magnitudes of the velocities are relatively small, the oscillations are more prominently
visible in the repulsion case. Since Fe/Fh is 3.42 for σr = 10 and εr = 27.5, a scaling of
1/h4 is found for the approach velocity of the droplets (see figure 14a); whereas for σr = 3
and εr = 0.15, Fe/Fh ∼ 0.26, and droplets repel each other, governed essentially by the
hydrodynamic forces resulting in a relative velocity that decreases as 1/h2 as shown in
figure 14(b).

For σr = 6 and εr = 45, as shown in figure 15(a), the inner droplets escape the
compound droplets from the rear ends, as the two compound droplets approach each other.
Whereas, for σr = 10 and εr = 27.5, the inner droplets are released from the approaching
ends of the two compound droplets before they coalesce (see figure 15b), thus resulting in
the breakup of the double emulsion into a single emulsion, which as expected for σr < εr
would result in an unstable emulsion in the presence of an electric field. For σr = 6 and
εr = 45, Fe/Fh ∼ 0.12; whereas for σr = 10 and εr = 27.5, Fe/Fh ∼ 0.87. Therefore, in
the former case, electrostatic forces are much weaker compared to hydrodynamic forces
and the small inertial lag of the inner droplet leads to a biased ejection of the inner
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Figure 14. Velocity variation with respect to centre-to-centre distance between the drops for (a) σr = 11 and
εr = 16.5 (ReE = 1.167) and (b) σr = 3 and εr = 0.15 (ReE = 0.23) at CaE = 0.2 and Oh = 0.5. The motion
of the inner core droplet is also depicted using a dash-dotted line.
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Figure 15. Drop deformation and translation at different non-dimensional time (t/τγ
ρ ) for (a) σr = 6 and εr =

45 (ReE = 5.257) and (b) σr = 10 and εr = 27.5 (ReE = 2.073) using the flow parameters CaE = 0.2 and
Oh = 0.5. We also plot the flow patterns in and around the core and the shell.
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droplet from the portion of the periphery of the droplet that faces away from the other
compound droplet. On the other hand, for σr = 10 and εr = 27.5, electrostatic forces drive
the droplets together initially, but are not sufficiently strong as was the case for σr = 11
and εr = 16.5, and therefore the inner droplets eject from the portion of the outer droplets
facing each other. We note that the hydrodynamic response of the droplets can be weakened
by reducing Oh leading to a possible entrapment of the inner droplets even for the case with
σr = 10 and εr = 27.5.

Finally, we present three cases showing interesting dynamics of the droplets. In the first
one, the outer droplets approach each other but do not coalesce but form a drop–drop
doublet, as shown in figure 16(a) for σr = 25 and εr = 2. As discussed earlier for the
single droplets with the same σr and εr, this interesting physics is due to the strong initial
electrostatic attraction and subsequent delay in the drainage of the thin film between
the two droplets due to the nature of the flow around the droplets as shown by the
streamlines in figure 16(a) for t/τγ

ρ = 100. Since electrostatic forces are much stronger
than hydrodynamic forces as suggested by Fe/Fh ∼ 4.71, droplets are initially driven
together and the flow around the droplets is developed by the motion of the droplets as
indicated by the streamlines at t/τγ

ρ = 43, but the flow lines reverse after the development
of the flow generated by the tangential electrical stresses as shown by the streamlines at
t/τγ

ρ = 100. However, for σr = 30 and εr = 10, Fe/Fh ∼ 7.9, indicating an even stronger
electric field that drives the droplets to approach each other and eventually coalesce (see
figure 16b). These cases clearly indicate that the simple rule depending on the sign of
(σr − εr) for determining the interactions between the droplets is insufficient and the
relative strengths of electrostatic and hydrodynamic forces, along with inertial effects
governed by Oh, need to be accounted for. Interestingly, the inner droplets for σr = 30
and εr = 10 do not coalesce even when simulations are run up to t/τγ

ρ ∼ 400. For σr = 7
and εr = 10 shown in figure 16(c), the inner droplets form a configuration similar to that
in figure 16(b) but eventually the inner droplets repel (since σr < εr) and are ejected.

