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Abstract
A chordal graph is a graph with no induced cycles of length at least 4. Let f (n,m) be the maximal integer
such that every graph with n vertices and m edges has a chordal subgraph with at least f (n,m) edges. In
1985 Erdős and Laskar posed the problem of estimating f (n,m). In the late 1980s, Erdős, Gyárfás, Ordman
and Zalcstein determined the value of f (n, n2/4+ 1) and made a conjecture on the value of f (n, n2/3+ 1).
In this paper we prove this conjecture and answer the question of Erdős and Laskar, determining f (n,m)
asymptotically for allm and exactly form≤ n2/3+ 1.
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1. Introduction
One of the central questions in extremal combinatorics can be formulated as follows. Given a
graph G and a property P , what is the maximal subgraph of G one can find which satisfies this
property. The study of this problem goes back to the work of Turán in 1941, whose theorem
states that the largest subgraph of the n-vertex complete graph with no clique of size k+ 1 is the
complete k-partite graph with sides as equal as possible. This graph is called the Turán graph. We
denote it by Tk(n) and its size by tk(n). Turán’s theorem is the starting point of extremal graph
theory and has inspired extensive research. One such research direction studies which other (more
elaborate) structures must appear in a graph with more than tk(n) edges. For example, a series of
works determined how many (k+ 1)-cliques must exist in a graph with tk(n)+ a edges (for a
suitable range of a) [7, 11, 16]. Other examples are results on finding many (k+ 1)-cliques which
share one or more vertices [5, 7, 8, 15], and results on finding (k+ 1)-cliques with large degree
sum [1, 3, 4, 12].

In this paper we study the Turán type problem for chordal graphs. A graph is called chordal
if it contains no induced cycle of length at least 4. Chordal graphs are one of the most studied
classes in graph theory and have numerous applications, for example in semidefinite optimisation
(see the survey [17]) and evolutionary trees (see [6]). In 1985, Erdős and Laskar [10] asked to
determine the maximum integer f (n,m) such that every graph with n vertices and m edges con-
tains a chordal subgraph with at least f (n,m) edges. To put this question under the umbrella of
classical extremal graph theory, one needs to consider equivalent definitions of chordal graphs.
It is well known that a graph is chordal if and only if it can be constructed from a single-vertex
graph by repeatedly adding a vertex and connecting it to a clique of the current graph1 (this is

1A related fact is that a graph is chordal if and only if it has a tree-decomposition in which the bags are cliques. So chordal
graphs can be thought of as ‘trees of cliques’.
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called a perfect elimination ordering), see [13, Chapter 4]. So if G is a triangle-free graph, then
every chordal subgraph of G must be a forest. More generally, if G has no cliques of size k+ 1,
then every chordal subgraph of G has at most (k− 1)(n− k+ 1)+ (k−1

2
)= (k− 1)n− (k

2
)
edges.

In particular, this bound applies to k-partite graphs. Another way of proving this bound for k-
partite graphs is to observe that ifG is k-partite with partsV1, . . . ,Vk andH is a chordal subgraph
of G, then eH(Vi,Vj)≤ |Vi| + |Vj| − 1 for every i< j (because a chordal subgraph of a bipartite
graph must be a forest). Hence, e(H)≤∑i<j (|Vi| + |Vj| − 1)= (k− 1)n− (k

2
)
.

The above discussion shows that if m≤ tk(n) then f (n,m)≤ (k− 1)n− (k
2
)
. It is natural to

guess that the value of f (n,m) “jumps” as m increases from tk(n) to m= tk(n)+ 1, because at
this point the graph must contain (k+ 1)-cliques. Erdős and Laskar [10] proved that this is
indeed the case for k= 2, showing that f (n, t2(n)+ 1)≥ (1+ ε)n. In the late 80’s, Erdős, Gyárfás,
Ordman and Zalcstein [9] determined the value of f (n, t2(n)+ 1) exactly for even n, showing
that f

(
n, n24 + 1

)
= 3n

2 − 1. This bound is achieved by the graph T2(n)+ e, obtained by adding
an edge to the Turán graph T2(n). It is natural to conjecture that for every k and n, the value of
f (n, tk(n)+ 1) is determined by Tk(n)+ e, which is the graph obtained by adding an edge to a
largest class of Tk(n). It is not hard to check that the largest chordal subgraph of Tk(n)+ e has
kn− �n

k � + 2− (k+1
2
)
edges. So we get the following conjecture.

Conjecture 1.1. f (n, tk(n)+ 1)= kn− �n
k � + 2− (k+1

2
)
.

The authors of [9] only studied Conjecture 1.1 in the cases k= 2, 3, although they very likely
had the full conjecture in mind. For k= 3, they proved that f (n, t3(n)+ 1)≥ 7n/3− 6 and asked
to determine f (n, t3(n)+ 1). This question was later mentioned again in the problem survey of
Gyárfás [14]. Answering this question, we resolve Conjecture 1.1 for the case k= 3.

Theorem 1.2. f (n, t3(n)+ 1)= 3n− �n
3 � − 4.

Our next result proves Conjecture 1.1 asymptotically for every k. In fact, we go a step further
and determine f (n,m) asymptotically for every value of m, answering the question of Erdős and
Laskar.

Theorem 1.3. Let k, n≥ 1 and tk(n)+ 1≤m≤ tk+1(n). Set a=m− tk(n). Then

f (n,m)= (k− 1/k)n+√
2(k+ 1)a/k−

(
k+ 1
2

)
−O(

√
n).

The construction giving the upper bound in Theorem 1.3 is to take an (unbalanced) complete
k-partite graph with k− 1 smaller classes of the same size and one bigger class, and to add a bal-
anced complete bipartite graph inside the bigger class. One then needs to optimise the sizes of
the classes and the size of the complete bipartite graph so as to minimise the size of chordal sub-
graphs. It is best to take the k− 1 smaller classes of size n−r

k , the bigger class of size n+(k−1)r
k and the

complete bipartite of size r × r, where r :=
√

2ka
k+1 . See Figure 1, and see Section 2 for the details.

For k= 1, 2, we can go a step further and determine f (n,m) exactly. This is done in the
following two theorems.

Theorem 1.4. Let n≥ 1 and m≤ t2(n). Then f (n,m)=min{r : t2(r)≥m} − 1.

For n≥ 1 and m≥ t2(n)+ 1, let g2(n,m) be the minimum of 2n− t + r, taken over all pairs
t, r ≥ 0 satisfying t(n− t)+ t2(r)≥m.

Theorem 1.5. Let n≥ 1 and t2(n)+ 1≤m≤ t3(n). Then f (n,m)= g2(n,m)− 3.

The extremal construction for Theorem 1.5 is given by taking a t × (n− t) complete bipartite
graph and placing a complete bipartite graph with r vertices inside the side of size t.
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Figure 1. The construction showing optimality of Theorem 1.3.

1.1. Proof ideas
Recall that a graph is chordal if and only if it can be obtained from the one-vertex graph by
repeatedly adding simplicial vertices, that is, vertices whose neighbourhood is a clique. In par-
ticular, adding simplicial vertices to a chordal graph keeps it chordal. We will often use this fact
(implicitly) to claim that certain graphs are chordal.

Let us first recall the argument used by Erdős, Gyárfás, Ordman and Zalcstein [9] to prove
Conjecture 1.1 for k= 2 (and n even). Let G be a graph with n vertices and n2/4+ 1 edges, and
let x, y, z be a triangle in G. We need to show that G has a chordal subgraph H with at least
3n/2− 1 edges. If d(x)+ d(y)+ d(z)≥ 3n/2+ 2, then take H to be the subgraph consisting of
all edges touching x, y, z. Suppose now that d(x)+ d(y)+ d(z)≤ 3n/2+ 1. Then by averaging, we
can assume without loss of generality that d(x)+ d(y)≤ n. Deleting x, y, we get a graph with at
least n2/4+ 1− (n− 1)≥ (n− 2)2/4+ 1 edges. By induction, this graph contains a chordal sub-
graphH′ with at least 3(n− 2)/2− 1 edges. Adding the edges xy, xz, yz gives the required chordal
subgraph H.

Our proof of Theorem 1.5 is also based on this inductive argument, but with two key differ-
ences. First, we need a relation between g2(n,m) and g2(n′,m′) (for n′ = n− 2, say), so that the
induction can be carried through when deleting vertices. And second, it turns out that the induc-
tion scheme of deleting two vertices does not work to give the correct bound on f (n,m) for allm in
the range of Theorem 1.5. Instead, we sometimes need to delete just one vertex and then add two
edges when adding the vertex back. To this end, we need to know that the deleted vertex has two
neighbours which form an edge in the chordal subgraphH′ that we find using induction. To guar-
antee this, we strengthen the induction hypothesis to say that not only does G contain a chordal
subgraph with the correct number of edges, but that any given triangle in G can be included in
such a chordal subgraph.

