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1. Preliminaries. The collection of all self-maps on a non-empty set X under
composition is known in algebraic semigroup theory as the full transformation semigroup
on X and is written 3~x. Its importance lies in the fact that any semigroup 5 can be
embedded in the full transformation semigroup 2TS\ (where S1 is the semigroup 5 with
identity 1 adjoined, if S does not already possess one). The proof is similar to Cayley's
Theorem that a group G can be embedded in SG, the group of all bijections of G to itself.
In this paper X will be a finite set of order n, which we take to be n = {1, 2, . . . , « } , and
so we shall write Tn for STX-

We investigate certain random variables which arise from the random selection of
a e Tn (meaning that each such a is equally likely to be chosen). Various aspects of Tn,
regarded as a set of random functions, have been investigated before: see for instance [9],
[3], [6]. Harris for example studies the order of the monogenic semigroup generated by a
random a e Tn.

As has often been observed, the members of Tn can be regarded as labelled directed
graphs in which each vertex has outdegree one (the digraph of a eTn has n labelled
vertices with ij an arc if ia=j). The components of the digraph of a (see [5]) are
functional, meaning that each consists of a unique cycle together with a number of
labelled trees rooted around the vertices of the cycle. Two vertices labelled i and j
respectively (i, j e h) are in the same component iff i and / are in the same orbit of a: in
other words iar =jas for some positive integers r and s. The direction of arcs within a tree
of the digraph of a is towards the root. Therefore if we adopt the convention that the
cycles of the digraph are directed anti-clockwise, we may delete the arrows from the
picture of the digraph, with the proviso that one-cycles (corresponding to fixed points)
should be distinguished (by shading say) in order to avoid ambiguity. The graphical
representation of members of Tn has been used effectively and often by Howie and others
in studying the full transformation semigroup (see for example [7] and [8]). It is a natural
visual aid, and concepts arising from members of Tn often have clear counterparts in the
digraph. To illustrate this last point, consider the stable range of a e Tn, denoted by
stran a, which is defined by Howie as

oo

O Vcv' (Va- denotes the range of a),
1=0

in other words, stran a consists of all those points contained in the range of all the iterates
of a. (We conventionally allow a0 to represent the identity mapping on h). A little
reflection reveals that i e stran a- is equivalent to the statement that the vertex i of the
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digraph is a point of one of the cycles. Indeed it follows that the descending chain
Va 2 Va2 3 . . . , stabilises at stran a, and that stran a = Va', where i is least such that
Vtf1 = Var'+1. Moreover a | stran a is a permutation, called the main permutation of a in
[3].

An obvious random variable associated with a is Rn, whose value is |Vcr|, the order
of the range of a [9]. Two other numerical quantities associated with a are the order of
the stable range of a, and the number of orbits of a. Denote the corresponding random
variables by Xn and Cn respectively.

The value of ERn is easily found. The selection of a e Tn corresponds in an obvious
way to the random tossing of n labelled balls into n labelled boxes. The probability that
i $Va equals the probability that box i remains empty, and this is plainly given by
(1 - l//i)". Since ERn = n?(i e Var), where i is any member of n, it follows that
ERn = n(l - (1 - 1/H)"). This gives the first of the following trio of results.

lim^^l-e-1; (A)
n

(B)

(C)
2

Results (B) and (C) will be derived in sections 2 and 3 respectively.

The study of Xn will be facilitated by the introduction of another random variable,
Yn. Let i e h. Define the iterative range of i under a as {iak: k > 0}. Let the value of Yn be
the order of the iterative range of a randomly chosen i e n under a-. For temporary
purposes, define another random variable Y'n whose value is the order of the iterative
range of a fixed member of n, denoted by 1, under a. Clearly Yn=Y'n, and we shall
henceforth not distinguish them. Although Yn is the more natural object of investigation,
it is sometimes convenient to deal with Y'n. Furthermore, by the iterative range of a,
denoted by ita, we shall mean the iterative range of 1 under a.

2. Asymptotic results for the stable and iterative ranges. Let Xn and Yn denote the
random variables as defined in the first section. The key result is that Xn and Yn have the
same distribution.

THEOREM 2.1. Xn = Yn for all n > 1.

In the course of the proof we use the following identity.