4. Summary

In the present study, we have numerically investigated the interaction dynamics of a pair
of droplets in a uniform electric field. A leaky dielectric model is employed for this
study with the inner and the continuous phase being the same, and the outer shell of the
compound droplet being different. We note that the stability of a compound droplet as well
the relative motion between a pair of droplets depend essentially on the charge relaxation
time constant ratio of the ambient and the outer shell of the compound droplet (τ 2

e /τ 1
e ) or

equivalently the ratio σr/εr. This parameter describes the sign of the charge that develops
at the droplet interface and thus also the sense of the circulation of the flow generated due
to the tangential electric stresses. If the flow is from poles to equator in the ambient fluid,
it implies that the flow in the outer shell is from the centre towards the pole. The flow
generated in the ambient indicates a hydrodynamic drag on the neighbouring droplet thus
driving the two droplets together and making the emulsion unstable. Also, due to the flow
inside the outer shell of the compound droplet being from the centre towards the pole, any
deviation of the inner droplet from the centre of the compound droplet would result in a
hydrodynamic drag that will drive the inner droplet towards the ambient fluid. We show
that this simple rule of thumb is not useful when the inertial forces need to be accounted
for. Despite the key role played by the hydrodynamic forces governed by the strength of the
electric field CaE and the ratio of charge relaxation time constants τ 2

e /τ 1
e , we observed that

for lower values of Ohnesorge number, Oh, electrostatic dipole–dipole forces can modify
certain features of the interaction dynamics. We showed that for low Oh, droplets that are
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Figure 16. Drop deformation and translation at different non-dimensional time (t/τγ
ρ ) for (a) σr = 25 and

εr = 2 (ReE = 0.092), (b) σr = 30 and εr = 10 (ReE = 0.284) and (c) σr = 7 and εr = 10 (ReE = 1.1) using
the flow parameters CaE = 0.2 and Oh = 0.5. We also plot the flow patterns in and around the core and the
shell.

expected to repel each other due to the hydrodynamic drag instead approach each other due
to the electrostatic interactions. Nevertheless, after initial approach, the droplets eventually
repel due to the hydrodynamic forces. This clearly indicates that the a priori expectation of
the stability of an emulsion in an electric field would require consideration of the relative
time scales of electrostatic attraction, charge relaxation and flow time scale.
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Moreover, the relative strength of the electrostatic and hydrodynamic forces, given by
the ratio Fe/Fh in (3.5), also assists in understanding the interaction dynamics of the
droplets. For low Fe/Fh, hydrodynamic forces govern the motion of the droplets and the
velocity of approach varies as 1/h2, whereas for higher Fe/Fh, electrostatic forces are
dominant and the velocity of approach varies as 1/h4. We have shown that for certain
parameters, where repulsion between the droplets is expected for σr/εr > 1, electrostatic
forces can lead to the droplets coming together and coalescing. We believe that this
numerical study would motivate some more experiments in regimes that show interesting
dynamics of droplets such as the formation of a drop–drop doublet.

Funding. This research received no specific grant from any funding agency, commercial or not-for-profit
sectors.

Declaration of interests. The authors report no conflict of interest.

Data availability statement. The corresponding author may be contacted for details of the Basilisk flow
solver (open source: http://basilisk.fr/) implementation of the computational work.

Author ORCIDs.
Amaresh Dalal https://orcid.org/0000-0002-4717-2753;
Gaurav Tomar http://orcid.org/0000-0002-5060-4705.

Author contributions. G.T. derived the theory and S.K.D. performed the simulations. All authors
contributed equally to analysing data and reaching conclusions, and to writing the paper.