The idea of strengthening the induction hypothesis is also used in the proof of Theorem 1.2.
Here we show that every K4 can be included in a chordal subgraph with the correct number of
edges. This proof has a more involved case analysis. It would be interesting to find a shorter proof.

The proof of Theorem 1.3 is based on induction as well. Here, instead of deleting only a
few vertices, we delete a large number of vertices. To give the general idea, we sketch first the
proof in the case m= t3(n)+ 1. So let G be a graph with n vertices t3(n)+ 1 edges. We need
to show that G has a chordal subgraph H with at least 8n

3 − 6− C
√
n edges. Let us assume

first that e(G)≥ t3(n)+ 2n. By a theorem of Faudree [12] (see also [1, 3]), there is a triangle
x, y, z ∈V(G) with d(x)+ d(y)+ d(z)≥ 6e(G)/n≥ 2n+ 12. In particular, x, y, z have at least 12
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common neighbours. Let w1, . . . ,w7 be seven of them. If d(x)+ d(y)+ d(z)+ d(wi)≥ 8n
3 − C

√
n

for some i, then take H to be the subgraph consisting of all edges touching x, y, z,wi. This
H is chordal and e(H)= d(x)+ d(y)+ d(z)+ d(wi)− 6, so we are done. Suppose then that
d(x)+ d(y)+ d(z)+ d(wi)≤ 8n

3 − C
√
n for every i. In particular, d(wi)≤ 2n

3 − C
√
n. Assume that

d(x)≥ d(y)≥ d(z), so that d(x)≥ 2n
3 and hence d(y)+ d(z)+ d(wi)≤ 2n− C

√
n for each i. Delete

y, z,w1, . . . ,w7 to get a graph G′ on n− 9 vertices. It is easy to see that e(G′) is well above
t3(n− 9)+ 1. So by the induction hypothesis, there exists a chordal subgraph H′ of G′ with
e(H′)≥ 8(n−9)

3 − 6− C
√
n edges. Now add back the vertices y, z,w1, . . . ,w7, and add to H′ the

edges of the triangle x, y, z and the edges between x, y, z and w1, . . . ,w7. This is a total of 24 edges.
So e(H)= e(H′)+ 24≥ 8n

3 − 6− C
√
n, as required. It is also easy to see that H is chordal (if we

add the new vertices in the order y, z,w1, . . . ,w7, then we always add a simplicial vertex). The
number 7 was chosen here so that the number of edges added would be large enough for the
induction to carry through. But the key point is that such a number must exist. Indeed, each wi
contributes 3 edges toH. On the other hand, the term 8n

3 suggests that it is enough to add 8
3 edges

per vertex on average. So by adding 3 edges per vertex, we are gaining over the required bound.
It now remains to handle the case that e(G)≤ t3(n)+ 2n. Here we proceed as follows. If the

minimum degree of the graph is at least 2n
3 − √

n, then take a 4-clique x, y, z,w and take H to
be the subgraph consisting of edges touching x, y, z,w. Else, delete a vertex of minimum degree
and continue with the remaining graph. After O(

√
n) steps, we get a graph with n′ = n−O(

√
n)

vertices and at least t3(n′)+ 2n′ edges, so we can apply the first case.
To prove the general case of Theorem 1.3 we find a (k− 1)-clique x1, . . . , xk−1 and a for-

est F inside N(x1, . . . , xk−1) such that F has few components. We delete V(F) and x2, . . . , xk−1
and apply induction to find a chordal subgraph H′. We then add to H′ the edges of the clique
x1, . . . , xk−1, the edges of F, and the edges betweenV(F) and x1, . . . , xk−1. Note that when adding
back the vertices of F one by one, most vertices contribute k edges: one edge in F and k− 1 edges to
x1, . . . , xk−1 (this fails once for each connected component of F, and this is why we want the num-
ber of components to be small). On the other hand, the main term in Theorem 1.3 is (k− 1/k)n,
which suggests that each vertex adds k− 1/k edges on average. So again we are gaining over the
required bound (at least if we ignore the second term

√
2(k+ 1)a/k for the moment). A somewhat

lengthy calculation shows that this argument indeed works for any value of a.
The rest of this short paper is organised as follows. Theorem 1.3 is proved in Section 2,

Theorems 1.4–1.5 in Section 3 and Theorem 1.2 in Section 4.

2. Proof of Theorem 1.3
In this section we prove Theorem 1.3. We begin with the upper bound. Here we use the following
construction. For simplicity, assume that n is divisible by k, k+ 1. For general n the construction
is essentially the same (and, since we are only interested in an approximate result, we are allowed a
small error due to divisibility issues). Fix k≥ 1 andm≤ tk+1(n)= kn2

2(k+1) , so that a := m− tk(n)≤
kn2

2(k+1) − (k−1)n2
2k = n2

2k(k+1) . Set r :=
√

2ka
k+1 ≤ n

k+1 . Consider a complete k-partite graph with sides
X, Y1, . . . , Yk−1 such that |X| = n+(k−1)r

k and |Yi| = n−r
k for every 1≤ i≤ k− 1. Place an r × r

complete bipartite graph with sides A, B inside X. This is possible as 2r ≤ n+(k−1)r
k . The resulting

graph G has

e(G) = (k− 1) · n+ (k− 1)r
k

· n− r
k

+
(
k− 1
2

)(
n− r
k

)2
+ r2 = (k− 1)n2

2k
+ (k+ 1)r2

2k

= (k− 1)n2

2k
+ a= tk(n)+ a=m.
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Let H be a chordal subgraph of G. We have eH(A, B)≤ |A| + |B| − 1= 2r − 1, eH(A, Yi)≤
|A| + |Yi| − 1, eH(X \A, Yi)≤ |X| − |A| + |Yi| − 1 and eH(Yi, Yj)≤ |Yi| + |Yj| − 1, because each
of these bipartite graphs is induced in G, so its intersection with H is a forest. So

e(H)≤ 2r − 1+ (k− 1)|X| − 2(k− 1)+ 2
k−1∑
i=1

|Yi| +
∑

1≤i<j≤k−1

(|Yi| + |Yj| − 1)

= kn− |X| + 2r −
(
k+ 1
2

)
= (k− 1/k)n+ (k+ 1)r

k
−
(
k+ 1
2

)

= (k− 1/k)n+√
2(k+ 1)a/k−

(
k+ 1
2

)
,

giving the upper bound on f (n,m) for Theorem 1.3. We now prove the lower bound, which we
restate for convenience as follows.

Theorem 2.1. For every k≥ 1 there is C = C(k) such that the following holds. Let n, a≥ 1, and let G
be a graph with n vertices and at least tk(n)+ a edges. Then G has a chordal subgraph with at least
(k− 1/k)n+√

2(k+ 1)a/k− C
√
n− (k+1

2
)
edges.

For the proof of Theorem 2.1 we need two lemmas. The following lemma uses an argument
originally used by Edwards [3, 4] and Faudree [12] (see also [1]) to find cliques with a large degree
sum.

Lemma 2.2. Let k, n, a≥ 1 and let G be a graph with n vertices and at least (k−1)n2
2k + a edges.

Consider the following process: for i= 1, 2, . . . , take xi to be a vertex of maximum degree among
all vertices in N(x1, . . . , xi−1). Then this process continues for at least k steps, and N(x1, . . . , xk−1)
contains at least a edges.

Proof. We prove the lemma by induction on k. The base case k= 1 is trivial. Let k≥ 2. By
the induction hypothesis, the process continues for at least k− 1 steps. It remains to show that
N(x1, . . . , xk−1) contains at least a edges, because this would also imply that N(x1, . . . , xk−1) 
= ∅
and hence the process continues for at least k steps. For 1≤ i≤ k− 1, let Si be the set of ver-
tices which are adjacent to x1, . . . , xi−1 but not adjacent to xi. In particular, S1 is just the set of
vertices not adjacent to x1 and xi ∈ Si for all i. Then V(G)= S1 ∪ · · · ∪ Sk−1 ∪N(x1, . . . , xk−1).
Put S := S1 ∪ · · · ∪ Sk−1, N := N(x1, . . . , xk−1), si := |Si|, s= |S| and di := d(xi). Note that si ≤
n− di. Also, all vertices in Si have degree at most di. We have

e(N, S)+ 2e(S)=
∑
v∈S

d(v)≤
k−1∑
i=1

si · di ≤
k−1∑
i=1

si(n− si). (1)

Since e(G)= e(N)+ e(S)+ e(N, S), we have 2e(S)= 2e(G)− 2e(N)− 2e(N, S). Plugging this into
(1) and rearranging, we get

e(N)≥ e(G)− 1
2
e(N, S)− 1

2
·
k−1∑
i=1

si(n− si). (2)

We have e(N, S)≤ |N| · |S| = (n− s)s. Also, by Cauchy–Schwarz,

k−1∑
i=1

si(n− si)= ns−
k−1∑
i=1

s2i ≤ ns− s2

k− 1
.
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Plugging this into (2) gives

e(N)≥ e(G)− 1
2
(n− s)s− 1

2

(
ns− s2

k− 1

)
= e(G)− ns+ ks2

2(k− 1)
.