LEMMA 2.2

-£ (m\ (n -m + i)i\ m(m - 1).. .(m -k)

h\i) n' = m i? (l^k^m^n). (1)
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Proof. By induction on k. For i = lwe get

(m\ ( n - m + 1) / n ( m - l ) .
I II! = m , as required.
\ 1 / n n

In general, the left hand side of (1) is

t , 1 f m \ (n - m + i)i\ / m \ l t n - m + k . . . . . . ,
Z, : 1- )k\ T , w h i c h induc t ive ly e q u a l s
frx \ i j n \k/ n

m(m — l)...(m — k + l) m(m — l)...(m — k + l)(n — m + k)

nk ' nk

which simplifies to the right hand side of (1).

LEMMA 2.3. Let a eTn with |stran a\ = k. Let tk be the number of extensions fi of
a | stran a to a member of Tn such that stran B = stran a. Then

. n-k.l = k n_ktk- n - n-n {)

REMARK. This lemma is of independent interest. It says that the proportion of all
possible extensions B of a \ stran a- to a member of Tn such that stran B = stran a is exactly

- , that is, is directly proportional to the order of the given stable range. Moreover, as will
n
be shown in the proof, the use of the notation tk is justified, as tk depends on k, but not
on the permutation a \ stran a-. This plausible fact can be verified independently with a
little effort.

Proof of 2.3. We prove (2) by induction on m = n - k. For m = 0, statement (2) says
tn = 1, which is obvious. Now \{B eTn:B\ stran a = a |stran a}\ = n"~k can be expressed
as,

(y (n_k)-ky.tn. (3)

In detail, the term ( . ]*'!(*+. equals the number of mappings B such that stran B 3

stran a, B |stran a = a\ stran a and |stran B\= k + i. Rearranging statement (3) gives

n-k

By the inductive hypothesis we have
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Using (5) we rewrite (4) as

The lemma requires us to show that

tk k

and from (6) we see that (7) is equivalent to

But (8) follows from Lemma 2.2 upon putting k-m.

Proof of Theorem 2.1. We need to show that

|{ar e Tn : |stran or| = A:}| = |{or e Trt : |it o-| = fc}| (9)

for all 1 < k < n. The left hand side of (9) is given by

\tk (10)

while the right hand side is

1)! to!""*. (11)

The equality of (10) and (11) now follows easily from Lemma 2.3. This completes the
proof.

The probability distribution for Yn, and thus for Xn, can be written down by
inspection:

As incidental corollaries of this we obtain two graphical enumerations.

COROLLARY 2.4 (Cayley). The number of labelled trees on n vertices is n"~2.

Proof. Interpret the statement ?(Xn = 1) = P(Yn = 1). This is equivalent to

|{labelled rooted trees on n vertices}| n~" = n~x,

whereupon Cayley's theorem follows, as there are n rooted and labelled trees for each
labelled tree on n vertices.

Replacing 1 by k in the above argument gives a more general result which is probably
well known.
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COROLLARY 2.5. The number of forests on n vertices with k rooted labelled trees is

Proof. A forest on n vertices with k rooted, labelled trees corresponds to a member
of Tn whose stable range consists of k fixed points. The number of such maps is

n\ (n-\\ n k , (n-\\ „ .
kh = [k-l)-k-n-n ={k-l)n

Unlike the expectation of |Var| which increases linearly with n, the expected value of Xn

increases as yn. Indeed it is an elementary matter to find the limiting distribution of
Vn = XJ\fn~ = Yj\/n~. For v>0,

) (13)

where i is least such that i s v Vn — 1. Now in general

n n
Also j(i — y')/«2< (i/2n)2. Hence by pairing the terms of (13) in the fashion suggested by
(14), and deleting the middle term if i is odd, we obtain the inequality

Taking logarithms, and using the fact that / < uVn < / + 1 we obtain

log P(Vn a v) < Wn" log(l - " V ^ ~ X) (15)

Since log(l —x)- x as x^O, we rewrite the right hand side of (15) as

_ r~ (vVh~ - 1) log(l - {yyjii - l)/2w)

In -(uVn-l)/2n

2 iVn) - ( t /Vn- l ) /2n 2

Taking exponentials, we obtain that provided the limit exists,

u)<e-"2/2. (16)
n—»oo

On the other hand, from (14), it is certainly true that ( l - - ) ( l - ) > 1 - - ,
V n/\ n I n
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which gives

A'72

1 — if t is even
nl

(, i\it2 (, (i + 1 ) / 2 \ . . . .
1 - - . 1 - - — if i is odd.

\ n/ \ n I

In any case we have P(Vn >v)>(l- (i/n))(l+2)/2. Again we take logarithms, use the facts
that i < vVn ^ i + 1 and log(l — x)-—x as x —»0 to obtain

limP(Vn>u)<e-' j2 /2 (17)
n—*co

provided the limit exists. Combining (16) and (17) gives us the limiting distribution of Vn.
Indeed the following is true.