REFERENCES

ABBASI, M.S., SONG, R., KIM, J. & LEE, J. 2017 Electro-hydrodynamic behavior and interface instability
of double emulsion droplets under high electric field. J. Electrostat. 85, 11–22.

AJAYI, O.O. 1978 A note on Taylor’s electrohydrodynamic theory. Proc. R. Soc. Lond. A 364 (1719), 499–507.
ALLAN, R.S. & MASON, S.G. 1962 Particle behaviour in shear and electric fields. I. Deformation and burst

of fluid drops. Proc. R. Soc. Lond. A 267 (1328), 45–61.
ANAND, V., JUVEKAR, V.A. & THAOKAR, R.M. 2019 Modes of coalescence of aqueous anchored drops in

insulating oils under an electric field. Colloids Surf A 568, 294–300.
ARP, P.A., FOISTER, R.T. & MASON, S.G. 1980 Some electrohydrodynamic effects in fluid dispersions. Adv.

Colloid Interface Sci. 12 (4), 295–356.
ARP, P.A. & MASON, S.G. 1977 Particle behavior in shear and electric fields. VIII. Interactions of pairs of

conducting spheres (theoretical). Colloid Polym. Sci. 255, 566–584.
ARYAFAR, H. & KAVEHPOUR, P. 2007 Electrocoalescence. Phys. Fluids 19 (9), 091107.
ATTEN, P. 1993 Electrocoalescence of water droplets in an insulating liquid. J. Electrostat. 30, 259–269.
BARNES, H.A. 1994 Rheology of emulsions: a review. Colloids Surf. A 91, 89–95.
BASARAN, O.A. 2002 Small-scale free surface flows with breakup: drop formation and emerging applications.

AIChE J. 48 (9), 1842–1848.
BATCHELOR, G.K. 2000 An Introduction to Fluid Dynamics (Cambridge Mathematical Library). Cambridge

University Press.
BAYGENTS, J.C., RIVETTE, N.J. & STONE, H.A. 1998 Electrohydrodynamic deformation and interaction of

drop pairs. J. Fluid Mech. 368, 359–375.
BEHJATIAN, A. & ESMAEELI, A. 2013 Electrohydrodynamics of a compound drop. Phys. Rev. E 88 (3),

033012.
BELL, J.B., COLELLA, P. & GLAZ, H.M. 1989 A second-order projection method for the incompressible

Navier–Stokes equations. J. Comput. Phys. 85 (2), 257–283.
BRACKBILL, J.U., KOTHE, D.B. & ZEMACH, C. 1992 A continuum method for modeling surface tension.

J. Comput. Phys. 100 (2), 335–354.
BRAZIER-SMITH, P.R. 1971 Stability and shape of isolated and pairs of water drops in an electric field. Phys.

Fluids 14 (1), 1–6.
BRAZIER-SMITH, P.R., JENNINGS, S.G. & LATHAM, J. 1971 An investigation of the behaviour of drops and

drop-pairs subjected to strong electrical forces. Proc. R. Soc. Lond. A 325 (1562), 363–376.

915 A88-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

12
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://basilisk.fr/
https://orcid.org/0000-0002-4717-2753
https://orcid.org/0000-0002-4717-2753
http://orcid.org/0000-0002-5060-4705
http://orcid.org/0000-0002-5060-4705
https://doi.org/10.1017/jfm.2021.120


Electrohydrodynamic interactions between droplets

BUNGENBERG DE JONG, H.G. & HOSKAM, E.G. 1941 Motory phenomena in coacervate drops in a diffusion
field and in the electric field. Koninkl. Akad. Wetenschap. Amsterdam 44, 1099–1111.

CHENG, K.J. & CHADDOCK, J.B. 1984 Deformation and stability of drops and bubbles in an electric field.
Phys. Lett. A 106 (1–2), 51–53.

CHUNG, J.N. & OLIVER, D.L.R. 1990 Transient heat transfer in a fluid sphere translating in an electric field.
J. Heat Transfer 112 (1), 84–91.