The maximum of ns− ks2
2(k−1) is obtained at s= (k−1)n

k and equals (k−1)n2
2k . Hence, e(N)≥ e(G)−

(k−1)n2
2k ≥ a, as required. �

Lemma 2.3. Let G be a graph with n vertices and a edges. Let s≥ 1 and suppose that a≥ 2s2. Then
G contains a forest F with s vertices and at least s− 1− sn

a edges.

Proof. Let C1, . . . , Cm be the connected components ofGwith |C1| ≥ · · · ≥ |Cm|. Let � ≥ 1 be the
minimal integer satisfying |C1| + · · · + |C�| ≥ s. If � ≤ 1+ sn

a then take F to be a forest contained
in C1 ∪ · · · ∪ C� having s vertices and � connected components. Suppose now by contradiction
that � > 1+ sn

a . Set r = |C1| + · · · + |C�−1|. Then r < s and |C�−1| ≤ r
�−1 . We have e(G)≤ (r2)+∑m

i=�

(|Ci|
2
)
. By convexity, the sum

∑m
i=�

(|Ci|
2
)
is maximised when all except maybe one of the

|Ci|’s are equal to their maximal value, which is r
�−1 . So

e(G)≤
(
r
2

)
+
⌈

n− r
r/(� − 1)

⌉
·
(
r/(� − 1)

2

)
≤
(
r
2

)
+
(
1+ n− r

r/(� − 1)

)
·
(
r/(� − 1)

2

)

≤
(
r
2

)
+
(
r/(� − 1)

2

)
+ nr

2(� − 1)

< 2
(
s
2

)
+ sn

2sn/a
≤ a,

where the last inequality uses a≥ 2s2. We got a contradiction to e(G)= a. �
We are now ready to prove Theorem 2.1. An overview of the proof can be found in Section 1.1.

Proof of Theorem 2.1. The proof is by induction on n. Fix constants k
 c
 c1 
 C, to be
chosen implicitly later. Suppose first that a≤ (ck+ 1)2n. In this case we proceed as follows. If
δ(G)≥ � (k−1)n

k � − c1
√
n, then take a (k+ 1)-clique x1, . . . , xk+1 ∈V(G) and take H to consist of

all edges that touch x1, . . . , xk+1. Then H is chordal and

e(H)=
k+1∑
i=1

d(xi)−
(
k+ 1
2

)
≥ (k+ 1) ·

(
(k− 1)n

k
− 2c1

√
n
)

−
(
k+ 1
2

)

= (k− 1/k)n− 2(k+ 1)c1
√
n−

(
k+ 1
2

)
≥ (k− 1/k)n+√

2(k+ 1)a/k− C
√
n−

(
k+ 1
2

)
,

where the last inequality holds asC � c1, c and a≤ (ck+ 1)2n. Suppose now that there is v ∈V(G)
with d(v)≤ � (k−1)n

k � − c1
√
n. Let G′ =G− v. Then

e(G′)≥ tk(n)+ a−
⌊
(k− 1)n

k

⌋
+ c1

√
n= tk(n− 1)+ a+ c1

√
n.

By the induction hypothesis with parameter a′ = a+ c1
√
n, G′ contains a chordal subgraph H′

with

e(H′)≥ (k− 1/k)(n− 1)+
√
2(k+ 1)a′/k− C

√
n−

(
k+ 1
2

)
.
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As (k− 1/k)(n− 1)≥ (k− 1/k)n− k, it suffices to show that
√
2(k+ 1)a′/k≥√2(k+ 1)a/k+ k.

Squaring and plugging in the value of a′, we get

2(k+ 1)/k · (a+ c1
√
n)= 2(k+ 1)a′/k≥ 2(k+ 1)a/k+ 2k

√
2(k+ 1)a/k+ k2.

Cancelling the term 2(k+ 1)a/k from both sides and rearranging, we see that it is enough to have

c1
√
n≥ k2

k+ 1
√
2(k+ 1)a/k+ k3

2(k+ 1)
,

which holds because a≤ (ck+ 1)2n and c1 � c.
For the rest of the proof we assume that a≥ (ck+ 1)2n. Note that e(G)≥ tk(n)+ a≥ (k−1)n2

2k +
a
2 because tk(n)≥ (k−1)n2

2k −Ok(1) and a≥ c� k. Let x1, . . . , xk−1 be as in Lemma 2.2 and putN =
N(x1, . . . , xk−1). By Lemma 2.2 we have e(N)≥ a

2 . Also, the choice of x1, . . . , xk−1 in Lemma 2.2
implies that d(y)≤ d(xk−1)≤ · · · ≤ d(x1) for every y ∈N. For convenience, we set

d0 := (k− 1)n
k

+
√

2a
k(k+ 1)

− c
√
n.

Note that d0 ≥ (k−1)n
k by our assumption that a≥ (ck+ 1)2n.

Claim 2.4. If the statement of the theorem does not hold, then G[N] contains a forest F with v(F)=
�√n�, e(F)≥ v(F)− 1− 2n3/2

a , and∑
y∈V(F)

d(y)≤ v(F) · d0 + n/k. (3)

Proof. We consider two cases. Suppose first that there is xk ∈N such that d(xk)≥ d0. Then d(xi)≥
d0 for every 1≤ i≤ k− 1. Hence, d(x1)+ · · · + d(xk)≥ k · d0. This means that x1, . . . , xk have at
least

kd0 − (k− 1)n=
√

2ka
(k+ 1)

− ck
√
n≥ √

a− ck
√
n≥ √

n

common neighbours, where the last inequality holds by the assumption a≥ (ck+ 1)2n. Take F to
be the star whose centre is xk and whose leaves are �√n� − 1 common neighbours of x1, . . . , xk.
Let y ∈N(x1, . . . , xk). If d(y)≥ d0 then

d(x1)+ · · · + d(xk)+ d(y)≥ (k+ 1)d0 = (k− 1/k)n+√
2(k+ 1)a/k− (k+ 1)c

√
n,

and then the subgraph consisting of all edges touching {x1, . . . , xk, y} is a chordal graph with
at least (k− 1/k)n+√

2(k+ 1)a/k− (k+ 1)c
√
n− (k+1

2
)
edges, so the assertion of the theorem

holds. Hence, we may assume that d(y)≤ d0 for every y ∈N(x1, . . . , xk). This means that∑
v∈V(F)

d(v)≤ d(xk)+ (v(F)− 1) · d0 ≤ n/k+ v(F) · d0,

as required by the claim. Also, F has the right number of edges, as e(F)= v(F)− 1.
The second case is that d(y)≤ d0 for every y ∈N. Since e(N)≥ a

2 ≥ 2n, we can apply Lemma
2.3 to G[N] with parameters a

2 and s= �√n� to obtain a forest F with �√n� vertices and at least
v(F)− 1− 2n3/2

a edges. All vertices in F have degree at most d0, so (3) holds. �
We continue with the proof of the theorem. Let F be the forest given by Claim 2.4. Let G′ be

the graph obtained from G by deleting the t := k− 2+ v(F) vertices T := {x2, . . . , xk−1} ∪V(F).
By (3), we have
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∑
v∈T

d(v)≤ d(x2)+ · · · + d(xk−1)+ v(F) · d0 + n/k≤ (v(F)+ k− 2) · d0 + n= t · d0 + n,

where the second inequality uses that d0 ≥ (k−1)n
k . As e(G)≥ tk(n)+ a≥ (k−1)n2

2k −Ok(1)+ a, we
have that

e(G′)≥ e(G)− t · d0 − n≥ (k− 1)n2

2k
−Ok(1)+ a− t · d0 − n

= (k− 1)(n− t)2

2k
+ (k− 1)nt

k
− (k− 1)t2

2k
−Ok(1)+ a− t · d0 − n

= (k− 1)(n− t)2

2k
−Ok(1)+ a− (k− 1)t2

2k
− t ·

√
2a

k(k+ 1)
+ ct

√
n− n

≥ tk(n− t)+ a− (k− 1)t2

2k
− t ·

√
2a

k(k+ 1)
+ c

2
t
√
n,

where the last inequality uses that t ≥ �√n� and c� k, so that c
2 t

√
n≥Ok(1)+ n. Set

a′ := a− (k− 1)t2

2k
− t ·

√
2a

k(k+ 1)
+ c

2
t
√
n,

so that e(G′)≥ tk(n− t)+ a′. We have a′ ≥ 1 because t ≤ √
n+ k− 2, a≥ c2n (say) and c� k. By

the induction hypothesis, G′ contains a chordal subgraph H′ of size at least

e(H′)≥ (k− 1/k) · (n− t)+
√
2(k+ 1)a′/k− C

√
n− t −

(
k+ 1
2

)
.