THEOREM 2.6. The sequence of random variables Vn defined above approaches in
distribution the random variable V, with distribution function F(v) = 1 — e~"2/2, v s 0.
Moreover the moments of the Vn approach those of V, that is

lim E(Vk) = E(Vk) = f vk+le~v'12 dv, and in particular lim E(Vn) = yfc/2.
n—»°° J o n—»<=

It remains to prove the statement about moments which is not immediate, as in general
the moments of a sequence of random variables do not approach the moments of the
limiting distribution. In order to complete the proof we need to establish the uniform
integrability of the sequence {Vk}, for all k s 1. A sufficient condition for this is that
E V * < Q , where Ck is independent of n. (For details see [1] p. 32 or [2] pp. 89-91.).
Now

EXk = § rkP{Xn = r) = 2 rk[P(Xn > r - 1) - P(Xn > r))
r=\

= Y. P(Xn > 0) + 2 [(r + 1)* - rk]P(Xn > r).

Next we use the inequality ak -bk s (a - b)kak~l for a > b, which can be easily verified
by writing a = b + h and expanding both sides. We thus have

GO

* ^ 1 + 2 k(r + l)*"^*,, > r).
r = l

Invoking the inequality 1 — x ^ e~x for all x s 0 gives
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Thus
EX* - 1 * * 2

Since Vn = Xn/\/n, our task is to bound

by a constant which is independent of n. Clearly it suffices to accomplish this for

f r*"1 expf
,=i \ In

Now

(x + l)*~1e~jr2/2 dx >
r(r+l/2)/

J(r-l/2)/V

Hence

5*<e1/8nX
r=l J ( r - l

<e1/8 {x + l)k~xe~xl12 dx = Ck, a constant independent of n.
Jo

The final assertion that EVn approaches VJr/2 follows upon evaluating Jo v2e~"2a dv by
parts. Indeed all the limiting values of the moments of the Vn can be explicitly calculated.
This completes the proof of the theorem.

3. The distribution of the component number. Let Sn denote the symmetric group
on n symbols, that is the group of all permutations on {1, 2, . . . , « } . Let xn denote the
random variable whose value is the cycle number of a random n eSn. It is shown in [4]

that xn = X^ + X2 + . . . + Xn where the Xt are independent indicator random variables

(i.e. their only value is 0 or 1) with P(Z, = 0) = , (1 < i < n). From this it follows
that n-i + 1

and
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Consider the random variable Cn, whose value is the component number of a random
a e Tn, or equivalently the cycle number of the main permutation of a. Now

- H K - "»- I{* e T": l s t r a n g l = '' lcyc les o f s t r a n a\ = k}\

\ti \{JZ e 5,: |cycles of it\ = k}\

Another way of starting this is

PROPOSITION 3.1. Cn = xXn.

Since Ern ~ log n and EXn = O(Vn) one might conjecture that ECn ~ logVn =
\ log n, and indeed it is possible to show by an elementary argument that

.. E Q 1
hm = - .
«-.»log n 2

However more can be said about Cn from known facts about the limiting distribution of
rn. It is stated in [4, p. 258] that

It can be verified that Zn can be written as the sum of n independent random variables

each with zero mean: Zn= t Yt with E ^ = 0, var Y( = of. Writing s2
n for E of = var Zn,

it can then be verified that lim s~2~s t E(|Ar,|2+a) = 0, for some fixed <5>0 ( 6 = 2

suffices), which is sufficient in order to draw the conclusion of (17), see [2] p. 191.

Let us return to our investigation of the component number. Write Xn = nmVn,
where the distribution of Vn approaches that of V given in Theorem 2.6. Write

T, = (log i)mUi + log i with U,%>N(0,1). Hence, by 3.1,

Cn = TXn M UXn{\og Xn)
112 + log Xn = \ log n + log Vn + Ux£± log n + log Vn)

m.

Therefore

(i log n)-m(Cn - i log n) = ( | log n)~1/2 log Vn + Ux£l + {\ log n)~m log Vnf
a;

and since (\ log «)"1/2 log Vn -4 0 and Zn -» » as « 4 <», this yields
THEOREM 3.2. As n—><x>,

( i logn) - 1 / 2 (C n - | logn)^N(0 , l ) .
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Also, since all moments of Uf and Vn converge to those of their limit distribution, it can be
shown that all moments of the quotient in Theorem 3.2 converge to those of N(0,1) using
the concavity of the logarithm function.
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