COLLINS, R.T., SAMBATH, K., HARRIS, M.T. & BASARAN, O.A. 2013 Universal scaling laws for the
disintegration of electrified drops. Proc. Natl Acad. Sci. 110 (13), 4905–4910.

DAS, D. & SAINTILLAN, D. 2017a Electrohydrodynamics of viscous drops in strong electric fields: numerical
simulations. J. Fluid Mech. 829, 127–152.

DAS, D. & SAINTILLAN, D. 2017b A nonlinear small-deformation theory for transient droplet
electrohydrodynamics. J. Fluid Mech. 810, 225–253.

ESMAEELI, A. & SHARIFI, P. 2011 Transient electrohydrodynamics of a liquid drop. Phys. Rev. E 84 (3),
036308.

FENG, J.Q. 1999 Electrohydrodynamic behaviour of a drop subjected to a steady uniform electric field at finite
electric reynolds number. Proc. R. Soc. Lond. A 455 (1986), 2245–2269.

FENG, J.Q. & SCOTT, T.C. 1996 A computational analysis of electrohydrodynamics of a leaky dielectric drop
in an electric field. J. Fluid Mech. 311, 289–326.

FERNANDEZ, A. 2013 Modeling of electroconvective effects on the interaction between electric fields and
low conductive drops. In Fluids Engineering Division Summer Meeting, vol. 55560, p. V01CT25A004.
American Society of Mechanical Engineers.

FRANCOIS, M.M., CUMMINS, S.J., DENDY, E.D., KOTHE, D.B., SICILIAN, J.M. & WILLIAMS, M.W.
2006 A balanced-force algorithm for continuous and sharp interfacial surface tension models within a
volume tracking framework. J. Comput. Phys. 213 (1), 141–173.

GARTON, C.G. & KRASUCKI, Z. 1964 Bubbles in insulating liquids: stability in an electric field. Proc. R.
Soc. Lond. A 280 (1381), 211–226.

GIGLIO, E., GERVAIS, B., RANGAMA, J., MANIL, B., HUBER, B.A., DUFT, D., MÜLLER, R., LEISNER,
T. & GUET, C. 2008 Shape deformations of surface-charged microdroplets. Phys. Rev. E 77 (3), 036319.

GOODARZI, F. & ZENDEHBOUDI, S. 2019 A comprehensive review on emulsions and emulsion stability in
chemical and energy industries. Can. J. Chem. Engng 97 (1), 281–309.

GOUZ, H.N. & SADHAL, S.S. 1989 Fluid dynamics and stability analysis of a compound droplet in an electric
field. Q. J. Mech. Appl. Maths 42 (1), 65–83.

HA, J.-W. & YANG, S.-M. 1999 Fluid dynamics of a double emulsion droplet in an electric field. Phys. Fluids
11 (5), 1029–1041.

HOLTO, J., BERG, G. & LUNDGAARD, L.E. 2009 Electrocoalescence of drops in a water-in-oil emulsion. In
2009 IEEE Conference on Electrical Insulation and Dielectric Phenomena, pp. 196–199. IEEE.

KILPATRICK, P.K. 2012 Water-in-crude oil emulsion stabilization: review and unanswered questions. Energy
Fuels 26 (7), 4017–4026.

LAC, E. & HOMSY, G.M. 2007 Axisymmetric deformation and stability of a viscous drop in a steady electric
field. J. Fluid Mech. 590, 239–264.

LANAUZE, J.A., WALKER, L.M. & KHAIR, A.S. 2013 The influence of inertia and charge relaxation on
electrohydrodynamic drop deformation. Phys. Fluids 25 (11), 112101.

LANAUZE, J.A., WALKER, L.M. & KHAIR, A.S. 2015 Nonlinear electrohydrodynamics of slightly deformed
oblate drops. J. Fluid Mech. 774, 245–266.

LATHAM, J. & ROXBURGH, I.W. 1966 Disintegration of pairs of water drops in an electric field. Proc. R. Soc.
Lond. A 295 (1440), 84–97.