LetH be the subgraph ofG obtained by adding toH′ the edges of the clique x1, . . . , xk−1, the edges
between x1, . . . , xk−1 and V(F), and the edges of F. Then H is chordal. To complete the proof, it
suffices to verify that

e(H)≥ (k− 1/k)n+√
2(k+ 1)a/k− C

√
n−

(
k+ 1
2

)
.

By the definition of H, we have

e(H)= e(H′)+
(
k− 1
2

)
+ (k− 1) · v(F)+ e(F).

Note that

(k− 1) · v(F)+ e(F)≥ k · v(F)− 1− 2n3/2

a
= k · (t − k+ 2)− 1− 2n3/2

a
,

and therefore, (
k− 1
2

)
+ (k− 1) · v(F)+ e(F)≥ tk− (k+ 1)(k− 2)

2
− 1− 2n3/2

a
.

For convenience, set h := (k+1)(k−2)
2 + 1+ 2n3/2

a . Then,

e(H)≥ (k− 1/k) · (n− t)+
√
2(k+ 1)a′/k− C

√
n− t −

(
k+ 1
2

)
+ tk− h. (4)
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So it remains to verify that the right-hand side of (4) is at least as large as

(k− 1/k)n+√
2(k+ 1)a/k− C

√
n−

(
k+ 1
2

)
.

Cancel the terms (k− 1/k)n,
(k+1

2
)
which appear in both expressions. Also, wemay drop the terms

C
√
n− t, C

√
n. After rearranging, we get the inequality√

2(k+ 1)a′/k≥√2(k+ 1)a/k− t
k

+ h.

By squaring and plugging in the value of a′, we get:

2(k+ 1)
k

·
(
a− (k− 1)t2

2k
− t ·

√
2a

k(k+ 1)
+ c

2
t
√
n

)
≥

2(k+ 1)a
k

+ t2

k2
+ h2 − 2t

k
·
√
2(k+ 1)a

k
+ 2h ·

√
2(k+ 1)a

k
− 2th

k
. (5)

Both sides of the inequality (5) have the terms 2(k+1)
k a and − 2t

k ·
√

2(k+1)a
k . We can also drop the

negative term 2th
k on the right-hand side. After rearranging, we get the inequality

2(k+ 1)
k

· c
2
t
√
n≥ t2 + h2 + 2h ·

√
2(k+ 1)a

k
. (6)

We have t ≤ √
n+ k and h≤Ok(1)+ 2n3/2

a ≤Ok(1)+ √
n, so t2, h2 ≤Ok(n). Also,

h
√
a≤

(
Ok(1)+ 2n3/2

a

)
· √a≤Ok(n)+ 2n3/2√

a
=Ok(n),

as n≤ a≤ n2. So the right-hand side of (6) isOk(n). On the other hand, the left-hand side is larger
than cn

2 because t ≥ �√n� ≥ √
n/2. So (6) holds because c� k, as required. �

3. Proof of Theorems 1.4 and 1.5

Proof of Theorem 1.4. For the upper bound, let r ≥ 1 be the minimal integer satisfying t2(r)≥m
and take G to be T2(r) with n− r isolated vertices. Then e(G)≥m, but every chordal subgraph
of G has at most r − 1 edges. For the lower bound, we prove by induction on the number of
vertices that every graph G with m edges has a chordal subgraph H with at least g1(m)− 1
edges, where g1(m) := minr:t2(r)≥m r. For m= 0, the assertion is trivial. Suppose m≥ 1 and let
xy ∈ E(G). Fix r such that g1(m)= r. If d(x)+ d(y)≥ r then take H to be the subgraph con-
sisting of all edges touching x, y. This graph is chordal and has d(x)+ d(y)− 1 edges. Suppose
now that d(x)+ d(y)≤ r − 1; without loss of generality, d(x)≤ � r−1

2 �. Let G′ =G− x. Then
e(G′)=m− d(x)≥m− � r−1

2 �. We claim that e(G′)> t2(r − 2). Indeed, if e(G′)≤ t2(r − 2) then
m≤ t2(r − 2)+ � r−1

2 � = t2(r − 1), in contradiction to the choice of r. So g1(e(G′))≥ r − 1. By the
induction hypothesis, G′ contains a chordal subgraphH′ with at least r − 2 edges. Now,H′ + {xy}
is a chordal subgraph of G with at least r − 1 edges, as required. �

The rest of this section is dedicated to proving Theorem 1.5. Recall that for n≥ 1 and m≥
t2(n)+ 1, we define g2(n,m) := mint,r (2n− t + r), where the minimum is taken over all inte-
gers t, r ≥ 0 satisfying t(n− t)+ t2(r)≥m. We start by proving the upper bound in Theorem 1.5.
First we claim that g2(n,m)≤ 2n. Indeed, for t = r = � 2n

3 � we have t(n− t)+ t2(r)= t3(n)≥m,
so g2(n,m)≤ 2n− t + r = 2n, as required. Now take t, r such that t(n− t)+ t2(r)≥m and
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g2(n,m)= 2n− t + r. Since g2(n,m)≤ 2n, we have t ≥ r. Take a complete bipartite graph with
sides X of size t and Y of size n− t and add a copy of T2(r) with sides A, B inside X. The result-
ing graph G has t(n− t)+ t2(r)≥m edges. Let H be a chordal subgraph of G. Then eH(A, B)≤
|A| + |B| − 1= r − 1, eH(A, Y)≤ |A| + |Y| − 1 and eH(X \A, Y)≤ |X| − |A| + |Y| − 1, because
each of these bipartite graphs is induced in G, so its intersection with H is a forest. Overall, we
got that e(H)≤ r − 1+ |X| + 2|Y| − 2= 2n− t + r − 3= g2(n,m)− 3. This shows that f (n,m)≤
g2(n,m)− 3, as required. To prove the lower bound in Theorem 1.5, we prove the following
stronger claim.

Theorem3.1. Let G be a graph with n vertices andm≥ t2(n)+ 1 edges, and let x, y, z be a triangle in
G. Then G has a chordal subgraph with at least g2(n,m)− 3 edges which contains the edges xy, xz, yz.

We need the following facts about the numbers g2(n,m).

Lemma 3.2. In the definition of g2(n,m), we may assume that − 1
2 ≤ 2t − n− r

2 ≤ 1
2 .

Proof. Fix t, r which achieve the minimum in the definition of g2(n,m); so t(n− t)+ t2(r)≥m
and g2(n,m)= 2n− t + r. Put h(t, r) := 2t − n− r

2 . If h(t, r) ∈ {− 1
2 , 0,

1
2 } then we are done. If

not, we try replacing (t, r) with (t − 1, r − 1) or (t + 1, r + 1). Suppose first that h(t, r)≥ 1.
Replace (t, r) with (t − 1, r − 1). We have 2n− (t − 1)+ (r − 1)= 2n− t + r and (t − 1)(n−
t + 1)+ t2(r − 1)= t(n− t)+ t2(r)− n+ 2t − � r

2� − 1≥ t(n− t)+ t2(r)≥m, where the penul-
timate inequality uses h(t, r)≥ 1. So (t − 1, r − 1) also achieves the minimum in the definition of
g2(n,m). Moreover, h(t − 1, r − 1)= 2(t − 1)− n− r−1

2 = h(t, r)− 3
2 . So as long as h(t, r)≥ 1, we

can replace (t, r) with (t − 1, r − 1) and decrease h by 3
2 . At the last step, we decrease h to be in{− 1

2 , 0,
1
2
}
.

Similarly, suppose that h(t, r)≤ −1. Replace (t, r) with (t + 1, r + 1). We have 2n− (t +
1)+ (r + 1)= 2n− t + r and (t + 1)(n− t − 1)+ t2(r + 1)= t(n− t)+ t2(r)+ n− 2t + � r

2� −
1≥ t(n− t)+ t2(r)≥m, where the penultimate inequality uses h(t, r)≤ −1. So (t + 1, r + 1) also
achieves the minimum in the definition of g2(n,m). Also, h(t + 1, r + 1)= 2(t + 1)− n− r+1

2 =
h(t, r)+ 3

2 . So as long as h(t, r)≤ −1, we can replace (t, r) with (t + 1, r + 1) and increase h by 3
2 .

At the last step, we increase h to be in
{− 1

2 , 0,
1
2
}
. �

Lemma 3.3. For n≥ 1 and m≥ t2(n)+ 2, it holds that g2(n,m− 1)≥ g2(n,m)− 1.

