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In [6] the question of the existence of perfect e-codes in the infinite family of
distance-transitive graphs Ok was considered. It was pointed out that it is difficult to rule
out completely any particular value of e because of the difficulty of working with the
sphere packing condition. For e = 1, 2, 3 it can be seen from the results of [6] that the
condition given by the generalisation of Lloyd's theorem is satisfied for infinitely many
values of k. We shall show that this is not the case for e = 4 and we shall prove that there
are no perfect 4-codes in Ok.

Hammond [5] has constructed perfect 1-codes in the line graphs L(Ok). In fact L(Ok)
contains 2 k - 1 perfect 1-codes which form a partition of the vertex set of L(Ok). We
show that the codes described by Hammond are unique.

DEFINITION. The graph Ok (k 5*2) has ( I vertices indexed by the (k - l)-subsets

of the set {1, 2 , . . . , 2k —1}. Two vertices are joined by an edge if and only if their
indexing sets are disjoint.

DEFINITION. The line graph L(Ok) has vertices which correspond to the edges of Ok,
with two vertices of L(Ok) being adjacent whenever the corresponding edges of Ok are
incident.

DEFINITION. A perfect e-code in a graph F is a subset C of the vertices of F with
minimum distance 2e + l such that any vertex of F is at distance at most e from some
vertex of C. We consider only nontrivial codes (|C|>2).

DEFINITION. Define the sequence of polynomials {t>j(A)} by uo(A)=l, u1(A) = A,
ci+1ui+1(A)-Auj(A) + bj_1ui_1(A) = O where q = [|(i + l)] and bt = k-[^(i +1)]
(i = l ,2 d-1) . Let

The following lemma is the generalisation of Lloyd's theorem.

LEMMA 1. [4], [6]. If Ok contains a perfect e-code, then the roots of xe(\) are members
of the set {-(fc-1), (k-2) , - ( k - 3 ) , . . . , (-l)fc+1}.

LEMMA 2 [6]. If Ok contains a nontrivial perfect e-code, then k 2=(e2 + 4e + 2)/2 (e
even) and k>(e2 + 4e + 3)/2 (c odd).

LEMMA 3 [6]. Ifa^—l is a root of xe(A), then so is —a —1. If e is odd, - 1 is a root of
xe(A).
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Now let xe(A) = cxe(A) (c constant) be a monic polynomial and consider xe{-\) which
is a polynomial in k of degree [e/2]. (The use of the polynomial xe(-j) was suggested by
E. Bannai.)

Consider the case e = 4. Suppose the roots of x4(A) are au a2, -al-\, —a2 — \.

and so we have

16x4(-|) = (2a1 + l)2(2a2+l)2-w2. (1)

Straightforward calculation reveals that

*4(A) = [A4 + 2A3 + A2(7-4k) + A(6-4k) + 2(k- l ) (k -2) ] /4

and so the equation (1) becomes

32k2-80k + 41 = y2. (2)

Also since
7 —4k = a1(—a1 — l) + a1a2+a1(— a2 — l) + (—a1 — l)a2

l ) -a 2 (a 2 +l) + l,

we have

4k - 6 = al{al + 1) + a2(a2 + 1)

and

2(k - l)(k - 2) = aMi +1)«2(«2 +1)-

Hence a1(a1+ l) = 2k-3±V(2k 2 -6k+5) . Since ax is an integer, 2 k 2 - 6 k + 5 is a perfect
square and so

32k2-96k + 80 = z2. (3)

Hence if a perfect 4-code exists in Ok, equations (2) and (3) have a simultaneous integer
solution and from Lemma 2, ks=17. From (2) and (3) we have 16k-39= y 2 - z 2 . Write
z = yk>0. Then (yk)2 = 32k2-96fc + 80 gives -y<4\/2<6 and k3=17 gives (yk)2>25k2

so y > 5. If we write y = yk + i (where i is a positive integer) we have 16k - 3 9 = 2yki + i2,
so

10ki + i 2 < 1 6 k - 3 9 <

The first inequality gives i<2 and the second excludes i = 1. Hence we have:

THEOREM 1. There is no nontrivial perfect 4-code in Ok.

NOTE. It seems possible that a similar method would work for e = 5. The equations
replacing (2) and (3) can be written

6(8fc-ll)2-114 = p2, 3(fc-2)2+l = q2.
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It is possible that the method of Baker and Davenport [1] will extend to this case, but the
calculation is formidable.

Now consider the case of perfect 1-codes in L{Ok). Let X = {1, 2 , . . . , 2k - 1} and let
e-f be the edge of Ok joining vertices e and /. For any xeX let Cx =
{c-d \{c\Jd} = X\x) and Cx be the corresponding set of vertices in L(Ok). Hammond
[5] has shown that for each xeX the code Cx is a perfect 1-code.

THEOREM 2. The codes Cx(xeX) are the only perfect 1-codes in L(Ok).

Proof. The case k = 3 is easily dealt with directly. Suppose k > 3. Let D be a code in
L(Ok) not isomorphic to any Cx and let D be the corresponding set of edges in Ok. D
contains vertices of Cx and Cy for some x, y e X, x^y. Choose x, y, pe Cx, qeCy with
p,qeD in such a way that p and q are as close as possible with x± y. Let C'x consist of
those vertices in L(Ok) adjacent to vertices of Cx. Let p, au a2, • • •, an, q be a path of
minimum length joining p and q. Clearly a1&C'x, aneC'y but all possibilities for a2

contradict the choice of p and q unless n = 2.
Since Ok has girth 6 (fc>3) we have two cases:

Case 1

(a-beD corresponds to p, f-geD corresponds to q).

Either c - e is in D or c - e is adjacent to an edge of D. In either case the minimum
distance of D would be 2. This is a contradiction.

Case 2

(a-b&D corresponds to p, e-/eD corresponds to q).

Then, rearranging X if necessary, we can write without loss of generality

a = ( 1 2 . . . k - l ) b = (kk + 1 . . . 2k -2 )

d = ( 2 3 . . . k - l ; 2 k - l ) c = (fc + l fc + 2 . . . 2fc-l).

Then it is easy to see that / = ( 1 ; k + 1 fc + 2 . . . 2fc-2), e = (2 3...fc). Then e U / =
{X\(2k-1)} = aU b contradicting the fact that a-b corresponds to p and e-f corres-
ponds to q.
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NOTE. Theorem 1 together with Theorem 2 of [6] show that there are no nontrivial
perfect 4-codes in the graphs 2 . Ok [6]. The modifications required to the proof of
Theorem 2 for the case of perfect 1-codes in the graphs L(2. C\) are straightforward.
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