LIN, Y., SKJETNE, P. & CARLSON, A. 2012 A phase field model for multiphase electro-hydrodynamic flow.
Intl J. Multiphase Flow 45, 1–11.

LÓPEZ-HERRERA, J.M., POPINET, S. & HERRADA, M.A. 2011 A charge-conservative approach for
simulating electrohydrodynamic two-phase flows using volume-of-fluid. J. Comput. Phys. 230 (5),
1939–1955.

MANDAL, S., SINHA, S., BANDOPADHYAY, A. & CHAKRABORTY, S. 2018 Drop deformation and emulsion
rheology under the combined influence of uniform electric field and linear flow. J. Fluid Mech. 841, 408.

MELCHER, J.R. & TAYLOR, G.I. 1969 Electrohydrodynamics: a review of the role of interfacial shear stresses.
Annu. Rev. Fluid Mech. 1 (1), 111–146.

MHATRE, S. & THAOKAR, R. 2015 Electrocoalescence in non-uniform electric fields: an experimental study.
Chem. Engng Process 96, 28–38.

NOTZ, P.K. & BASARAN, O.A. 1999 Dynamics of drop formation in an electric field. J. Colloid Interface Sci.
213 (1), 218–237.

915 A88-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

12
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.120


S.K. Das, A. Dalal and G. Tomar

O’KONSKI, C.T. & HARRIS, F.E. 1957 Electric free energy and the deformation of droplets in electrically
conducting systems. J. Phys. Chem. 61 (9), 1172–1174.

PEARCE, C.A.R. 1954 The mechanism of the resolution of water-in-oil emulsions by electrical treatment. Br.
J. Appl. Phys. 5 (4), 136–143.

PENKOVA, A., PAN, W., HODJAOGLU, F. & VEKILOV, P.G. 2006 Nucleation of protein crystals under the
influence of solution shear flow. Ann. N.Y. Acad. Sci. 1077 (1), 214–231.

POPINET, S. 2003 Gerris: a tree-based adaptive solver for the incompressible euler equations in complex
geometries. J. Comput. Phys. 190 (2), 572–600.

POPINET, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys.
228 (16), 5838–5866.

POPINET, S. 2015 A quadtree-adaptive multigrid solver for the serre–green–naghdi equations. J. Comput. Phys.
302, 336–358.

RAYLEIGH, L. 1882 XX. on the equilibrium of liquid conducting masses charged with electricity. Lond. Edinb.
Dubl Philos. Mag. J. Sci. 14 (87), 184–186.

RISTENPART, W.D., BIRD, J.C., BELMONTE, A., DOLLAR, F. & STONE, H.A. 2009 Non-coalescence of
oppositely charged drops. Nature 461 (7262), 377–380.

ROMERO HERREROS, N. 2014 Experimental study of the influence of an electric field on the shape of a droplet.
Master’s thesis, Universitat Politècnica de Catalunya.

SAVILLE, D.A. 1971 Electrohydrodynamic stability: effects of charge relaxation at the interface of a liquid jet.
J. Fluid Mech. 48 (4), 815–827.

SAVILLE, D.A. 1997 Electrohydrodynamics: the Taylor–Melcher leaky dielectric model. Annu. Rev. Fluid
Mech. 29 (1), 27–64.

SENGUPTA, R., WALKER, L.M. & KHAIR, A.S. 2017 The role of surface charge convection in the
electrohydrodynamics and breakup of prolate drops. J. Fluid Mech. 833, 29–53.

SHERWOOD, J.D. 1988 Breakup of fluid droplets in electric and magnetic fields. J. Fluid Mech. 188, 133–146.
SHUTOV, A.A. 2002 The shape of a drop in a constant electric field. Tech. Phys. 47 (12), 1501–1508.
SONI, P., JUVEKAR, V.A. & NAIK, V.M. 2013 Investigation on dynamics of double emulsion droplet in a

uniform electric field. J. Electrostat. 71 (3), 471–477.
SORGENTONE, C., KACH, J.I., KHAIR, A.S., WALKER, L.M. & VLAHOVSKA, P.M. 2020 Numerical

and asymptotic analysis of the three-dimensional electrohydrodynamic interactions of drop pairs.
arXiv:2004.05493.