Proof. Let t, r be such that t(n− t)+ t2(r)≥m− 1 and 2n− t + r = g2(n,m− 1). Sincem− 1≥
t2(n)+ 1 we have r ≥ 2. Thus t(n− t)+ t2(r + 1)≥m, so g2(n,m)≤ 2n− t + (r + 1)= g2(n,m−
1)+ 1, as required. �
Lemma 3.4. The following holds for every n≥ 3.

1. If m≥ t2(n)+ 1 then m− n+ 1≥ t2(n− 2)+ 1 and g2(n− 2,m− n+ 1)≥ g2(n,m)− 3.
2. If m≥ t2(n)+ 2 then m− n≥ t2(n− 2)+ 1 and g2(n− 2,m− n)≥ g2(n,m)− 4.

Proof. The first part in both items follows from t2(n− 2)= t2(n)− n+ 1. Let t, r such that
t(n− 2− t)+ t2(r)≥m− n+ 1 and g2(n− 2,m− n+ 1)= 2(n− 2)− t + r. We have (t + 1)
(n− 1− t)+ t2(r)= t(n− 2− t)+ n− 1+ t2(r)≥m. Hence, g2(n,m)≤ 2n− (t + 1)+ r =
g2(n− 2,m− n+ 1)+ 3. This proves the first item. For the second item, g2(n− 2,m− n)≥
g2(n− 2,m− n+ 1)− 1≥ g2(n,m)− 4, where the first equality uses Lemma 3.3 since
m− n+ 1≥ t2(n− 2)+ 2. �
Lemma 3.5. Let n≥ 1 and m≥ t2(n)+ 1, and let d ≥ 0 be an integer satisfying 3d ≤ g2(n,m)− 1.
Then m− d ≥ t2(n− 1)+ 1 and g2(n− 1,m− d)≥ g2(n,m)− 2.

Lemma 3.5 is used in the proof of Theorem 3.1 in case one of the vertices x, y, z has degree
at most d. We then delete this vertex, apply induction and then add the vertex back with its
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two incident edges on the triangle. The induction carries through thanks to the bound g2(n− 1,
m− d)≥ g2(n,m)− 2 from Lemma 3.5. The reason for the assumption 3d ≤ g2(n,m)− 1 is that
if d(x)+ d(y)+ d(z)≥ g2(n,m) then the graph consisting of all edges touching x, y, z is a chordal
graph with at least g2(n,m)− 3 edges, as required by Theorem 3.1. So we may always assume that
one of x, y, z has degree d with 3d ≤ g2(n,m)− 1.

Proof of Lemma 3.5. First we show that m− d > t2(n− 1). Set a := m− t2(n). Since 3d ≤
g2(n,m)− 1, it is enough to show that

g2(n,m)< 3(m− t2(n− 1))+ 1= 3 ·
⌊n
2

⌋
+ 3a+ 1. (7)

For a= 1, g2(n,m)= n+ �n
2 � + 2< 3 · �n

2 � + 4, and the last expression equals the right-hand side
of (7). Suppose now that a≥ 2. Set k= �

√
a
3�, so that 3k2 ≥ a. Set t := �n

2 � + k and r := 4k. Then
t2(r)= 4k2 and

t(n− t)=
(⌊n

2

⌋
+ k

) (⌈n
2

⌉
− k

)
≥ t2(n)− k2,

so t(n− t)+ t2(r)≥ t2(n)+ 3k2 ≥ t2(n)+ a=m. Hence, g2(n,m)≤ 2n− t + r = 2n− �n
2 � +

3k≤ 3 · �n
2 � + 2+ 3k. So to prove (7), it suffices to show that 3k+ 1< 3a. As k≤

√
a
3 + 1,

it suffices to show that 3
(√

a
3 + 1

)
< 3a− 1. Rearranging and squaring, we get the inequal-

ity 9a2 − 27a+ 16> 0, which holds for all a≥ 3. For a= 2 we simply note that k= 1 and so
3k+ 1= 4< 6= 3a.

Now we show that g2(n− 1,m− d)≥ g(n,m)− 2. Fix t, r that achieve the minimum in the
definition of g2(n,m); so t(n− t)+ t2(r)≥m and

g2(n,m)= 2n− t + r = 3t − 2 ·
(
2t − n− r

2

)
. (8)

By Lemma 3.2, we may assume that − 1
2 ≤ 2t − n− r

2 ≤ 1
2 . Fix also t

′, r′ such that t′(n− 1− t′)+
t2(r′)≥m− d and g2(n− 1,m− d)= 2(n− 1)− t′ + r′. Suppose by contradiction that g2(n− 1,
m− d)≤ g2(n,m)− 3. Then 2(n− 1)− t′ + r′ ≤ 2n− t + r − 3, so t′ − t ≥ r′ − r + 1. Put c :=
t′ − t, so that r′ ≤ r + c− 1. Then t2(r′)≤ t2(r + c− 1). So we can write

m− d ≤ t′(n− 1− t′)+ t2(r′)≤ (t + c)(n− t − c− 1)+ t2(r + c− 1)

= t(n− t)+ cn− (2c+ 1)t − (c+ 1)c+ t2(r + c− 1). (9)

Since (t, r) achieves the minimum in the definition of g2(n,m), we must have m− 1≥ t(n− t)+
t2(r − 1), so t(n− t)≤m− 1− t2(r − 1). Plugging this into (9) and rearranging, we get

d ≥ t + c(2t − n)+ (c+ 1)c+ 1− t2(r + c− 1)+ t2(r − 1).

Note that

t2(r + c− 1)− t2(r − 1)≤ (r + c− 1)2

4
− (r − 1)2 − 1

4
= cr

2
+ (c− 1)2

4
.

So we get

d ≥ t + c
(
2t − n− r

2

)
+ (c+ 1)c+ 1− (c− 1)2

4
. (10)

We now complete the proof by considering the three possible values of 2t − n− r
2 . Suppose

first that 2t − n− r
2 = 0. Then g2(n,m)= 3t by (8). By (10), we have d ≥ t + (c+ 1)c+ 1−

(c−1)2
4 = t + 3

4 (c+ 1)2 ≥ t = g2(n,m)/3, in contradiction to our assumption on d.

https://doi.org/10.1017/S0963548323000068 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000068


Combinatorics, Probability and Computing 735

Suppose now that 2t − n− r
2 = 1

2 . Then g2(n,m)= 3t − 1 by (8). By (10), we have d ≥ t + c
2 +

(c+ 1)c+ 1− c2−2c+1
4 = t + 3c2

4 + 2c+ 3
4 > t − 1, where the last inequality holds for every c. So

d ≥ t and hence 3d ≥ 3t ≥ g2(n,m), a contradiction.
Finally, suppose that 2t − n− r

2 = − 1
2 . Then g2(n,m)= 3t + 1 by (8). By (10), we have d ≥

t − c
2 + (c+ 1)c+ 1− c2−2c+1

4 = t + 3c2
4 + c+ 3

4 > t, where the last inequality holds for every c.
So d ≥ t + 1 and hence 3d ≥ 3t + 3≥ g2(n,m), a contradiction. �
Proof of Theorem 3.1. The proof is by induction on n. The base cases n= 1, 2 are trivial because
for these n there is no graph on n vertices with t2(n)+ 1 edges. The case n= 3 is also easy to verify.
So from now on let n≥ 4. Let x, y, z be a triangle in G. We consider several cases. After dealing
with each case, we will assume in all subsequent cases that this case does not hold.

Case 1: d(x)+ d(y)+ d(z)≥ g2(n,m). In this case, take H to be the graph consisting of all edges
touching x, y, z. This graph is chordal and clearly contains the edges of the triangle x, y, z. Also,
e(H)= d(x)+ d(y)+ d(z)− 3≥ g2(n,m)− 3, as required.

Case 2: There are distinct u, v ∈ {x, y, z} such that d(u)+ d(v)≤ n. Without loss
of generality, suppose that u= x, v= y. Let G′ =G− {x, y}. Then e(G′)= e(G)−
d(x)− d(y)+ 1≥m− n+ 1. By the induction hypothesis (applied to any arbi-
trary triangle in G′), G′ contains a chordal subgraph H′ with e(H′)≥ g2(n− 2,
m− n+ 1)− 3≥ g2(n,m)− 6, by Lemma 3.4. Let H := H′ + {xy, xz, yz}. Then H is chordal,
contains the edges of the triangle x, y, z, and satisfies e(H)= e(H′)+ 3≥ g2(n,m)− 3.

We claim that if cases 1-2 do not hold then m≥ t2(n)+ 2. Indeed, suppose by contradiction
that m= t2(n)+ 1. We have g2(n, t2(n)+ 1)= 2n− �n

2 � + 2. Since case 1 does not hold, d(x)+
d(y)+ d(z)≤ g2(n, t2(n)+ 1)− 1≤ 3n

2 + 1. But then there are distinct u, v ∈ {x, y, z} with d(u)+
d(v)≤ 2

3 · ( 3n2 + 1
)≤ n+ 2

3 . Hence d(u)+ d(v)≤ n, contradicting that case 2 does not hold. So
m≥ t2(n)+ 2.

Case 3: There are distinct u, v ∈ {x, y, z} such that the edge uv is on exactly one triangle (namely the
triangle x, y, z). Without loss of generality, suppose that u= x, v= y. Since case 2 does not hold,
we have d(x)+ d(y)≥ n+ 1. On the other hand, since xy is on exactly one triangle, it must be that
d(x)+ d(y)= n+ 1, N(x)∩N(y)= {z} and every vertex in V(G) \ {x, y, z} is adjacent to exactly
one of x, y. Let G′ =G− {x, y}. Then e(G′)= e(G)− d(x)− d(y)+ 1=m− n. By Lemma 3.4,
e(G′)≥ t2(v(G′))+ 1, which means that G′ contains a triangle. By the induction hypothesis
(applied to an arbitrary triangle in G′), G′ contains a chordal subgraph H′ with e(H′)≥ g2(n− 2,
m− n)− 3≥ g2(n,m)− 7, by Lemma 3.4. So it is enough to show thatG contains a chordal graph
H which contains the edges of the triangle x, y, z and satisfies e(H)= e(H′)+ 4. Suppose first that
z is isolated in H′. We claim that there exists w ∈NG(z) \ {x, y}. Indeed, if not, then dG(z)= 2.
Also, as d(x)+ d(y)= n+ 1, we have d(x)≤ �n+1

2 � or d(y)≤ �n+1
2 �. Suppose this holds for y.

Then d(y)+ d(z)≤ �n+1
2 � + 2≤ n for n≥ 4, so case 2 holds, contradiction. This proves our claim

that there exists w ∈NG(z) \ {x, y}. Now take H =H′ + {zw, xy, xz, yz}. By adding the vertices in
the order z, x, y, we always add a simplicial vertex. Hence, H is chordal.

Suppose now that z is not isolated in H′, and let w ∈V(G) \ {x, y, z} such that zw ∈ E(H′). As
mentioned above, w is adjacent in G to either x or y; without loss of generality it is adjacent to
x. Take H =H′ + {xw, xy, xz, yz}. By adding to H′ first x and then y, we always add a simplicial
vertex. Hence, H is chordal.

Case 4: Cases 1-3 do not hold. Since case 1 does not hold, we have d(x)+ d(y)+ d(z)≤
g2(n,m)− 1. Assume that d := d(x)≤ d(y)≤ d(z); then 3d ≤ g2(n,m)− 1. Since case 3 does not
hold, there exists w ∈V(G) \ {x} which is a common neighbour of y, z. Set G′ =G− {x}. We have
e(G′)=m− d. By the induction hypothesis, G′ has a chordal subgraph H′ which contains the
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edges of the triangle y, z,w and satisfies e(H′)≥ g2(n− 1,m− d)− 3≥ g2(n,m)− 5, by Lemma
3.5. LetH =H′ + {xy, xz}. ThenH is chordal, contains the edges of the triangle x, y, z, and satisfies
e(H)= e(H′)+ 2≥ g2(n,m)− 3, as required. �

4. Proof of Theorem 1.2
For convenience, put g3(n) := 3n− �n

3 � + 2. We prove Theorem 1.2 in the following stronger
form.

Theorem 4.1. Let G be a graph with n vertices and t3(n)+ 1 edges, and let X = {x1, x2, x3, x4} be a
4-clique in G. Then G has a chordal subgraph with at least g3(n)− 6 edges which contains the edges
of the clique X.

We need some simple facts on the numbers t3(n) and g3(n).

Lemma 4.2. For every n≥ 5, it holds that t3(n)− t3(n− 1)= � 2n
3 �, t3(n)− t3(n− 2)= � 4n

3 � − 1,
t3(n)− t3(n− 3)= 2n− 3, t3(n)− t3(n− 4)= g3(n)− 7.

Proof. For i= 1, 2, 3, T3(n− i) is obtained from T3(n) by deleting one vertex from each of the i
largest classes of T3(n). For i= 1, the deleted vertex has degree � 2n

3 �. For i= 2, the sum of degrees
of the deleted vertices is � 4n

3 �, and these vertices are adjacent. For i= 3, the sum of degrees of
the deleted vertices is 2n, and they form a triangle. Finally, t3(n)− t3(n− 4)= t3(n)− t3(n− 1)+
t3(n− 1)− t3(n− 4)= � 2n

3 � + 2(n− 1)− 3= 3n− �n
3 � − 5= g3(n)− 7. �

Lemma 4.3. For every n≥ 5, it holds that g3(n)− g3(n− 1)= 3 if n≡ 0, 2 (mod 3) and g3(n)−
g3(n− 1)= 2 if n≡ 1 (mod 3). Hence, g3(n)− g3(n− 2)≤ 6, g3(n)− g3(n− 3)= 8 and g3(n)−
g3(n− 4)≤ 11.

Proof. g3(n)− g3(n− 1)= 3− �n
3 � + �n−1

3 �, and it is easy to see that �n
3 � − �n−1

3 � equals 0 if
n≡ 0, 2 (mod 3) and equals 1 if n≡ 1 (mod 3). �

We also need the following simple lemma saying that in a graph with t3(n)+ 1 edges, we can
find two 4-cliques sharing 3 vertices. This fact is originally due to Dirac [2]. For completeness, we
include a proof.

Lemma 4.4. A graph G with n≥ 5 vertices and t3(n)+ 1 edges has two 4-cliques sharing 3 vertices.

Proof. The proof is by induction on n. For the base case n= 5, take a 4-clique and notice that the
remaining vertex must send at least 3 edges to this 4-clique as t3(5)+ 1= 9. Let n≥ 6. Take a 4-
clique x1, . . . , x4. If there is a vertex outside of x1, . . . , x4 which has three neighbours in x1, . . . , x4
then we are done. Else, d(x1)+ · · · + d(x4)≤ 2n+ 4, so there is i ∈ [4] such that d(xi)≤ �n

2 � + 1≤
� 2n

3 �, where the last inequality holds for all n≥ 6. So G′ := G− xi has at least t3(n− 1)+ 1 edges,
and we can apply induction. �
Proof of Theorem 4.1. The proof is by induction on n. The claim is trivial if n≤ 4 so suppose that
n≥ 5. We proceed by a sequence of claims.

Claim 4.5. We may assume that there exists y ∈V(G) \ {x1, . . . , x4} which is adjacent to at least 3
of the vertices x1, . . . , x4.

Proof of Claim 4.5. Suppose that there is no such y. We will show that the assertion of
Theorem 4.1 holds. For 0≤ j≤ 2, let Aj be the set of vertices in V(G) \ {x1, . . . , x4} which are
adjacent to j of the vertices x1, . . . , x4, and let aj = |Aj|. Then a0 + a1 + a2 = n− 4 and a1 + 2a2 =
d(x1)+ · · · + d(x4)− 12. So

d(x1)+ · · · + d(x4)= n+ 8+ a2 − a0. (11)
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(a) (b) (c)

Figure 2. Illustrations to proofs of claims. The red edges are added after applying induction. The dashed edges are deleted.

We consider three cases:

Case 1: 0< a2 ≤ n− 5. Then d(x1)+ · · · + d(x4)≤ 2n+ 3 by (11). Let G′ be the graph obtained
from G by deleting x2, x3, x4 and all edges touching x1. Then v(G′)= n− 3 and e(G′)=
e(G)− (d(x1)+ · · · + d(x4))+ 6≥ e(G)− 2n+ 3= t3(n)+ 1− 2n+ 3= t3(n− 3)+ 1. In par-
ticular, n− 3≥ 4 (else G′ cannot have more than t3(n− 3) edges). By the induction hypothesis
(applied to an arbitrary 4-clique in G′), G′ contains a chordal subgraph H′ with e(H′)≥ g3(n−
3)− 6. Take z ∈A2 and assume without loss of generality that z is adjacent to x1, x2. LetH =H′ +
{x1z, x2z} + {xixj : 1≤ i< j≤ 4}. Then e(H)= e(H′)+ 8≥ g3(n− 3)+ 8− 6= g3(n)− 6. Also,H
is chordal: adding x1z to H′ keeps it chordal because x1 is isolated in H′, and then by adding
x2, x3, x4 in this order we always add a simplicial vertex.