SOZOU, C. 1975 Electrohydrodynamics of a pair of liquid drops. J. Fluid Mech. 67 (2), 339–348.
SUNDER, S. & TOMAR, G. 2013 Numerical simulations of bubble formation from submerged needles under

non-uniform direct current electric field. Phys. Fluids 25 (10), 102104.
SUNDER, S. & TOMAR, G. 2020 Numerical investigation of a conducting drop’s interaction with a conducting

liquid pool under an external electric field. Eur. J. Mech. B/Fluids 81, 114–123.
SUPEENE, G., KOCH, C.R. & BHATTACHARJEE, S. 2008 Deformation of a droplet in an electric field:

nonlinear transient response in perfect and leaky dielectric media. J. Colloid Interface Sci. 318 (2),
463–476.

TAYLOR, G.I. 1966 Studies in electrohydrodynamics. I. The circulation produced in a drop by an electric field.
Proc. R. Soc. Lond. A 291 (1425), 159–166.

TOMAR, G., FUSTER, D., ZALESKI, S. & POPINET, S. 2010 Multiscale simulations of primary atomization.
Comput. Fluids 39 (10), 1864–1874.

TOMAR, G., GERLACH, D., BISWAS, G., ALLEBORN, N., SHARMA, A., DURST, F., WELCH, S.W.J.
& DELGADO, A. 2007 Two-phase electrohydrodynamic simulations using a volume-of-fluid approach.
J. Comput. Phys. 227 (2), 1267–1285.

TORZA, S., COX, R.G. & MASON, S.G. 1971 Electrohydrodynamic deformation and bursts of liquid drops.
Philos. Trans. R. Soc. Lond. A 269 (1198), 295–319.

TSUKADA, T., MAYAMA, J., SATO, M. & HOZAWA, M. 1997 Theoretical and experimental studies on the
behavior of a compound drop under a uniform dc electric field. J. Chem. Engng Japan 30 (2), 215–222.

VLAHOVSKA, P.M. 2011 On the rheology of a dilute emulsion in a uniform electric field. J. Fluid Mech. 670,
481–503.

WANG, J., WANG, B. & QIU, H. 2014 Coalescence and breakup of oppositely charged droplets. Sci. Rep.
4, 7123.

XU, X. & HOMSY, G.M. 2006 The settling velocity and shape distortion of drops in a uniform electric field.
J. Fluid Mech. 564, 395–414.

ZHANG, J., ZAHN, J.D. & LIN, H. 2013 Transient solution for droplet deformation under electric fields. Phys.
Rev. E 87 (4), 043008.

915 A88-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

12
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://arxiv.org/abs/2004.05493
https://doi.org/10.1017/jfm.2021.120


Electrohydrodynamic interactions between droplets

ZHANG, X., BASARAN, O.A. & WHAM, R.M. 1995 Theoretical prediction of electric field-enhanced
coalescence of spherical drops. AIChE J. 41 (7), 1629–1639.

ZHOLKOVSKIJ, E.K., MASLIYAH, J.H. & CZARNECKI, J. 2002 An electrokinetic model of drop deformation
in an electric field. J. Fluid Mech. 472, 1–27.

ZIMMERMANN, U. & VIENKEN, J. 1982 Electric field-induced cell-to-cell fusion. J. Membr. Biol. 67 (1),
165–182.

915 A88-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

12
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.120

	1 Introduction
	2 Problem formulation
	3 Results and discussion
	3.1 Single emulsion in an externally applied electric field
	3.2 Double emulsion in an externally applied electric field

	4 Summary
	References