Case 2: a2 = n− 4. Then every vertex outside of {x1, . . . , x4} is adjacent to two of the vertices
x1, . . . , x4. By (11), d(x1)+ · · · + d(x4)= 2n+ 4. Pick an arbitrary v ∈V(G) \ {x1, . . . , x4} and
suppose without loss of generality that v is adjacent to x1. Let G′ be the graph obtained from G by
deleting x2, x3, x4 and all edges touching x1 except for x1v. Then v(G′)= n− 3 and e(G′)= e(G)−
(d(x1)+ · · · + d(x4))+ 7= e(G)− 2n+ 3= t3(n− 3)+ 1. Pick an arbitrary 4-clique y1, . . . , y4 in
G′. By the induction hypothesis, G′ contains a chordal subgraph H′ with e(H′)≥ g3(n− 3)− 6
such that H′ contains the edges of the clique y1, . . . , y4. Each yi has two neighbours in x1, . . . , x4.
By pigeonhole, two of the yi’s have a common neighbour. Without loss of generality, we may
assume that y1, y2 are both adjacent to xk for some k ∈ [4]. Suppose that y1 is also adjacent to x�. Let
H := H′ − x1v+ {xky1, xky2, x�y1} + {xixj : 1≤ i< j≤ 4}, see Figure 2(a). Then e(H)≥ e(H′)+ 8
(since we add 9 edges and delete at most 1), so e(H)≥ g3(n− 3)+ 8− 6= g3(n)− 6. Also, H′ −
x1v is chordal because x1 is a leaf or an isolated vertex inH′. Now observe thatH is chordal: adding
first xk, then x� and then the other two vertices among x1, . . . , x4, we add a simplicial vertex at
each step.

Case 3: a2 = 0. Then there are at most n− 4 edges between x1, . . . , x4 and V(G) \ {x1, . . . , x4}.
Also, d(x1)+ · · · + d(x4)≤ n+ 8 by (11). Let G′ be the graph obtained from G by deleting
x2, x3, x4 and all edges touching x1. Then v(G′)= n− 3 and e(G′)≥ e(G)− (n+ 2)= t3(n)+ 1−
(n+ 2)= t3(n− 3)+ 1+ n− 5. Note that n≥ 8 because else e(G)≤ (n−4

2
)+ n− 4+ 6< t3(n)

(where the last inequality holds for n≤ 7), a contradiction. So v(G′)≥ 5. By Lemma 4.4, there
are distinct v1, v2,w1,w2,w3 ∈V(G′) such that vi,w1,w2,w3 is a 4-clique for i= 1, 2. Let G′′
be the graph obtained from G′ by deleting all edges touching v1. Then v(G′′)= n− 3 and
e(G′′)≥ e(G′)− (n− 5) because v1 is not adjacent in G′ to x1 or to itself, leaving n− 5 potential
neighbours. So e(G′′)≥ t3(n− 3)+ 1. By the induction hypothesis, G′′ contains a chordal sub-
graph H′ with e(H′)≥ g3(n− 3)− 6, such that H′ contains the edges of the clique v2,w1,w2,w3.
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Let H =H′ + {v1wi : 1≤ i≤ 3} + {xixj : 1≤ i< j≤ 4}. Then e(H)= e(H′)+ 9≥ g3(n)− 6, and it
is easy to check that H is chordal. �
Claim 4.6. We may assume that for every i ∈ [4], the following holds. If d(xi)≥ � 2n

3 � + 1, then
there is y ∈V(G) \ {x1, . . . , x4} such that y is adjacent to xi and to at least two vertices in X \ {xi}.
Proof of Claim 4.6. Without loss of generality, i= 1. Suppose that d(x1)≥ � 2n

3 � + 1 but there is
no y as above. We will show that the assertion of Theorem 4.1 holds. For 0≤ j≤ 3, let Aj be the set
of vertices z ∈V(G) \ {x2, x3, x4} which are adjacent to exactly j of the vertices x2, x3, x4, and let
aj = |Aj|. Note that x1 ∈A3. By Claim 4.5, we may assume that there exists z ∈V(G) \ {x1, . . . , x4}
which is adjacent to three of the vertices x1, . . . , x4. By assumption, these three vertices cannot
include x1, so we must have z ∈A3. Hence, A3 \ {x1} 
= ∅.

We have a0 + a1 + a2 + a3 = n− 3 and a1 + 2a2 + 3a3 = d(x2)+ d(x3)+ d(x4)− 6. So a2 +
2a3 = d(x2)+ d(x3)+ d(x4)− n− 3+ a0. By assumption, there is no y ∈V(G) \ {x1, . . . , x4}
which is adjacent to x1 and belongs to A2 ∪A3. Hence, d(x1)≤ n− a2 − a3 = 2n− d(x2)−
d(x3)− d(x4)+ 3+ a3 − a0. So we get

d(x1)+ · · · + d(x4)≤ 2n+ 3+ a3 − a0. (12)

Pick a set of edges F as follows:

• Suppose first that a0 = 0. We claim that A1 ∪A2 
= ∅. Indeed, if A1 ∪A2 = ∅ then A3 =
V(G) \ {x2, x3, x4}. But then N(x1)= {x2, x3, x4} so d(x1)= 3. On the other hand, d(x1)≥
� 2n

3 � + 1 by assumption. So � 2n
3 � ≤ 2, which is false for every n≥ 5. Now pick an arbitrary

v ∈A1 ∪A2, and suppose without loss of generality that v is adjacent to x4. Take F to be the
set of all edges between x4 and N(x4) \ (A3 ∪ {x2, x3, v}). Note that |F| = d(x4)− a3 − 3.

• If a0 ≥ 1 then F is the set of all edges between x4 and N(x4) \ (A3 ∪ {x2, x3}). Then |F| =
d(x4)− a3 − 2.

In both cases we have |F| ≤ d(x4)− a3 − 3+ a0. Let G′ be the graph obtained from G by delet-
ing x1, x2, x3 and all edges in F. So v(G′)= n− 3. To count the deleted edges, note that there are
d(x1)+ d(x2)+ d(x3)− 3 edges touching x1, x2, x3, and that the edges in F do not touch x1, x2, x3.
So the number of deleted edges is

d(x1)+ d(x2)+ d(x3)− 3+ |F| ≤ d(x1)+ · · · + d(x4)− a3 + a0 − 6≤ 2n− 3,

where the last inequality uses (12). So e(G′)≥ e(G)− 2n+ 3= t3(n)+ 1− 2n+ 3= t3(n− 3)+ 1.
By the induction hypothesis,G′ contains a chordal subgraphH′ with e(H′)≥ g3(n− 3)− 6. Define
a subgraph H′′ of G′ as follows:

• If there is z ∈A3 \ {x1} such that x4z ∈ E(H′), then H′′ =H′;
• Else, pick any z ∈A3 \ {x1} and set H′′ =H′ − x4v+ x4z.

We claim that e(H′′)≥ e(H′). In the first item this is obvious. Suppose we are in the second
item. By the definition of F, every neighbour of x4 in G′ belongs to {v} ∪A3 \ {x1}. Since we are in
the second item, the only possible neighbour of x4 inH′ is v. So indeed e(H′′)≥ e(H′). Also,H′′ is
chordal; in the second case, this is because x4 is a leaf in both H′ and H′′.

By the definition of H′′, there is z ∈A3 \ {x1} such that x4z ∈ E(H′′). Now put H =H′′ +
{x2z, x3z} + {xixj : 1≤ i< j≤ 4}, see Figure 2(b). Then e(H)= e(H′′)+ 8≥ g3(n− 3)+ 8− 6=
g3(n)− 6. Also,H is chordal: adding the vertices x2, x3, x1 in this order, we always add a simplicial
vertex. This proves Claim 4.6. �

We now continue with the proof of the theorem. For i ∈ [4], we say that xi is deletable if d(xi)≤
� 2n

3 �, and there is y ∈V(G) \ {x1, . . . , x4} which is adjacent to xj for all j ∈ [4] \ {i}.
Claim 4.7. We may assume that there is no deletable xi.
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Proof. Suppose that xi is deletable. Without loss of generality, assume that i= 1. Let G′ =G− x1.
Then e(G′)= e(G)− d(x1)≥ t3(n)+ 1− � 2n

3 � = t3(n− 1)+ 1. Let y be a common neighbour of
x2, x3, x4. By the induction hypothesis, G′ contains a chordal subgraph H′ with e(H′)≥ g3(n−
1)− 6, such thatH′ contains the edges of the clique x2, x3, x4, y. TakeH =H′ + {x1x2, x1x3, x1x4}.
Then H is chordal and e(H)= e(H′)+ 3≥ g3(n− 1)+ 3− 6≥ g3(n)− 6. �
Claim 4.8. We may assume that d(x1)+ · · · + d(x4)≤ g3(n)− 1.

Proof. Else, take H to be the subgraph of G consisting of all edges which touch x1, . . . , x4. Then
H is chordal and e(H)= d(x1)+ · · · + d(x4)− 6≥ g3(n)− 6. �
Claim 4.9. We may assume that there is no 5-clique containing x1, . . . , x4.

Proof. Suppose that x1, . . . , x4, y is a 5-clique. If d(xi)≤ � 2n
3 � then xi is deletable. Assuming no xi

is deletable, we have d(x1)+ · · · + d(x4)≥ 4 · (� 2n
3 � + 1)≥ 2n+ � 2n

3 � + 2= g3(n), so we are done
by Claim 4.8. �
Claim 4.10. We may assume that for every i ∈ [4],

∑
j
=i d(xj)≤ 2n.

Proof. Suppose that d(x1)+ d(x2)+ d(x3)≥ 2n+ 1 (the proof for each other i is symmetric).
By Claim 4.8, we may assume that d(x4)≤ g3(n)− 1− (2n+ 1)= n− �n

3 � = � 2n
3 �. By Claim 4.7,

we may assume that x4 is not deletable. Then x1, x2, x3 have no common neighbour except for
x4. But as d(x1)+ d(x2)+ d(x3)≥ 2n+ 1, this means that every vertex in V(G) \ {x1, . . . , x4}
is adjacent to exactly two of the vertices x1, x2, x3. Let G′ =G− {x1, . . . , x4}. Then v(G′)=
n− 4 and e(G′)= e(G)− (d(x1)+ · · · + d(x4))+ 6≥ e(G)− g3(n)+ 7= t3(n)+ 1− g3(n)+ 7=
t3(n− 4)+ 1 by Lemma 4.2. Fix an arbitrary 4-clique w1, . . . ,w4 inG′. By the induction hypothe-
sis, G′ contains a chordal subgraph H′ with e(H′)≥ g3(n− 4)− 6 such that H′ contains the edges
of the clique w1, . . . ,w4. Each wi is adjacent to two of the vertices x1, x2, x3. By the pigeonhole
principle and by symmetry, we may assume that each of w1,w2 is adjacent to x1, x2. Moreover, w3
must be adjacent to x1 or x2; say to x1. TakeH =H′ + {x1w1, x1w2, x1w3, x2w1, x2w2} + {xixj : 1≤
i< j≤ 4}, see Figure 2(c). Then e(H)= e(H′)+ 11≥ g3(n− 4)+ 11− 6≥ g3(n)− 6. Also, H is
chordal: adding the vertices x1, x2, x3, x4 in this order, we always add a simplicial vertex. This
proves Claim 4.10. �

By Claim 4.5, we may assume that there is y0 ∈V(G) \ {x1, . . . , x4} which is adjacent to
at least 3 of the vertices x1, . . . , x4; say to x2, x3, x4. By Claim 4.7, we may assume that xi is
not deletable for any i ∈ [4]. Since x1 is not deletable, d(x1)≥ � 2n

3 � + 1. By Claim 4.6, there is
z0 ∈V(G) \ {x1, . . . , x4} which is adjacent to x1 and to at least two of the vertices x2, x3, x4; with-
out loss of generality, z0 is adjacent to x3, x4. Since x2 is not deletable, we have d(x2)≥ � 2n

3 � + 1.
Also, we may assume that y0 
= z0 because else we would have a 5-clique containing x1, . . . , x4.

Claim 4.11. We may assume that d(xi)≤ � 2n
3 � for each i= 3, 4.

Proof. By Claim 4.10, we may assume that d(xi)≤ 2n− d(x1)− d(x2)≤ 2n− 2 · (� 2n
3 � + 1

)≤
� 2n

3 �. �
If d(y0)≤ � 2n

3 � then we can delete y0, apply induction to the remaining graph to find a chordal
subgraphH′ with at least g3(n− 1)− 6 edges which contains the edges of the clique x1, . . . , x4 and
then add the edges x2y0, x3y0, x4y0 to H′ to conclude the proof. So suppose that d(y0)≥ � 2n

3 � + 1.
Let v /∈ {x3, x4} be a common neighbour of x2 and y0. Such a vertex v exists because d(x2)+ d(y0)≥
2 · (� 2n

3 � + 1
)≥ n+ 3, where the last inequality holds for every n≥ 5. Note that v 
= x1 because x1

is not adjacent to y0, as otherwise x1, . . . , x4, y0 would be a 5-clique. Similarly, v 
= z0 because v is
adjacent to x2 and z0 is adjacent to x1, x3, x4 (so otherwise x1, . . . , x4, z0 would be a 5-clique).

Suppose first that x2, y0, v have no common neighbour. Then d(x2)+ d(y0)+ d(v)≤
2n. LetG′ =G− {x2, y0, v}. Then e(G′)= e(G)− d(x2)− d(y0)− d(v)+ 3≥ t3(n)+ 1− 2n+ 3=
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(a) (b) (c)

Figure 3. Applying induction after deleting certain vertices. The added edges are red.

t3(n− 3)+ 1. By the induction hypothesis, G′ contains a chordal subgraph H′ with e(H′)≥
g3(n− 3)− 6 such that H′ contains the edges of the clique x1, x3, x4, z0. Take H =H′ +
{x2x1, x2x3, x2x4, y0x2, y0x3, y0x4, vx2, vy0}, see Figure 3(a). Then e(H)= e(H′)+ 8≥ g3(n− 3)+
8− 6= g3(n)− 6. Also, H is chordal: adding the vertices x2, y0, v in this order, we always add a
simplicial vertex.

Suppose now that x2, y0, v have a common neighbour w. First, suppose that w ∈ {x3, x4},
say w= x3. Let G′ =G− {x1, x4}. We have d(x1)+ d(x4)≤ 2n− d(x2)≤ 2n− � 2n

3 � − 1≤ � 4n
3 �,

where the first inequality is by Claim 4.10. So e(G′)= e(G)− d(x1)− d(x4)+ 1≥ t3(n)+ 1−
� 4n

3 � + 1= t3(n− 2)+ 1. By the induction hypothesis, G′ has a chordal subgraph H′ with
e(H′)≥ g3(n− 2)− 6 such that H′ contains the edges of the clique x2, y0, v, x3. Take H =H′ +
{x4x2, x4x3, x4y0, x1x2, x1x3, x1x4}, see Figure 3(b). Then e(H)= e(H′)+ 6≥ g3(n− 2)+ 6− 6≥
g3(n)− 6. Also, H is chordal: adding x4 and then x1, we always add a simplicial vertex. Now
suppose that w /∈ {x3, x4}. Let G′ =G− {x1, x3, x4}. By Claims 4.10 and 4.11, we have d(x1)+
d(x3)≤ 2n− d(x2)≤ 4n

3 and d(x4)≤ 2n
3 , so d(x1)+ d(x3)+ d(x4)≤ 2n. Hence, e(G′)= e(G)−

d(x1)− d(x3)− d(x4)+ 3≥ t3(n)+ 1− 2n+ 3= t3(n− 3)+ 1. By the induction hypothesis, G′
has a chordal subgraph H′ with e(H′)≥ g3(n− 3)− 6 such that H′ contains the edges of the
clique x2, y0, v,w. Now take H =H′ + {x3y0, x4y0} + {xixj : 1≤ i< j≤ 4}, see Figure 3(c). Then
e(H)= e(H′)+ 8≥ g3(n− 3)+ 8− 6= g3(n)− 6. Also,H is chordal: adding the vertices x3, x4, x1
in this order, we always add a simplicial vertex. This completes the proof of the theorem. �

5. Concluding remarks
In this paper we study themaximal value f (n,m) such that every graph with n vertices andm edges
has a chordal subgraph with at least f (n,m) edges. We determine this function asymptotically for
all m and exactly for m≤ t3(n)+ 1. Our results suggest the following conjecture on the value of
f (n,m) for generalm.

Conjecture 5.1. Let k≥ 2, n≥ 1 and tk(n)+ 1≤m≤ tk+1(n). Then

f (n,m)=min
t,r

(kn− t + r
)−

(
k+ 1
2

)
,

where the minimum is taken over all t, r ≥ 0 satisfying tk−1(n− t)+ t(n− t)+ t2(r)≥m.

It seems very likely that some progress on this conjecture can be achieved using our techniques
together with a careful case analysis, but it would be interesting to find a proof which avoids such
a case analysis as much as possible.
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Note added:
Zachary Hunter (personal communication) very recently improved the error term in

Theorem 1.3 from O(
√
n) to O(1) in the special casem= tk(n)+ 1, proving that f (n, tk(n)+ 1)=

(k− 1/k)n−Ok(1).
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[10] Erdős, P. and Laskar, R. (1985) A note on the size of a chordal subgraph. Congress. Numer. 48 81–86.
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